Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2021-04-27
Altarawneh, A., Skjellum, A..  2020.  The Security Ingredients for Correct and Byzantine Fault-tolerant Blockchain Consensus Algorithms. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—9.

The blockchain technology revolution and the use of blockchains in various applications have resulted in many companies and programmers developing and customizing specific fit-for-purpose consensus algorithms. Security and performance are determined by the chosen consensus algorithm; hence, the reliability and security of these algorithms must be assured and tested, which requires an understanding of all the security assumptions that make such algorithms correct and byzantine fault-tolerant.This paper studies the "security ingredients" that enable a given consensus algorithm to achieve safety, liveness, and byzantine fault tolerance (BFT) in both permissioned and permissionless blockchain systems. The key contributions of this paper are the organization of these requirements and a new taxonomy that describes the requirements for security. The CAP Theorem is utilized to explain important tradeoffs between consistency and availability in consensus algorithm design, which are crucial depending on the specific application of a given algorithm. This topic has also been explored previously by De Angelis. However, this paper expands that prior explanation and dilemma of consistency vs. availability and then combines this with Buterin's Trilemma to complete the overall exposition of tradeoffs.

2021-09-16
Asci, Cihan, Wang, Wei, Sonkusale, Sameer.  2020.  Security Monitoring System Using Magnetically-Activated RFID Tags. 2020 IEEE SENSORS. :1–4.
Existing methods for home security monitoring depend on expensive custom battery-powered solutions. In this article, we present a battery-free solution that leverages any off-the-shelf passive radio frequency identification (RFID) tag for real-time entry detection. Sensor consists of a printed RFID antenna on paper, coupled to a magnetic reed switch and is affixed on the door. Opening of the door triggers the reed switch causing RFID signal transmission detected by any off-the-shelf passive RFID reader. This paper shows simulation and experimental results for such magnetically-actuated RFID (or magRFID) opening sensor.
2021-09-07
Abisoye, Opeyemi Aderiike, Shadrach Akanji, Oluwatobi, Abisoye, Blessing Olatunde, Awotunde, Joseph.  2020.  Slow Hypertext Transfer Protocol Mitigation Model in Software Defined Networks. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Distributed Denial of Service (DDoS) attacks have been one of the persistent forms of attacks on information technology infrastructure connected to a public network due to the ease of access to DDoS attack tools. Researchers have been able to develop several techniques to curb volumetric DDoS attacks which overwhelms the target with large number of request packets. However, compared to volumetric DDoS, low amount of research has been executed on mitigating slow DDoS. Data mining approaches and various Artificial Intelligence techniques have been proved by researchers to be effective for reduce DDoS attacks. This paper provides the scholarly community with slow DDoS attack detection techniques using Genetic Algorithm and Support Vector Machine aimed at mitigating slow DDoS attack in a Software-Defined Networking (SDN) environment simulated in GNS3. Genetic algorithm was employed to select the features which indicates the presence of an attack and also determine the appropriate regularization parameter, C, and gamma parameter for the Support Vector Machine classifier. Results obtained shows that the classifier had detection accuracy, Area Under Receiver Operating Curve (AUC), true positive rate, false positive rate and false negative rate of 99.89%, 99.89%, 99.95%, 0.18%, and 0.05% respectively. Also, the algorithm for subsequent implementation of the selective adaptive bubble burst mitigation mechanism was presented.
2021-08-12
Zheng, Yifeng, Pal, Arindam, Abuadbba, Sharif, Pokhrel, Shiva Raj, Nepal, Surya, Janicke, Helge.  2020.  Towards IoT Security Automation and Orchestration. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :55—63.
The massive boom of Internet of Things (IoT) has led to the explosion of smart IoT devices and the emergence of various applications such as smart cities, smart grids, smart mining, connected health, and more. While the proliferation of IoT systems promises many benefits for different sectors, it also exposes a large attack surface, raising an imperative need to put security in the first place. It is impractical to heavily rely on manual operations to deal with security of massive IoT devices and applications. Hence, there is a strong need for securing IoT systems with minimum human intervention. In light of this situation, in this paper, we envision security automation and orchestration for IoT systems. After conducting a comprehensive evaluation of the literature and having conversations with industry partners, we envision a framework integrating key elements towards this goal. For each element, we investigate the existing landscapes, discuss the current challenges, and identify future directions. We hope that this paper will bring the attention of the academic and industrial community towards solving challenges related to security automation and orchestration for IoT systems.
2021-10-22
Adam Stone.  2020.  GovCons Weigh in on ODNI Supply Chain Warnings. Washington Exec: Federal Government News. 2020

