Biblio
Filters: First Letter Of Last Name is A [Clear All Filters]
.
2018. Influencers of Quality Assurance in an Open Source Community. Proceedings of the 11th International Workshop on Cooperative and Human Aspects of Software Engineering. :61-68.
ROS (Robot Operating System) is an open source community in robotics that is developing standard robotics operating system facilities such as hardware abstraction, low-level device control, communication middleware, and a wide range of software components for robotics functionality. This paper studies the quality assurance practices of the ROS community. We use qualitative methods to understand how ideology, priorities of the community, culture, sustainability, complexity, and adaptability of the community affect the implementation of quality assurance practices. Our analysis suggests that software engineering practices require social and cultural alignment and adaptation to the community particularities to achieve seamless implementation in open source environments. This alignment should be incorporated into the design and implementation of quality assurance practices in open source communities.
.
2018. Information security policy compliance: Investigating the role of intrinsic motivation towards policy compliance in the organisation. 2018 4th International Conference on Information Management (ICIM). :125–132.
Recent behavioral research in information security has focused on increasing employees' motivation to enhance the security performance in an organization. This empirical study investigated employees' information security policy (ISP) compliance intentions using self-determination theory (SDT). Relevant hypotheses were developed to test the proposed research model. Data obtained via a survey (N=3D407) from a Fortune 600 organization in Saudi Arabia provides empirical support for the model. The results confirmed that autonomy, competence and the concept of relatedness all positively affect employees' intentions to comply. The variable 'perceived value congruence' had a negative effect on ISP compliance intentions, and the perceived legitimacy construct did not affect employees' intentions. In general, the findings of this study suggest that SDT has value in research into employees' ISP compliance intentions.
.
2018. An Instrument to Measure Human Behavior Toward Cyber Security Policies. 2018 21st Saudi Computer Society National Computer Conference (NCC). :1–6.
Human is the weakest link in information security. Even with strong cyber security policies an organization can still be hacked because of a human error. Even if people are aware of the policies and their importance they might not behave accordingly. This shows to the importance of studying and measuring human behavior toward cyber security policies. This paper introduces a new instrument that can be used to measure human behavior toward cybersecurity policies through creative measures. The goal is to gather data about human behaviors toward cybersecurity policies in natural environment. This method of gathering information allows people to behave normally and don't feel the need to answer perfectly. The paper illustrates all the previous work related to the subject, summarizing previous work in order to improve what have been previously done. The methodology seeks on measuring behavior based on specific measures. These measures are the password, email, identity, sensitive data, and physical/resource security. Each measure has a number of policies used to measure behavior. These policies were selected among several policies based on literature from the same field and the opinion of experts in the field. These question that went through several rounds of check were used to build the proposed-instrument. This instrument then shall be used by researchers to collect data and perform the required analysis. This paper discusses the behavior pattern in a detail and concise manner. The paper demonstrates that it is posable to measure behavior if the right we questions were asked in the right way.
.
2018. Internet of Nano Things: Security Issues and Applications. Proceedings of the 2018 2Nd International Conference on Cloud and Big Data Computing. :71–77.
Nanotechnology provides new solutions for numerous applications that have a significant effect on almost every aspect of our community including health monitoring, smart cities, military, agriculture, and industry. The interconnection of nanoscale devices with existing communication networks over the Internet defines a novel networking paradigm called the Internet of Nano-Things (IoNT). The IoNT involves a large number of nanosensors that used to provide more precise and detailed information about a particular object to enable a better understanding of object behaviour. In this paper, we investigate the challenges and opportunities of the IoNT system in various applications. An overview of the IoNT is first introduced. This is followed by a discussion of the network architecture of the IoNT and various applications that benefit from integrating IoT with nanotechnology. In the end, since security is considered to be one of the main issues of the IoNT system, we provide an in-depth discussion on security goals, attack vectors and security challenges of the IoNT system.
.
2018. Intrusion Detection and Prevention in Software Defined Networking. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–4.
Software defined networking is a concept proposed to replace traditional networks by separating control plane and data plane. It makes the network more programmable and manageable. As there is a single point of control of the network, it is more vulnerable to intrusion. The idea is to train the network controller by machine learning algorithms to let it make the intelligent decisions automatically. In this paper, we have discussed our approach to make software defined networking more secure from various malicious attacks by making it capable of detecting and preventing such attacks.
.
2018. LDPC-based Joint Source-Channel-Network Coding for the Multiple Access Relay Channel. 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–6.
