Biblio
In blockchain-based systems, malicious behaviour can be detected using auditable information in transactions managed by distributed ledgers. Besides cryptocurrency, blockchain technology has recently been used for other applications, such as file storage. However, most of existing blockchain- based file storage systems can not revoke a user efficiently when multiple users have access to the same file that is encrypted. Actually, they need to update file encryption keys and distribute new keys to remaining users, which significantly increases computation and bandwidth overheads. In this work, we propose a blockchain and proxy re-encryption based design for encrypted file sharing that brings a distributed access control and data management. By combining blockchain with proxy re-encryption, our approach not only ensures confidentiality and integrity of files, but also provides a scalable key management mechanism for file sharing among multiple users. Moreover, by storing encrypted files and related keys in a distributed way, our method can resist collusion attacks between revoked users and distributed proxies.
In this paper, we introduce a two-step method for estimating the strength of user-created graphical passwords based on the eye-gaze behaviour during password composition. First, the individuals' gaze patterns, represented by the unique fixations on each area of interest (AOI) and the total fixation duration per AOI, are calculated. Second, the gaze-based entropy of the individual is calculated. To investigate whether the proposed metric is a credible predictor of the password strength, we conducted two feasibility studies. Results revealed a strong positive correlation between the strength of the created passwords and the gaze-based entropy. Hence, we argue that the proposed gaze-based metric allows for unobtrusive prediction of the strength of the password a user is going to create and enables intervention to the password composition for helping users create stronger passwords.
The Java 8 Stream API sets forth a promising new programming model that incorporates functional-like, MapReduce-style features into a mainstream programming language. However, using streams correctly and efficiently may involve subtle considerations. In this poster, we present our ongoing work and preliminary results towards an automated refactoring approach that assists developers in writing optimal stream code. The approach, based on ordering and typestate analysis, determines when it is safe and advantageous to convert streams to parallel and optimize parallel streams.
Nowadays, The incorporation of different function of the network, as well as routing, administration, and security, is basic to the effective operation of a mobile circumstantial network these days, in MANET thought researchers manages the problems of QoS and security severally. Currently, each the aspects of security and QoS influence negatively on the general performance of the network once thought-about in isolation. In fact, it will influence the exceptionally operating of QoS and security algorithms and should influence the important and essential services needed within the MANET. Our paper outlines 2 accomplishments via; the accomplishment of security and accomplishment of quality. The direction towards achieving these accomplishments is to style and implement a protocol to suite answer for policy-based network administration, and methodologies for key administration and causing of IPsec in a very MANET.
Deprecation is a language feature that allows API producers to mark a feature as obsolete. We aim to gain a deep understanding of the needs of API producers and consumers alike regarding deprecation. To that end, we investigate why API producers deprecate features, whether they remove deprecated features, how they expect consumers to react, and what prompts an API consumer to react to deprecation. To achieve this goal we conduct semi-structured interviews with 17 third-party Java API producers and survey 170 Java developers. We observe that the current deprecation mechanism in Java and the proposal to enhance it does not address all the needs of a developer. This leads us to propose and evaluate three further enhancements to the deprecation mechanism.
This article examines Usage of Game Theory in The Internet Wide Scan. There is compiled model of “Network Scanning” game. There is described process of players interaction in the coalition antagonistic and network games. The concept of target system's cost is suggested. Moreover, there is suggested its application in network scanning, particularly, when detecting honeypot/honeynet systems.
Moving target defense (MTD) is becoming popular with the advancements in Software Defined Networking (SDN) technologies. With centralized management through SDN, changing the network attributes such as routes to escape from attacks is simple and fast. Yet, the available alternate routes are bounded by the network topology, and a persistent attacker that continuously perform the reconnaissance can extract the whole link-map of the network. To address this issue, we propose to use virtual shadow networks (VSNs) by applying Network Function Virtualization (NFV) abilities to the network in order to deceive attacker with the fake topology information and not reveal the actual network topology and characteristics. We design this approach under a formal framework for Internet Service Provider (ISP) networks and apply it to the recently emerged indirect DDoS attacks, namely Crossfire, for evaluation. The results show that attacker spends more time to figure out the network behavior while the costs on the defender and network operations are negligible until reaching a certain network size.
Mobile Ad Hoc Network (MANET) is pretty vulnerable to attacks because of its broad distribution and open nodes. Hence, an effective Intrusion Detection System (IDS) is vital in MANET to deter unwanted malicious attacks. An IDS has been proposed in this paper based on watchdog and pathrater method as well as evaluation of its performance has been presented using Dynamic Source Routing (DSR) and Ad-hoc On-demand Distance Vector (AODV) routing protocols with and without considering the effect of the sinkhole attack. The results obtained justify that the proposed IDS is capable of detecting suspicious activities and identifying the malicious nodes. Moreover, it replaces the fake route with a real one in the routing table in order to mitigate the security risks. The performance appraisal also suggests that the AODV protocol has a capacity of sending more packets than DSR and yields more throughput.
