Biblio
The blockchain technology revolution and the use of blockchains in various applications have resulted in many companies and programmers developing and customizing specific fit-for-purpose consensus algorithms. Security and performance are determined by the chosen consensus algorithm; hence, the reliability and security of these algorithms must be assured and tested, which requires an understanding of all the security assumptions that make such algorithms correct and byzantine fault-tolerant.This paper studies the "security ingredients" that enable a given consensus algorithm to achieve safety, liveness, and byzantine fault tolerance (BFT) in both permissioned and permissionless blockchain systems. The key contributions of this paper are the organization of these requirements and a new taxonomy that describes the requirements for security. The CAP Theorem is utilized to explain important tradeoffs between consistency and availability in consensus algorithm design, which are crucial depending on the specific application of a given algorithm. This topic has also been explored previously by De Angelis. However, this paper expands that prior explanation and dilemma of consistency vs. availability and then combines this with Buterin's Trilemma to complete the overall exposition of tradeoffs.
In a recently published document addressing supply chain risk, the Office of the Director of National Intelligence warns against “foreign attempts to compromise the integrity, trustworthiness, and authenticity of products and services purchased and integrated into the operations of the U.S. Government, the Defense Industrial Base, and the private sector.”
Attacks on the supply chain represent “a complex and growing threat to strategically important U.S. economic sectors and critical infrastructure,” the agency notes. Foreign adversaries are attacking key supply chains at multiple points: From concept to design, manufacture, integration, deployment and maintenance.
GovCon leaders say the government does well to take the risks seriously, and they point to ways in which the contracting community can work hand-in-glove with federal officials to mitigate the threat.
The use of a very wide windows operating system is undeniably also followed by increasing attacks on the operating system. Universal Serial Bus (USB) is one of the mechanisms used by many people with plug and play functionality that is very easy to use, making data transfers fast and easy compared to other hardware. Some research shows that the Windows operating system has weaknesses so that it is often exploited by using various attacks and malware. There are various methods used to exploit the Windows operating system, one of them by using a USB device. By using a USB device, a criminal can plant a backdoor reverse shell to exploit the victim's computer just by connecting the USB device to the victim's computer without being noticed. This research was conducted by planting a reverse shell backdoor through a USB device to exploit the victim's device, especially the webcam and microphone device on the target computer. From 35 experiments that have been carried out, it was found that 83% of spying attacks using USB devices on the Windows operating system were successfully carried out.
Software developers make mistakes that can lead to failures of a software product. One approach to detect defects is static analysis: examine code without execution. Currently, various source code static analysis tools are widely used to detect defects. However, source code analysis is not enough. The reason for this is the use of third-party binary libraries, the unprovability of the correctness of all compiler optimizations. This paper introduces BinSide : binary static analysis framework for defects detection. It does interprocedural, context-sensitive and flow-sensitive analysis. The framework uses platform independent intermediate representation and provide opportunity to analyze various architectures binaries. The framework includes value analysis, reaching definition, taint analysis, freed memory analysis, constant folding, and constant propagation engines. It provides API (application programming interface) and can be used to develop new analyzers. Additionally, we used the API to develop checkers for classic buffer overflow, format string, command injection, double free and use after free defects detection.
Steganalysis is an interesting classification problem in order to discriminate the images, including hidden messages from the clean ones. There are many methods, including deep CNN networks to extract fine features for this classification task. Nevertheless, a few researches have been conducted to improve the final classifier. Some state-of-the-art methods try to ensemble the networks by a voting strategy to achieve more stable performance. In this paper, a selection phase is proposed to filter improper networks before any voting. This filtering is done by a binary relevance multi-label classification approach. The Logistic Regression (LR) is chosen here as the last layer of network for classification. The large-margin Fisher’s linear discriminant (FLD) classifier is assigned to each one of the networks. It learns to discriminate the training instances which associated network is suitable for or not. Xu-Net, one of the most famous state-of-the-art Steganalysis models, is chosen as the base networks. The proposed method with different approaches is applied on the BOSSbase dataset and is compared with traditional voting and also some state-of-the-art related ensemble techniques. The results show significant accuracy improvement of the proposed method in comparison with others.
Man in the middle Attack (MIMA) problem of Diffie-Hellman key exchange (D-H) protocol, has led to introduce the Hash Diffie-Hellman key exchange (H-D-H) protocol. Which was cracked by applying the brute force attack (BFA) results of hash function. For this paper, a system will be suggested that focusses on an improved key exchange (D-H) protocol, and distributed transform encoder (DTE). That system utilized for enhanced (D-H) protocol algorithm when (D-H) is applied for generating the keys used for encrypting data of long messages. Hash256, with two secret keys and one public key are used for D-H protocol improvements. Finally, DTE where applied, this cryptosystem led to increase the efficiency of data transfer security with strengthening the shared secret key code. Also, it has removed the important problems such as MITM and BFA, as compared to the previous work.