In this work, we investigate the MARC (Multiple Access Relay Channel) setup, in which two Markov sources communicate to a single destination, aided by one relay, based on Joint Source Channel Network (JSCN) LDPC codes. In addition, the two source nodes compress the information sequences with an LDPC source code. The compressed symbols are directly transmitted to both a relay and a destination nodes in two transportation phases. Indeed, the relay performs the concatenation of the received compressed sequences to obtain a recovered sequence, which is encoded with an LDPC channel code, before being forwarded to the destination. At the receiver, we propose an iterative joint decoding algorithm that exploits the correlation between the two sources-relay data and takes into account the errors occurring in the sources-relay links to estimate the source data. We show based on simulation results that the JSCN coding and decoding scheme into a MARC setup achieves a good performance with a gain of about 5 dB compared to a conventional LDPC code.
.
2018. Le-Git-Imate: Towards Verifiable Web-Based Git Repositories. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :469-482.
Web-based Git hosting services such as GitHub and GitLab are popular choices to manage and interact with Git repositories. However, they lack an important security feature - the ability to sign Git commits. Users instruct the server to perform repository operations on their behalf and have to trust that the server will execute their requests faithfully. Such trust may be unwarranted though because a malicious or a compromised server may execute the requested actions in an incorrect manner, leading to a different state of the repository than what the user intended. In this paper, we show a range of high-impact attacks that can be executed stealthily when developers use the web UI of a Git hosting service to perform common actions such as editing files or merging branches. We then propose le-git-imate, a defense against these attacks which provides security guarantees comparable and compatible with Git's standard commit signing mechanism. We implement le-git-imate as a Chrome browser extension. le-git-imate does not require changes on the server side and can thus be used immediately. It also preserves current workflows used in Github/GitLab and does not require the user to leave the browser, and it allows anyone to verify that the server's actions faithfully follow the user's requested actions. Moreover, experimental evaluation using the browser extension shows that le-git-imate has comparable performance with Git's standard commit signature mechanism. With our solution in place, users can take advantage of GitHub/GitLab's web-based features without sacrificing security, thus paving the way towards verifiable web-based Git repositories.
.
2018. LibSEAL: Revealing Service Integrity Violations Using Trusted Execution. Proceedings of the Thirteenth EuroSys Conference. :24:1–24:15.
Users of online services such as messaging, code hosting and collaborative document editing expect the services to uphold the integrity of their data. Despite providers' best efforts, data corruption still occurs, but at present service integrity violations are excluded from SLAs. For providers to include such violations as part of SLAs, the competing requirements of clients and providers must be satisfied. Clients need the ability to independently identify and prove service integrity violations to claim compensation. At the same time, providers must be able to refute spurious claims. We describe LibSEAL, a SEcure Audit Library for Internet services that creates a non-repudiable audit log of service operations and checks invariants to discover violations of service integrity. LibSEAL is a drop-in replacement for TLS libraries used by services, and thus observes and logs all service requests and responses. It runs inside a trusted execution environment, such as Intel SGX, to protect the integrity of the audit log. Logs are stored using an embedded relational database, permitting service invariant violations to be discovered using simple SQL queries. We evaluate LibSEAL with three popular online services (Git, ownCloud and Dropbox) and demonstrate that it is effective in discovering integrity violations, while reducing throughput by at most 14%.
.
2018. LSTM for Anomaly-Based Network Intrusion Detection. 2018 28th International Telecommunication Networks and Applications Conference (ITNAC). :1–3.
Due to the massive amount of the network traffic, attackers have a great chance to cause a huge damage to the network system or its users. Intrusion detection plays an important role in ensuring security for the system by detecting the attacks and the malicious activities. In this paper, we utilize CIDDS dataset and apply a deep learning approach, Long-Short-Term Memory (LSTM), to implement intrusion detection system. This research achieves a reasonable accuracy of 0.85.
.
2018. Making Secret Pockets. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. :LBW574:1–LBW574:6.
This paper describes an early design research exploration into the potential of folds and pockets to serve as places for safekeeping and secrecy in wearables. We explore what such secrecy may mean through woven data codes. We report on early material exploration, a pilot study with ten participants, and the personalization of a data object. We then outline, how we will make use of these early indications to build future stages of the project.
.
2018. MasQueRade: Onsite QR Code Based VR Experience Evaluation System Using Sanitary Mask. Proceedings of the Virtual Reality International Conference - Laval Virtual. :25:1–25:3.