This paper introduces a new attack on recent messaging systems that protect communication metadata. The main observation is that if an adversary manages to compromise a user's friend, it can use this compromised friend to learn information about the user's other ongoing conversations. Specifically, the adversary learns whether a user is sending other messages or not, which opens the door to existing intersection and disclosure attacks. To formalize this compromised friend attack, we present an abstract scenario called the exclusive call center problem that captures the attack's root cause, and demonstrates that it is independent of the particular design or implementation of existing metadata-private messaging systems. We then introduce a new primitive called a private answering machine that can prevent the attack. Unfortunately, building a secure and efficient instance of this primitive under only computational hardness assumptions does not appear possible. Instead, we give a construction under the assumption that users can place a bound on their maximum number of friends and are okay leaking this information.
Query authentication has been extensively studied to ensure the integrity of query results for outsourced databases, which are often not fully trusted. However, access control, another important security concern, is largely ignored by existing works. Notably, recent breakthroughs in cryptography have enabled fine-grained access control over outsourced data. In this paper, we take the first step toward studying the problem of authenticating relational queries with fine-grained access control. The key challenge is how to protect information confidentiality during query authentication, which is essential to many critical applications. To address this challenge, we propose a novel access-policy-preserving (APP) signature as the primitive authenticated data structure. A useful property of the APP signature is that it can be used to derive customized signatures for unauthorized users to prove the inaccessibility while achieving the zero-knowledge confidentiality. We also propose a grid-index-based tree structure that can aggregate APP signatures for efficient range and join query authentication. In addition to this, a number of optimization techniques are proposed to further improve the authentication performance. Security analysis and performance evaluation show that the proposed solutions and techniques are robust and efficient under various system settings.
Advancements in semiconductor domain gave way to realize numerous applications in Video Surveillance using Computer vision and Deep learning, Video Surveillances in Industrial automation, Security, ADAS, Live traffic analysis etc. through image understanding improves efficiency. Image understanding requires input data with high precision which is dependent on Image resolution and location of camera. The data of interest can be thermal image or live feed coming for various sensors. Composite(CVBS) is a popular video interface capable of streaming upto HD(1920x1080) quality. Unlike high speed serial interfaces like HDMI/MIPI CSI, Analog composite video interface is a single wire standard supporting longer distances. Image understanding requires edge detection and classification for further processing. Sobel filter is one the most used edge detection filter which can be embedded into live stream. This paper proposes Zynq FPGA based system design for video surveillance with Sobel edge detection, where the input Composite video decoded (Analog CVBS input to YCbCr digital output), processed in HW and streamed to HDMI display simultaneously storing in SD memory for later processing. The HW design is scalable for resolutions from VGA to Full HD for 60fps and 4K for 24fps. The system is built on Xilinx ZC702 platform and TVP5146 to showcase the functional path.
Detection errors such as false alarms and undetected faults are inevitable in any practical anomaly detection system. These errors can create potentially significant problems in the underlying application. In particular, false alarms can result in performing unnecessary recovery actions while missed detections can result in failing to perform recovery which can lead to severe consequences. In this paper, we present an approach for application-aware anomaly detection (AAAD). Our approach takes an existing anomaly detector and configures it to minimize the impact of detection errors. The configuration of the detectors is chosen so that application performance in the presence of detection errors is as close as possible to the performance that could have been obtained if there were no detection errors. We evaluate our result using a case study of real-time control of traffic signals, and show that the approach outperforms significantly several baseline detectors.
Accountability is the property of a system that enables the uncovering of causes for events and helps understand who or what is responsible for these events. Definitions and interpretations of accountability differ; however, they are typically expressed in natural language that obscures design decisions and the impact on the overall system. This paper presents a formal model to express the accountability properties of cyber-physical systems. To illustrate the usefulness of our approach, we demonstrate how three different interpretations of accountability can be expressed using the proposed model and describe the implementation implications through a case study. This formal model can be used to highlight context specific-elements of accountability mechanisms, define their capabilities, and express different notions of accountability. In addition, it makes design decisions explicit and facilitates discussion, analysis and comparison of different approaches.
The manipulation of social media metadata by bad actors for the purpose of creating more powerful disinformation campaigns was explored. It has been argued that disinformation campaigns can be detected and combatted by understanding data craft.
Hackers often perform deception through the use of false flag operations. False flags allow nation-state actors to pose as others in order to further complicate attribution. Russian hackers planted destructive malware, called the "Olympic Destroyer", which contained code deriving from other well-known attacks launched by different hacking groups. This discovery highlights the evolution of deceptive tactics used by hackers.