Windows is one of the popular operating systems in use today, while Universal Serial Bus (USB) is one of the mechanisms used by many people with practical plug and play functions. USB has long been used as a vector of attacks on computers. One method of attack is Keylogger. The Keylogger can take advantage of existing vulnerabilities in the Windows 10 operating system attacks carried out in the form of recording computer keystroke activity without the victim knowing. In this research, an attack will be carried out by running a Powershell Script using BadUSB to be able to activate the Keylogger program. The script is embedded in the Arduino Pro Micro device. The results obtained in the Keyboard Injection Attack research using Arduino Pro Micro were successfully carried out with an average time needed to run the keylogger is 7.474 seconds with a computer connected to the internet. The results of the keylogger will be sent to the attacker via email.
Along with the development of the Windows operating system, browser applications to surf the internet are also growing rapidly. The most widely used browsers today are Google Chrome and Mozilla Firefox. Both browsers have a username and password management feature that makes users login to a website easily, but saving usernames and passwords in the browser is quite dangerous because the stored data can be hacked using brute force attacks or read through a program. One way to get a username and password in the browser is to use a program that can read Google Chrome and Mozilla Firefox login data from the computer's internal storage and then show those data. In this study, an attack will be carried out by implementing Rubber Ducky using BadUSB to run the ChromePass and PasswordFox program and the PowerShell script using the Arduino Pro Micro Leonardo device as a USB Password Stealer. The results obtained from this study are the username and password on Google Chrome and Mozilla Firefox successfully obtained when the USB is connected to the target device, the average time of the attack is 14 seconds then sending it to the author's email.
A rapid rise in cyber-attacks on Cyber Physical Systems (CPS) has been observed in the last decade. It becomes even more concerning that several of these attacks were on critical infrastructures that indeed succeeded and resulted into significant physical and financial damages. Experimental testbeds capable of providing flexible, scalable and interoperable platform for executing various cybersecurity experiments is highly in need by all stakeholders. A container-based SCADA testbed is presented in this work as a potential platform for executing cybersecurity experiments. Through this testbed, a network traffic containing ARP spoofing is generated that represents a Man in the middle (MITM) attack. While doing so, scanning of different systems within the network is performed which represents a reconnaissance attack. The network traffic generated by both ARP spoofing and network scanning are captured and further used for preparing a dataset. The dataset is utilized for training a network classification model through a machine learning algorithm. Performance of the trained model is evaluated through a series of tests where promising results are obtained.
Accessing the secured data through the network is a major task in emerging technology. Data needs to be protected from the network vulnerabilities, malicious users, hackers, sniffers, intruders. The novel framework has been designed to provide high security in data transaction through computer network. The implant of network amalgamation in the recent trends, make the way in security enhancement in an efficient manner through the machine learning algorithm. In this system the usage of the biometric authenticity plays a vital role for unique approach. The novel mathematical approach is used in machine learning algorithms to solve these problems and provide the security enhancement. The result shows that the novel method has consistent improvement in enhancing the security of data transactions in the emerging technologies.
Network security policies contain requirements - including system and software features as well as expected and desired actions of human actors. In this paper, we present a framework for evaluation of textual network security policies as requirements documents to identify areas for improvement. Specifically, our framework concentrates on completeness. We use topic modeling coupled with expert evaluation to learn the complete list of important topics that should be addressed in a network security policy. Using these topics as a checklist, we evaluate (students) a collection of network security policies for completeness, i.e., the level of presence of these topics in the text. We developed three methods for topic recognition to identify missing or poorly addressed topics. We examine network security policies and report the results of our analysis: preliminary success of our approach.
The current study explored the influence of trust and distrust behaviors on performance, process, and purpose (trustworthiness) perceptions over time when participants were paired with a robot partner. We examined the changes in trustworthiness perceptions after trust violations and trust repair after those violations. Results indicated performance, process, and purpose perceptions were all affected by trust violations, but perceptions of process and purpose decreased more than performance following a distrust behavior. Similarly, trust repair was achieved in performance perceptions, but trust repair in perceived process and purpose was absent. When a trust violation occurred, process and purpose perceptions deteriorated and failed to recover from the violation. In addition, the trust violation resulted in untrustworthy perceptions of the robot. In contrast, trust violations decreased partner performance perceptions, and subsequent trust behaviors resulted in a trust repair. These findings suggest that people are more sensitive to distrust behaviors in their perceptions of process and purpose than they are in performance perceptions.
Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.