The number of Virtual Reality applications has increased tremendously in the recent years to the point where every single digital entertainment company is investing heavily in VR systems. This increase in VR products demands the improvement in the evaluation of VR experience since current evaluations require an attendee per survey taker and can only move onto the next survey taker after the current survey is done. Traditional evaluations also require many evaluation machines if done digitally, costing survey takers unnecessary expenses. "MasQueRade" is a QR code based instant user feedback online system. This system allows users to scan the QR code on their VR sanitary masks and access an online evaluation system on their own mobile phones. This enables users to conduct the evaluation on their own free time and decreases the expenses surveyors have to spend on machines, therefore greatly decreases the manpower and time required to conduct the evaluations. While this approach to solving the issue of obtaining user feedback may sound elementary, the amount of efforts and resources "MasQueRade" saves by transferring the evaluation from a paper or digital form into an online database gives near infinite possibilities in the future of gathering feedback and evaluation. This paper seeks to explain the functions of "MasQueRade" and the results the team obtains during Anime Expo 2017 and propose a real-time live user VR commentary system drawing inputs form the attendees.
.
2018. Middleware Based Node Authentication Framework for IoT Networks. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). :31–35.
Security and protection are among the most squeezing worries that have developed with the Internet. As systems extended and turned out to be more open, security hones moved to guarantee insurance of the consistently developing Internet, its clients, and information. Today, the Internet of Things (IoT) is rising as another sort of system that associates everything to everybody, all over. Subsequently, the edge of resistance for security and protection moves toward becoming smaller on the grounds that a break may prompt vast scale irreversible harm. One element that eases the security concerns is validation. While diverse confirmation plans are utilized as a part of vertical system storehouses, a typical personality and validation plot is expected to address the heterogeneity in IoT and to coordinate the distinctive conventions exhibit in IoT. In this paper, a light weight secure framework is proposed. The proposed framework is analyzed for performance with security mechanism and found to be better over critical parameters.
.
2018. MIPP: A Portable C++ SIMD Wrapper and Its Use for Error Correction Coding in 5G Standard. Proceedings of the 2018 4th Workshop on Programming Models for SIMD/Vector Processing. :2:1–2:8.
Error correction code (ECC) processing has so far been performed on dedicated hardware for previous generations of mobile communication standards, to meet latency and bandwidth constraints. As the 5G mobile standard, and its associated channel coding algorithms, are now being specified, modern CPUs are progressing to the point where software channel decoders can viably be contemplated. A key aspect in reaching this transition point is to get the most of CPUs SIMD units on the decoding algorithms being pondered for 5G mobile standards. The nature and diversity of such algorithms requires highly versatile programming tools. This paper demonstrates the virtues and versatility of our MIPP SIMD wrapper in implementing a high performance portfolio of key ECC decoding algorithms.
.
2018. Mitigating loT Device Based DDoS Attacks Using Blockchain. Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems. :71–76.
Many IoT devices lack memory and computational complexities of modern computing devices, making them vulnerable to a wide range of cyber attacks. Among these, DDoS attacks are a growing concern in IoT. Such attacks are executed through the introduction of rogue devices and then using them and/or other compromised devices to facilitate DDoS attacks by generating relentless traffic. This paper aims to address DDoS security issues in IoT by proposing an integration of IoT devices with blockchain. This paper uses Ethereum, a blockchain variant, with smart contracts to replace the traditional centralized IoT infrastructure with a decentralized one. IoT devices are then required to access the network using smart contracts. The integration of IoT with Ethereum not only prevents rogue devices from gaining access to the server but also addresses DDoS attacks by using static resource allocation for devices.
.
2018. Modeling of Blockchain Based Systems Using Queuing Theory Simulation. 2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :107–111.
Blockchain is the one of leading technology of this time; it has started to revolutionize several fields like, finance, business, industry, smart home, healthcare, social networks, Internet and the Internet of Things. It has many benefits like, decentralized network, robustness, availability, stability, anonymity, auditability and accountability. The applications of Blockchain are emerging, and it is found that most of the work is focused on its engineering implementation. While the theoretical part is very less considered and explored. In this paper we implemented the simulation of mining process in Blockchain based systems using queuing theory. We took the parameters of one of the mature Cryptocurrency, Bitcoin's real data and simulated using M/M/n/L queuing system in JSIMgraph. We have achieved realistic results; and expect that it will open up new research direction in theoretical research of Blockchain based systems.
.
2018. MTD Analysis and Evaluation Framework in Software Defined Network (MASON). Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :43–48.
Security issues in a Software Defined Network (SDN) environment like system vulnerabilities and intrusion attempts can pose a security risk for multi-tenant network managed by SDN. In this research work, Moving target defense (MTD)technique based on shuffle strategy - port hopping has been employed to increase the difficulty for the attacker trying to exploit the cloud network. Our research workMASON, considers the problem of multi-stage attacks in a network managed using SDN. SDN controller can be used to dynamically reconfigure the network and render attacker»s knowledge in multi-stage attacks redundant. We have used a threat score based on vulnerability information and intrusion attempts to identify Virtual Machines (VMs) in systems with high-security risk and implement MTD countermeasures port hopping to assess threat score reduction in a cloud network.