In a recently published document addressing supply chain risk, the Office of the Director of National Intelligence warns against “foreign attempts to compromise the integrity, trustworthiness, and authenticity of products and services purchased and integrated into the operations of the U.S. Government, the Defense Industrial Base, and the private sector.”

Attacks on the supply chain represent “a complex and growing threat to strategically important U.S. economic sectors and critical infrastructure,” the agency notes. Foreign adversaries are attacking key supply chains at multiple points: From concept to design, manufacture, integration, deployment and maintenance.

GovCon leaders say the government does well to take the risks seriously, and they point to ways in which the contracting community can work hand-in-glove with federal officials to mitigate the threat.

2021-03-04
Ferryansa, Budiono, A., Almaarif, A..  2020.  Analysis of USB Based Spying Method Using Arduino and Metasploit Framework in Windows Operating System. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :437—442.

The use of a very wide windows operating system is undeniably also followed by increasing attacks on the operating system. Universal Serial Bus (USB) is one of the mechanisms used by many people with plug and play functionality that is very easy to use, making data transfers fast and easy compared to other hardware. Some research shows that the Windows operating system has weaknesses so that it is often exploited by using various attacks and malware. There are various methods used to exploit the Windows operating system, one of them by using a USB device. By using a USB device, a criminal can plant a backdoor reverse shell to exploit the victim's computer just by connecting the USB device to the victim's computer without being noticed. This research was conducted by planting a reverse shell backdoor through a USB device to exploit the victim's device, especially the webcam and microphone device on the target computer. From 35 experiments that have been carried out, it was found that 83% of spying attacks using USB devices on the Windows operating system were successfully carried out.

2022-08-12
Aslanyan, Hayk, Arutunian, Mariam, Keropyan, Grigor, Kurmangaleev, Shamil, Vardanyan, Vahagn.  2020.  BinSide : Static Analysis Framework for Defects Detection in Binary Code. 2020 Ivannikov Memorial Workshop (IVMEM). :3–8.

Software developers make mistakes that can lead to failures of a software product. One approach to detect defects is static analysis: examine code without execution. Currently, various source code static analysis tools are widely used to detect defects. However, source code analysis is not enough. The reason for this is the use of third-party binary libraries, the unprovability of the correctness of all compiler optimizations. This paper introduces BinSide : binary static analysis framework for defects detection. It does interprocedural, context-sensitive and flow-sensitive analysis. The framework uses platform independent intermediate representation and provide opportunity to analyze various architectures binaries. The framework includes value analysis, reaching definition, taint analysis, freed memory analysis, constant folding, and constant propagation engines. It provides API (application programming interface) and can be used to develop new analyzers. Additionally, we used the API to develop checkers for classic buffer overflow, format string, command injection, double free and use after free defects detection.