The Tularosa study was designed to understand how defensive deception—including both cyber and psychological—affects cyber attackers. Over 130 red teamers participated in a network penetration test over two days in which we controlled both the presence of and explicit mention of deceptive defensive techniques. To our knowledge, this represents the largest study of its kind ever conducted on a professional red team population. The design was conducted with a battery of questionnaires (e.g., experience, personality, etc.) and cognitive tasks (e.g., fluid intelligence, working memory, etc.), allowing for the characterization of a "typical" red teamer, as well as physiological measures (e.g., galvanic skin response, heart rate, etc.) to be correlated with the cyber events. This paper focuses on the design, implementation, population characteristics, lessons learned, and planned analyses.
Iris recognition is one of the most reliable biometrics for identification purpose in terms of reliability and accuracy. Hence, in this research the integration of cancelable biometrics features for iris recognition using encryption and decryption non-invertible transformation is proposed. Here, the biometric data is protected via the proposed cancelable biometrics method. The experimental results showed that the recognition rate achieved is 99.9% using Bath-A dataset with a maximum decision criterion of 0.97 along with acceptable processing time.
Wireless Sensor Network is the combination of small devices called sensor nodes, gateways and software. These nodes use wireless medium for transmission and are capable to sense and transmit the data to other nodes. Generally, WSN composed of two types of nodes i.e. generic nodes and gateway nodes. Generic nodes having the ability to sense while gateway nodes are used to route that information. IoT now extended to IoET (internet of Everything) to cover all electronics exist around, like a body sensor networks, VANET's, smart grid stations, smartphone, PDA's, autonomous cars, refrigerators and smart toasters that can communicate and share information using existing network technologies. The sensor nodes in WSN have very limited transmission range as well as limited processing speed, storage capacities and low battery power. Despite a wide range of applications using WSN, its resource constrained nature given birth to a number severe security attacks e.g. Selective Forwarding attack, Jamming-attack, Sinkhole attack, Wormhole attack, Sybil attack, hello Flood attacks, Grey Hole, and the most dangerous BlackHole Attacks. Attackers can easily exploit these vulnerabilities to compromise the WSN network.
A Mobile ad hoc Network (MANET) is a self-configure, dynamic, and non-fixed infrastructure that consists of many nodes. These nodes communicate with each other without an administrative point. However, due to its nature MANET becomes prone to many attacks such as DoS attacks. DoS attack is a severe as it prevents legitimate users from accessing to their authorised services. Monitoring, Detection, and rehabilitation (MrDR) method is proposed to detect DoS attacks. MrDR method is based on calculating different trust values as nodes can be trusted or not. In this paper, we evaluate the MrDR method which detect DoS attacks in MANET and compare it with existing method Trust Enhanced Anonymous on-demand routing Protocol (TEAP) which is also based on trust concept. We consider two factors to compare the performance of the proposed method to TEAP method: packet delivery ratio and network overhead. The results confirm that the MrDR method performs better in network performance compared to TEAP method.
The importance of peer-to-peer (P2P) network overlays produced enormous interest in the research community due to their robustness, scalability, and increase of data availability. P2P networks are overlays of logically connected hosts and other nodes including servers. P2P networks allow users to share their files without the need for any centralized servers. Since P2P networks are largely constructed of end-hosts, they are susceptible to abuse and malicious activity, such as sybil attacks. Impostors perform sybil attacks by assigning nodes multiple addresses, as opposed to a single address, with the goal of degrading network quality. Sybil nodes will spread malicious data and provide bogus responses to requests. To prevent sybil attacks from occurring, a novel defense mechanism is proposed. In the proposed scheme, the DHT key-space is divided and treated in a similar manner to radio frequency allocation incensing. An overlay of trusted nodes is used to detect and handle sybil nodes with the aid of source-destination pairs reporting on each other. The simulation results show that the proposed scheme detects sybil nodes in large sized networks with thousands of interactions.
The use of Knuth's Rule and Bayesian Blocks constant piecewise models for characterization of RFID traffic has been proposed already. This study presents an evaluation of the application of those two modeling techniques for various RFID traffic patterns. The data sets used in this study consist of time series of binned RFID command counts. More specifically., we compare the shape of several empirical plots of raw data sets we obtained from experimental RIFD readings., against the constant piecewise graphs produced as an output of the two modeling algorithms. One issue limiting the applicability of modeling techniques to RFID traffic is the fact that there are a large number of various RFID applications available. We consider this phenomenon to present the main motivation for this study. The general expectation is that the RFID traffic traces from different applications would be sequences with different histogram shapes. Therefore., no modeling technique could be considered universal for modeling the traffic from multiple RFID applications., without first evaluating its model performance for various traffic patterns. We postulate that differences in traffic patterns are present if the histograms of two different sets of RFID traces form visually different plot shapes.
Smart governments are known as extensions of e-governments both built on the Internet of Things (IoT). In this paper, we classify smart governments into two types (1) new generation and (2) extended smart-government. We then put forth a framework for smart governments implementation and discuss the major challenges in its implementation showing security as the most prominent challenge in USA, mindscaping in Kuwait and investment in India.



