Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2020-10-29
El-Zoghby, Ayman M., Mosharafa, Ahmed, Azer, Marianne A..  2018.  Anonymous Routing Protocols in MANETs, a Security Comparative Analysis. 2018 14th International Computer Engineering Conference (ICENCO). :254—259.

A Mobile Ad Hoc Network (MANET) is considered a type of network which is wireless and has no fixed infrastructure composed of a set if nodes in self organized fashion which are randomly, frequently and unpredictably mobile. MANETs can be applied in both military and civil environments ones because of its numerous applications. This is due to their special characteristics and self-configuration capability. This is due to its dynamic nature, lack of fixed infrastructure, and the no need of being centrally managed; a special type of routing protocols such as Anonymous routing protocols are needed to hide the identifiable information of communicating parties, while preserving the communication secrecy. This paper provides an examination of a comprehensive list of anonymous routing protocols in MANET, focusing their security and performance capabilities.

2020-10-05
Mitra, Aritra, Abbas, Waseem, Sundaram, Shreyas.  2018.  On the Impact of Trusted Nodes in Resilient Distributed State Estimation of LTI Systems. 2018 IEEE Conference on Decision and Control (CDC). :4547—4552.

We address the problem of distributed state estimation of a linear dynamical process in an attack-prone environment. A network of sensors, some of which can be compromised by adversaries, aim to estimate the state of the process. In this context, we investigate the impact of making a small subset of the nodes immune to attacks, or “trusted”. Given a set of trusted nodes, we identify separate necessary and sufficient conditions for resilient distributed state estimation. We use such conditions to illustrate how even a small trusted set can achieve a desired degree of robustness (where the robustness metric is specific to the problem under consideration) that could otherwise only be achieved via additional measurement and communication-link augmentation. We then establish that, unfortunately, the problem of selecting trusted nodes is NP-hard. Finally, we develop an attack-resilient, provably-correct distributed state estimation algorithm that appropriately leverages the presence of the trusted nodes.

2020-11-17
Abuzainab, N., Saad, W..  2018.  Misinformation Control in the Internet of Battlefield Things: A Multiclass Mean-Field Game. 2018 IEEE Global Communications Conference (GLOBECOM). :1—7.

In this paper, the problem of misinformation propagation is studied for an Internet of Battlefield Things (IoBT) system in which an attacker seeks to inject false information in the IoBT nodes in order to compromise the IoBT operations. In the considered model, each IoBT node seeks to counter the misinformation attack by finding the optimal probability of accepting a given information that minimizes its cost at each time instant. The cost is expressed in terms of the quality of information received as well as the infection cost. The problem is formulated as a mean-field game with multiclass agents which is suitable to model a massive heterogeneous IoBT system. For this game, the mean-field equilibrium is characterized, and an algorithm based on the forward backward sweep method is proposed. Then, the finite IoBT case is considered, and the conditions of convergence of the equilibria in the finite case to the mean-field equilibrium are presented. Numerical results show that the proposed scheme can achieve a two-fold increase in the quality of information (QoI) compared to the baseline when the nodes are always transmitting.

Abuzainab, N., Saad, W..  2018.  A Multiclass Mean-Field Game for Thwarting Misinformation Spread in the Internet of Battlefield Things. IEEE Transactions on Communications. 66:6643—6658.

In this paper, the problem of misinformation propagation is studied for an Internet of Battlefield Things (IoBT) system, in which an attacker seeks to inject false information in the IoBT nodes in order to compromise the IoBT operations. In the considered model, each IoBT node seeks to counter the misinformation attack by finding the optimal probability of accepting given information that minimizes its cost at each time instant. The cost is expressed in terms of the quality of information received as well as the infection cost. The problem is formulated as a mean-field game with multiclass agents, which is suitable to model a massive heterogeneous IoBT system. For this game, the mean-field equilibrium is characterized, and an algorithm based on the forward backward sweep method is proposed to find the mean-field equilibrium. Then, the finite-IoBT case is considered, and the conditions of convergence of the equilibria in the finite case to the mean-field equilibrium are presented. Numerical results show that the proposed scheme can achieve a 1.2-fold increase in the quality of information compared with a baseline scheme, in which the IoBT nodes are always transmitting. The results also show that the proposed scheme can reduce the proportion of infected nodes by 99% compared with the baseline.