2022-10-13
Sakurai, Yuji, Watanabe, Takuya, Okuda, Tetsuya, Akiyama, Mitsuaki, Mori, Tatsuya.  2020.  Discovering HTTPSified Phishing Websites Using the TLS Certificates Footprints. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :522—531.
With the recent rise of HTTPS adoption on the Web, attackers have begun "HTTPSifying" phishing websites. HTTPSifying a phishing website has the advantage of making the website appear legitimate and evading conventional detection methods that leverage URLs or web contents in the network. Further, adopting HTTPS could also contribute to generating intrinsic footprints and provide defenders with a great opportunity to monitor and detect websites, including phishing sites, as they would need to obtain a public-key certificate issued for the preparation of the websites. The potential benefits of certificate-based detection include: (1) the comprehensive monitoring of all HTTPSified websites by using certificates immediately after their issuance, even if the attacker utilizes dynamic DNS (DDNS) or hosting services; this could be overlooked with the conventional domain-registration-based approaches; and (2) to detect phishing websites before they are published on the Internet. Accordingly, we address the following research question: How can we make use of the footprints of TLS certificates to defend against phishing attacks? For this, we collected a large set of TLS certificates corresponding to phishing websites from Certificate Transparency (CT) logs and extensively analyzed these TLS certificates. We demonstrated that a template of common names, which are equivalent to the fully qualified domain names, obtained through the clustering analysis of the certificates can be used for the following promising applications: (1) The discovery of previously unknown phishing websites with low false positives and (2) understanding the infrastructure used to generate the phishing websites. We use our findings on the abuse of free certificate authorities (CAs) for operating HTTPSified phishing websites to discuss possible solutions against such abuse and provide a recommendation to the CAs.
2021-02-01
Calhoun, C. S., Reinhart, J., Alarcon, G. A., Capiola, A..  2020.  Establishing Trust in Binary Analysis in Software Development and Applications. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1–4.
The current exploratory study examined software programmer trust in binary analysis techniques used to evaluate and understand binary code components. Experienced software developers participated in knowledge elicitations to identify factors affecting trust in tools and methods used for understanding binary code behavior and minimizing potential security vulnerabilities. Developer perceptions of trust in those tools to assess implementation risk in binary components were captured across a variety of application contexts. The software developers reported source security and vulnerability reports provided the best insight and awareness of potential issues or shortcomings in binary code. Further, applications where the potential impact to systems and data loss is high require relying on more than one type of analysis to ensure the binary component is sound. The findings suggest binary analysis is viable for identifying issues and potential vulnerabilities as part of a comprehensive solution for understanding binary code behavior and security vulnerabilities, but relying simply on binary analysis tools and binary release metadata appears insufficient to ensure a secure solution.
2021-09-07
Thie, Nicolas, Franken, Marco, Schwaeppe, Henrik, Böttcher, Luis, Müller, Christoph, Moser, Albert, Schumann, Klemens, Vigo, Daniele, Monaci, Michele, Paronuzzi, Paolo et al..  2020.  Requirements for Integrated Planning of Multi-Energy Systems. 2020 6th IEEE International Energy Conference (ENERGYCon). :696–701.
The successful realization of the climate goals agreed upon in the European Union's COP21 commitments makes a fundamental change of the European energy system necessary. In particular, for a reduction of greenhouse gas emissions over 80%, the use of renewable energies must be increased not only in the electricity sector but also across all energy sectors, such as heat and mobility. Furthermore, a progressive integration of renewable energies increases the risk of congestions in the transmission grid and makes network expansion necessary. An efficient planning for future energy systems must comprise the coupling of energy sectors as well as interdependencies of generation and transmission grid infrastructure. However, in traditional energy system planning, these aspects are considered as decoupled. Therefore, the project PlaMES develops an approach for integrated planning of multi-energy systems on a European scale. This paper aims at analyzing the model requirements and describing the modeling approach.
2021-02-01
Ng, M., Coopamootoo, K. P. L., Toreini, E., Aitken, M., Elliot, K., Moorsel, A. van.  2020.  Simulating the Effects of Social Presence on Trust, Privacy Concerns Usage Intentions in Automated Bots for Finance. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :190–199.
FinBots are chatbots built on automated decision technology, aimed to facilitate accessible banking and to support customers in making financial decisions. Chatbots are increasing in prevalence, sometimes even equipped to mimic human social rules, expectations and norms, decreasing the necessity for human-to-human interaction. As banks and financial advisory platforms move towards creating bots that enhance the current state of consumer trust and adoption rates, we investigated the effects of chatbot vignettes with and without socio-emotional features on intention to use the chatbot for financial support purposes. We conducted a between-subject online experiment with N = 410 participants. Participants in the control group were provided with a vignette describing a secure and reliable chatbot called XRO23, whereas participants in the experimental group were presented with a vignette describing a secure and reliable chatbot that is more human-like and named Emma. We found that Vignette Emma did not increase participants' trust levels nor lowered their privacy concerns even though it increased perception of social presence. However, we found that intention to use the presented chatbot for financial support was positively influenced by perceived humanness and trust in the bot. Participants were also more willing to share financially-sensitive information such as account number, sort code and payments information to XRO23 compared to Emma - revealing a preference for a technical and mechanical FinBot in information sharing. Overall, this research contributes to our understanding of the intention to use chatbots with different features as financial technology, in particular that socio-emotional support may not be favoured when designed independently of financial function.
2020-12-28
Abazar, T., Masjedi, P., Taheri, M..  2020.  A Binary Relevance Adaptive Model-Selection for Ensemble Steganalysis. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :77—81.