.
2018. Multi-objective Black-box Test Case Selection for Cost-effectively Testing Simulation Models. Proceedings of the Genetic and Evolutionary Computation Conference. :1411–1418.
In many domains, engineers build simulation models (e.g., Simulink) before developing code to simulate the behavior of complex systems (e.g., Cyber-Physical Systems). Those models are commonly heavy to simulate which makes it difficult to execute the entire test suite. Furthermore, it is often difficult to measure white-box coverage of test cases when employing such models. In addition, the historical data related to failures might not be available. This paper proposes a cost-effective approach for test case selection that relies on black-box data related to inputs and outputs of the system. The approach defines in total five effectiveness measures and one cost measure followed by deriving in total 15 objective combinations and integrating them within Non-Dominated Sorting Genetic Algorithm-II (NSGA-II). We empirically evaluated our approach with all these 15 combinations using four case studies by employing mutation testing to assess the fault revealing capability. The results demonstrated that our approach managed to improve Random Search by 26% on average in terms of the Hypervolume quality indicator.
.
2018. Multi-Tenancy-Capable Correlation of Security Events in 5G Networks. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.
The concept of network slicing in 5G mobile networks introduces new challenges for security management: Given the combination of Infrastructure-as-a-Service cloud providers, mobile network operators as Software-as-a-Service providers, and the various verticals as customers, multi-layer and multi-tenancy-capable management architectures are required. This paper addresses the challenges for correlation of security events in such 5G scenarios with a focus on event processing at telecommunication service providers. After an analysis of the specific demand for network-slice-centric security event correlation in 5G networks, ongoing standardization efforts, and related research, we propose a multi-tenancy-capable event correlation architecture along with a scalable information model. The event processing, alerting, and correlation workflow is discussed and has been implemented in a network and security management system prototype, leading to a demonstration of first results acquired in a lab setup.
.
2018. Named Data Networking's Intrinsic Cyber-Resilience for Vehicular CPS. IEEE Access. 6:60570–60585.
Modern vehicles equipped with a large number of electronic components, sensors, actuators, and extensive connectivity, are the classical example of cyber-physical systems (CPS). Communication as an integral part of the CPS has enabled and offered many value-added services for vehicular networks. The communication mechanism helps to share contents with all vehicular network nodes and the surrounding environment, e.g., vehicles, traffic lights, and smart road signs, to efficiently take informed and smart decisions. Thus, it opens the doors to many security threats and vulnerabilities. Traditional TCP/IP-based communication paradigm focuses on securing the communication channel instead of the contents that travel through the network. Nevertheless, for content-centered application, content security is more important than communication channel security. To this end, named data networking (NDN) is one of the future Internet architectures that puts the contents at the center of communication and offers embedded content security. In this paper, we first identify the cyberattacks and security challenges faced by the vehicular CPS (VCPS). Next, we propose the NDN-based cyber-resilient, the layered and modular architecture for VCPS. The architecture includes the NDN's forwarding daemon, threat aversion, detection, and resilience components. A detailed discussion about the functionality of each component is also presented. Furthermore, we discuss the future challenges faced by the integration of NDN with VCPS to realize NDN-based VCPS.
Conference Name: IEEE Access
.
2018. A Network Coding Based Information Spreading Approach for Permissioned Blockchain in IoT Settings. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :470–475.
Permissioned Blockchain (PBC) has become a prevalent data structure to ensure that the records are immutable and secure. However, PBC still has significant challenges before it can be realized in different applications. One of such challenges is the overhead of the communication which is required to execute the Byzantine Agreement (BA) protocol that is needed for consensus building. As such, it may not be feasible to implement PBC for resource constrained environments such as Internet-of-Things (IoT). In this paper, we assess the communication overhead of running BA in an IoT environment that consists of wireless nodes (e.g., Raspberry PIs) with meshing capabilities. As the the packet loss ratio is significant and makes BA unfeasible to scale, we propose a network coding based approach that will reduce the packet overhead and minimize the consensus completion time of the BA. Specifically, various network coding approaches are designed as a replacement to TCP protocol which relies on unicasting and acknowledgements. The evaluation on a network of Raspberry PIs demonstrates that our approach can significantly improve scalability making BA feasible for medium size IoT networks.
.
2018. Network Intrusion Detection Using Improved Genetic k-means Algorithm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2441–2446.