2019-02-08
Jensen, Theodore, Albayram, Yusuf, Khan, Mohammad Maifi Hasan, Buck, Ross, Coman, Emil, Fahim, Md Abdullah Al.  2018.  Initial Trustworthiness Perceptions of a Drone System Based on Performance and Process Information. Proceedings of the 6th International Conference on Human-Agent Interaction. :229-237.

Prior work notes dispositional, learned, and situational aspects of trust in automation. However, no work has investigated the relative role of these factors in initial trust of an automated system. Moreover, trust in automation researchers often consider trust unidimensionally, whereas ability, integrity, and benevolence perceptions (i.e., trusting beliefs) may provide a more thorough understanding of trust dynamics. To investigate this, we recruited 163 participants on Amazon's Mechanical Turk (MTurk) and randomly assigned each to one of 4 videos describing a hypothetical drone system: one control, the others with additional system performance or process, or both types of information. Participants reported on trusting beliefs in the system, propensity to trust other people, risk-taking tendencies, and trust in the government law enforcement agency behind the system. We found that financial risk-taking tendencies influenced trusting beliefs. Also, those who received process information were likely to have higher integrity and ability beliefs than those not receiving process information, while those who received performance information were likely to have higher ability beliefs. Lastly, perceptions of structural assurance positively influenced all three trusting beliefs. Our findings suggest that a) users' risk-taking tendencies influence trustworthiness perceptions of systems, b) different types of information about a system have varied effects on the trustworthiness dimensions, and c) institutions play an important role in users' calibration of trust. Insights gained from this study can help design training materials and interfaces that improve user trust calibration in automated systems.

2019-02-13
Ahmed, N., Talib, M. A., Nasir, Q..  2018.  Program-flow attestation of IoT systems software. 2018 15th Learning and Technology Conference (L T). :67–73.
Remote attestation is the process of measuring the integrity of a device over the network, by detecting modification of software or hardware from the original configuration. Several remote software-based attestation mechanisms have been introduced, that rely on strict time constraints and other impractical constraints that make them inconvenient for IoT systems. Although some research is done to address these issues, they integrated trusted hardware devices to the attested devices to accomplish their aim, which is costly and not convenient for many use cases. In this paper, we propose “Dual Attestation” that includes two stages: static and dynamic. The static attestation phase checks the memory of the attested device. The dynamic attestation technique checks the execution correctness of the application code and can detect the runtime attacks. The objectives are to minimize the overhead and detect these attacks, by developing an optimized dynamic technique that checks the application program flow. The optimization will be done in the prover and the verifier sides.
2019-05-30
Saqib Hasan, Amin Ghafouri, Abhishek Dubey, Gabor Karsai, Xenofon Koutsoukos.  2018.  Vulnerability analysis of power systems based on cyber-attack and defense models. 2018 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1-5.

Reliable operation of power systems is a primary challenge for the system operators. With the advancement in technology and grid automation, power systems are becoming more vulnerable to cyber-attacks. The main goal of adversaries is to take advantage of these vulnerabilities and destabilize the system. This paper describes a game-theoretic approach to attacker / defender modeling in power systems. In our models, the attacker can strategically identify the subset of substations that maximize damage when compromised. However, the defender can identify the critical subset of substations to protect in order to minimize the damage when an attacker launches a cyber-attack. The algorithms for these models are applied to the standard IEEE-14, 39, and 57 bus examples to identify the critical set of substations given an attacker and a defender budget.

2019-01-21
Arshinov, N. A., Butakova, N. G..  2018.  Modeling of quantum channel parameters impact on information exchange security. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1463–1466.