Steganalysis is an interesting classification problem in order to discriminate the images, including hidden messages from the clean ones. There are many methods, including deep CNN networks to extract fine features for this classification task. Nevertheless, a few researches have been conducted to improve the final classifier. Some state-of-the-art methods try to ensemble the networks by a voting strategy to achieve more stable performance. In this paper, a selection phase is proposed to filter improper networks before any voting. This filtering is done by a binary relevance multi-label classification approach. The Logistic Regression (LR) is chosen here as the last layer of network for classification. The large-margin Fisher’s linear discriminant (FLD) classifier is assigned to each one of the networks. It learns to discriminate the training instances which associated network is suitable for or not. Xu-Net, one of the most famous state-of-the-art Steganalysis models, is chosen as the base networks. The proposed method with different approaches is applied on the BOSSbase dataset and is compared with traditional voting and also some state-of-the-art related ensemble techniques. The results show significant accuracy improvement of the proposed method in comparison with others.

2021-03-09
Ahmed, H. M., Jassim, R. W..  2020.  Distributed Transform Encoder to Improve Diffie-Hellman Protocol for Big Message Security. 2020 3rd International Conference on Engineering Technology and its Applications (IICETA). :84—88.

Man in the middle Attack (MIMA) problem of Diffie-Hellman key exchange (D-H) protocol, has led to introduce the Hash Diffie-Hellman key exchange (H-D-H) protocol. Which was cracked by applying the brute force attack (BFA) results of hash function. For this paper, a system will be suggested that focusses on an improved key exchange (D-H) protocol, and distributed transform encoder (DTE). That system utilized for enhanced (D-H) protocol algorithm when (D-H) is applied for generating the keys used for encrypting data of long messages. Hash256, with two secret keys and one public key are used for D-H protocol improvements. Finally, DTE where applied, this cryptosystem led to increase the efficiency of data transfer security with strengthening the shared secret key code. Also, it has removed the important problems such as MITM and BFA, as compared to the previous work.

2021-03-04
Ramadhanty, A. D., Budiono, A., Almaarif, A..  2020.  Implementation and Analysis of Keyboard Injection Attack using USB Devices in Windows Operating System. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :449—454.