Internet is a widely used platform nowadays by people across the globe. This has led to the advancement in science and technology. Many surveys show that network intrusion has registered a consistent increase and lead to personal privacy theft and has become a major platform for attack in the recent years. Network intrusion is any unauthorized activity on a computer network. Hence there is a need to develop an effective intrusion detection system. In this paper we acquaint an intrusion detection system that uses improved genetic k-means algorithm(IGKM) to detect the type of intrusion. This paper also shows a comparison between an intrusion detection system that uses the k-means++ algorithm and an intrusion detection system that uses IGKM algorithm while using smaller subset of kdd-99 dataset with thousand instances and the KDD-99 dataset. The experiment shows that the intrusion detection that uses IGKM algorithm is more accurate when compared to k-means++ algorithm.
.
2018. Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :255–266.
As key components of the power grid infrastructure, Supervisory Control and Data Acquisition (SCADA) systems are likely to be targeted by nation-state-level attackers willing to invest considerable resources to disrupt the power grid. We present Spire, the first intrusion-tolerant SCADA system that is resilient to both system-level compromises and sophisticated network-level attacks and compromises. We develop a novel architecture that distributes the SCADA system management across three or more active sites to ensure continuous availability in the presence of simultaneous intrusions and network attacks. A wide-area deployment of Spire, using two control centers and two data centers spanning 250 miles, delivered nearly 99.999% of all SCADA updates initiated over a 30-hour period within 100ms. This demonstrates that Spire can meet the latency requirements of SCADA for the power grid.
.
2018. Neural Encoder-Decoder based Urdu Conversational Agent. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :901–905.
Conversational agents have very much become part of our lives since the renaissance of neural network based "neural conversational agents". Previously used manually annotated and rule based methods lacked the scalability and generalization capabilities of the neural conversational agents. A neural conversational agent has two parts: at one end an encoder understands the question while the other end a decoder prepares and outputs the corresponding answer to the question asked. Both the parts are typically designed using recurrent neural network and its variants and trained in an end-to-end fashion. Although conversation agents for other languages have been developed, Urdu language has seen very less progress in building of conversational agents. Especially recent state of the art neural network based techniques have not been explored yet. In this paper, we design an attention driven deep encoder-decoder based neural conversational agent for Urdu language. Overall, we make following contributions we (i) create a dataset of 5000 question-answer pairs, and (ii) present a new deep encoder-decoder based conversational agent for Urdu language. For our work, we limit the knowledge base of our agent to general knowledge regarding Pakistan. Our best model has the BLEU score of 58 and gives syntactically and semantically correct answers in majority of the cases.
.
2018. A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network. 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
Software Defined Network (SDN) is a revolutionary idea to realize software-driven network with the separation of control and data planes. In essence, SDN addresses the problems faced by the traditional network architecture; however, it may as well expose the network to new attacks. Among other attacks, distributed denial of service (DDoS) attacks are hard to contain in such software-based networks. Existing DDoS mitigation techniques either lack in performance or jeopardize the accuracy of the attack detection. To fill the voids, we propose in this paper a machine learning-based DDoS mitigation technique for SDN. First, we create a model for DDoS detection in SDN using NSL-KDD dataset and then after training the model on this dataset, we use real DDoS attacks to assess our proposed model. Obtained results show that the proposed technique equates favorably to the current techniques with increased performance and accuracy.
.
2018. Noise Matters: Using Sensor and Process Noise Fingerprint to Detect Stealthy Cyber Attacks and Authenticate Sensors in CPS. Proceedings of the 34th Annual Computer Security Applications Conference. :566–581.
A novel scheme is proposed to authenticate sensors and detect data integrity attacks in a Cyber Physical System (CPS). The proposed technique uses the hardware characteristics of a sensor and physics of a process to create unique patterns (herein termed as fingerprints) for each sensor. The sensor fingerprint is a function of sensor and process noise embedded in sensor measurements. Uniqueness in the noise appears due to manufacturing imperfections of a sensor and due to unique features of a physical process. To create a sensor's fingerprint a system-model based approach is used. A noise-based fingerprint is created during the normal operation of the system. It is shown that under data injection attacks on sensors, noise pattern deviations from the fingerprinted pattern enable the proposed scheme to detect attacks. Experiments are performed on a dataset from a real-world water treatment (SWaT) facility. A class of stealthy attacks is designed against the proposed scheme and extensive security analysis is carried out. Results show that a range of sensors can be uniquely identified with an accuracy as high as 98%. Extensive sensor identification experiments are carried out on a set of sensors in SWaT testbed. The proposed scheme is tested on a variety of attack scenarios from the reference literature which are detected with high accuracy