Windows is one of the popular operating systems in use today, while Universal Serial Bus (USB) is one of the mechanisms used by many people with practical plug and play functions. USB has long been used as a vector of attacks on computers. One method of attack is Keylogger. The Keylogger can take advantage of existing vulnerabilities in the Windows 10 operating system attacks carried out in the form of recording computer keystroke activity without the victim knowing. In this research, an attack will be carried out by running a Powershell Script using BadUSB to be able to activate the Keylogger program. The script is embedded in the Arduino Pro Micro device. The results obtained in the Keyboard Injection Attack research using Arduino Pro Micro were successfully carried out with an average time needed to run the keylogger is 7.474 seconds with a computer connected to the internet. The results of the keylogger will be sent to the attacker via email.

2021-03-09
Muslim, A. A., Budiono, A., Almaarif, A..  2020.  Implementation and Analysis of USB based Password Stealer using PowerShell in Google Chrome and Mozilla Firefox. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :421—426.

Along with the development of the Windows operating system, browser applications to surf the internet are also growing rapidly. The most widely used browsers today are Google Chrome and Mozilla Firefox. Both browsers have a username and password management feature that makes users login to a website easily, but saving usernames and passwords in the browser is quite dangerous because the stored data can be hacked using brute force attacks or read through a program. One way to get a username and password in the browser is to use a program that can read Google Chrome and Mozilla Firefox login data from the computer's internal storage and then show those data. In this study, an attack will be carried out by implementing Rubber Ducky using BadUSB to run the ChromePass and PasswordFox program and the PowerShell script using the Arduino Pro Micro Leonardo device as a USB Password Stealer. The results obtained from this study are the username and password on Google Chrome and Mozilla Firefox successfully obtained when the USB is connected to the target device, the average time of the attack is 14 seconds then sending it to the author's email.

2021-02-23
Khan, M., Rehman, O., Rahman, I. M. H., Ali, S..  2020.  Lightweight Testbed for Cybersecurity Experiments in SCADA-based Systems. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—5.

A rapid rise in cyber-attacks on Cyber Physical Systems (CPS) has been observed in the last decade. It becomes even more concerning that several of these attacks were on critical infrastructures that indeed succeeded and resulted into significant physical and financial damages. Experimental testbeds capable of providing flexible, scalable and interoperable platform for executing various cybersecurity experiments is highly in need by all stakeholders. A container-based SCADA testbed is presented in this work as a potential platform for executing cybersecurity experiments. Through this testbed, a network traffic containing ARP spoofing is generated that represents a Man in the middle (MITM) attack. While doing so, scanning of different systems within the network is performed which represents a reconnaissance attack. The network traffic generated by both ARP spoofing and network scanning are captured and further used for preparing a dataset. The dataset is utilized for training a network classification model through a machine learning algorithm. Performance of the trained model is evaluated through a series of tests where promising results are obtained.

2021-07-28
Alsmadi, Izzat, Zarrad, Anis, Yassine, Abdulrahmane.  2020.  Mutation Testing to Validate Networks Protocols. 2020 IEEE International Systems Conference (SysCon). :1—8.
As networks continue to grow in complexity using wired and wireless technologies, efficient testing solutions should accommodate such changes and growth. Network simulators provide a network-independent environment to provide different types of network testing. This paper is motivated by the observation that, in many cases in the literature, the success of developed network protocols is very sensitive to the initial conditions and assumptions of the testing scenarios. Network services are deployed in complex environments; results of testing and simulation can vary from one environment to another and sometimes in the same environment at different times. Our goal is to propose mutation-based integration testing that can be deployed with network protocols and serve as Built-in Tests (BiT).This paper proposes an integrated mutation testing framework to achieve systematic test cases' generation for different scenario types. Scenario description and variables' setting should be consistent with the protocol specification and the simulation environment. We focused on creating test cases for critical scenarios rather than preliminary or simplified scenarios. This will help users to report confident simulation results and provide credible protocol analysis. The criticality is defined as a combination of network performance metrics and critical functions' coverage. The proposed solution is experimentally proved to obtain accurate evaluation results with less testing effort by generating high-quality testing scenarios. Generated test scenarios will serve as BiTs for the network simulator. The quality of the test scenarios is evaluated from three perspectives: (i) code coverage, (ii) mutation score and (iii) testing effort. In this work, we implemented the testing framework in NS2, but it can be extended to any other simulation environment.
ISSN: 2472-9647
2021-05-25
Ajorlou, Amir, Abbasfar, Aliazam.  2020.  An Optimized Structure of State Channel Network to Improve Scalability of Blockchain Algorithms. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :73—76.
Nowadays, blockchain is very common and widely used in various fields. The properties of blockchain-based algorithms such as being decentralized and uncontrolled by institutions and governments, are the main reasons that has attracted many applications. The security and the scalability limitations are the main challenges for the development of these systems. Using second layer network is one of the various methods proposed to improve the scalability of these systems. This network can increase the total number of transactions per second by creating extra channels between the nodes that operate in a different layer not obligated to be on consensus ledger. In this paper, the optimal structure for the second layer network has been presented. In the proposed structure we try to distribute the parameters of the second layer network as symmetrically as possible. To prove the optimality of this structure we first introduce the maximum scalability bound, and then calculate it for the proposed structure. This paper will show how the second layer method can improve the scalability without any information about the rate of transactions between nodes.
2021-08-02
Fernandez, J., Allen, B., Thulasiraman, P., Bingham, B..  2020.  Performance Study of the Robot Operating System 2 with QoS and Cyber Security Settings. 2020 IEEE International Systems Conference (SysCon). :1—6.
Throughout the Department of Defense, there are ongoing efforts to increase cybersecurity and improve data transfer in unmanned robotic systems (UxS). This paper explores the performance of the Robot Operating System (ROS) 2, which is built with the Data Distribution Service (DDS) standard as a middleware. Based on how quality of service (QoS) parameters are defined in the robotic middleware interface, it is possible to implement strict delivery requirements to different nodes on a dynamic nodal network with multiple unmanned systems connected. Through this research, different scenarios with varying QoS settings were implemented and compared to baseline values to help illustrate the impact of latency and throughput on data flow. DDS security settings were also enabled to help understand the cost of overhead and performance when secured data is compared to plaintext baseline values. Our experiments were performed using a basic ROS 2 network consisting of two nodes (one publisher and one subscriber). Our experiments showed a measurable latency and throughput change between different QoS profiles and security settings. We analyze the trends and tradeoffs associated with varying QoS and security settings. This paper provides performance data points that can be used to help future researchers and developers make informative choices when using ROS 2 for UxS.
2021-03-09
Anithaashri, T. P., Ravichandran, G..  2020.  Security Enhancement for the Network Amalgamation using Machine Learning Algorithm. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :411—416.

Accessing the secured data through the network is a major task in emerging technology. Data needs to be protected from the network vulnerabilities, malicious users, hackers, sniffers, intruders. The novel framework has been designed to provide high security in data transaction through computer network. The implant of network amalgamation in the recent trends, make the way in security enhancement in an efficient manner through the machine learning algorithm. In this system the usage of the biometric authenticity plays a vital role for unique approach. The novel mathematical approach is used in machine learning algorithms to solve these problems and provide the security enhancement. The result shows that the novel method has consistent improvement in enhancing the security of data transactions in the emerging technologies.

2021-04-29
Hayes, J. Huffman, Payne, J., Essex, E., Cole, K., Alverson, J., Dekhtyar, A., Fang, D., Bernosky, G..  2020.  Towards Improved Network Security Requirements and Policy: Domain-Specific Completeness Analysis via Topic Modeling. 2020 IEEE Seventh International Workshop on Artificial Intelligence for Requirements Engineering (AIRE). :83—86.

Network security policies contain requirements - including system and software features as well as expected and desired actions of human actors. In this paper, we present a framework for evaluation of textual network security policies as requirements documents to identify areas for improvement. Specifically, our framework concentrates on completeness. We use topic modeling coupled with expert evaluation to learn the complete list of important topics that should be addressed in a network security policy. Using these topics as a checklist, we evaluate (students) a collection of network security policies for completeness, i.e., the level of presence of these topics in the text. We developed three methods for topic recognition to identify missing or poorly addressed topics. We examine network security policies and report the results of our analysis: preliminary success of our approach.

2021-02-03
Alarcon, G. M., Gibson, A. M., Jessup, S. A..  2020.  Trust Repair in Performance, Process, and Purpose Factors of Human-Robot Trust. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

The current study explored the influence of trust and distrust behaviors on performance, process, and purpose (trustworthiness) perceptions over time when participants were paired with a robot partner. We examined the changes in trustworthiness perceptions after trust violations and trust repair after those violations. Results indicated performance, process, and purpose perceptions were all affected by trust violations, but perceptions of process and purpose decreased more than performance following a distrust behavior. Similarly, trust repair was achieved in performance perceptions, but trust repair in perceived process and purpose was absent. When a trust violation occurred, process and purpose perceptions deteriorated and failed to recover from the violation. In addition, the trust violation resulted in untrustworthy perceptions of the robot. In contrast, trust violations decreased partner performance perceptions, and subsequent trust behaviors resulted in a trust repair. These findings suggest that people are more sensitive to distrust behaviors in their perceptions of process and purpose than they are in performance perceptions.

2021-03-30
Ben-Yaakov, Y., Meyer, J., Wang, X., An, B..  2020.  User detection of threats with different security measures. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.

2020-05-22
Abdelhadi, Ameer M.S., Bouganis, Christos-Savvas, Constantinides, George A..  2019.  Accelerated Approximate Nearest Neighbors Search Through Hierarchical Product Quantization. 2019 International Conference on Field-Programmable Technology (ICFPT). :90—98.
A fundamental recurring task in many machine learning applications is the search for the Nearest Neighbor in high dimensional metric spaces. Towards answering queries in large scale problems, state-of-the-art methods employ Approximate Nearest Neighbors (ANN) search, a search that returns the nearest neighbor with high probability, as well as techniques that compress the dataset. Product-Quantization (PQ) based ANN search methods have demonstrated state-of-the-art performance in several problems, including classification, regression and information retrieval. The dataset is encoded into a Cartesian product of multiple low-dimensional codebooks, enabling faster search and higher compression. Being intrinsically parallel, PQ-based ANN search approaches are amendable for hardware acceleration. This paper proposes a novel Hierarchical PQ (HPQ) based ANN search method as well as an FPGA-tailored architecture for its implementation that outperforms current state of the art systems. HPQ gradually refines the search space, reducing the number of data compares and enabling a pipelined search. The mapping of the architecture on a Stratix 10 FPGA device demonstrates over ×250 speedups over current state-of-the-art systems, opening the space for addressing larger datasets and/or improving the query times of current systems.
2022-08-12
Berman, Maxwell, Adams, Stephen, Sherburne, Tim, Fleming, Cody, Beling, Peter.  2019.  Active Learning to Improve Static Analysis. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1322–1327.
Static analysis tools are programs that run on source code prior to their compilation to binary executables and attempt to find flaws or defects in the code during the early stages of development. If left unresolved, these flaws could pose security risks. While numerous static analysis tools exist, there is no single tool that is optimal. Therefore, many static analysis tools are often used to analyze code. Further, some of the alerts generated by the static analysis tools are low-priority or false alarms. Machine learning algorithms have been developed to distinguish between true alerts and false alarms, however significant man hours need to be dedicated to labeling data sets for training. This study investigates the use of active learning to reduce the number of labeled alerts needed to adequately train a classifier. The numerical experiments demonstrate that a query by committee active learning algorithm can be utilized to significantly reduce the number of labeled alerts needed to achieve similar performance as a classifier trained on a data set of nearly 60,000 labeled alerts.