Quantum information exchange computer emulator is presented, which takes into consideration imperfections of real quantum channel such as noise and attenuation resulting in the necessity to increase number of photons in the impulse. The Qt Creator C++ program package provides evaluation of the ability to detect unauthorized access as well as an amount of information intercepted by intruder.

2020-10-05
Abusitta, Adel, Bellaiche, Martine, Dagenais, Michel.  2018.  A trust-based game theoretical model for cooperative intrusion detection in multi-cloud environments. 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :1—8.

Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks. The recent researches in cyber-security have shown that a co-operation among IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about suspicious intrusions and increase the decision accuracy. The problem of existing cooperative IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a centralized architecture in which a central agent regulates the cooperation, which contradicts the distributed nature of the cloud. In this paper, we propose a framework that enables IDSs to distributively form trustworthy IDSs communities. We devise a novel decentralized algorithm, based on coalitional game theory, that allows a set of cloud-based IDSs to cooperatively set up their coalition in such a way to make their individual detection accuracy increase, even in the presence of untrusted IDSs.

2019-08-05
Nabipourshiri, Rouzbeh, Abu-Salih, Bilal, Wongthongtham, Pornpit.  2018.  Tree-Based Classification to Users' Trustworthiness in OSNs. Proceedings of the 2018 10th International Conference on Computer and Automation Engineering. :190-194.

In the light of the information revolution, and the propagation of big social data, the dissemination of misleading information is certainly difficult to control. This is due to the rapid and intensive flow of information through unconfirmed sources under the propaganda and tendentious rumors. This causes confusion, loss of trust between individuals and groups and even between governments and their citizens. This necessitates a consolidation of efforts to stop penetrating of false information through developing theoretical and practical methodologies aim to measure the credibility of users of these virtual platforms. This paper presents an approach to domain-based prediction to user's trustworthiness of Online Social Networks (OSNs). Through incorporating three machine learning algorithms, the experimental results verify the applicability of the proposed approach to classify and predict domain-based trustworthy users of OSNs.

2019-12-18
Chugunkov, Ilya V., Fedorov, Leonid O., Achmiz, Bela Sh., Sayfullina, Zarina R..  2018.  Development of the Algorithm for Protection against DDoS-Attacks of Type Pulse Wave. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :292-294.

Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.

2019-12-05
Avila, J, Prem, S, Sneha, R, Thenmozhi, K.  2018.  Mitigating Physical Layer Attack in Cognitive Radio - A New Approach. 2018 International Conference on Computer Communication and Informatics (ICCCI). :1-4.

With the improvement in technology and with the increase in the use of wireless devices there is deficiency of radio spectrum. Cognitive radio is considered as the solution for this problem. Cognitive radio is capable to detect which communication channels are in use and which are free, and immediately move into free channels while avoiding the used ones. This increases the usage of radio frequency spectrum. Any wireless system is prone to attack. Likewise, the main two attacks in the physical layer of cognitive radio are Primary User Emulation Attack (PUEA) and replay attack. This paper focusses on mitigating these two attacks with the aid of authentication tag and distance calculation. Mitigation of these attacks results in error free transmission which in turn fallouts in efficient dynamic spectrum access.

2019-02-25
Ali, S. S., Maqsood, J..  2018.  .Net library for SMS spam detection using machine learning: A cross platform solution. 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :470–476.

Short Message Service is now-days the most used way of communication in the electronic world. While many researches exist on the email spam detection, we haven't had the insight knowledge about the spam done within the SMS's. This might be because the frequency of spam in these short messages is quite low than the emails. This paper presents different ways of analyzing spam for SMS and a new pre-processing way to get the actual dataset of spam messages. This dataset was then used on different algorithm techniques to find the best working algorithm in terms of both accuracy and recall. Random Forest algorithm was then implemented in a real world application library written in C\# for cross platform .Net development. This library is capable of using a prebuild model for classifying a new dataset for spam and ham.

2018-09-30
X. Koutsoukos, G. Karsai, A. Laszka, H. Neema, B. Potteiger, P. Volgyesi, Y. Vorobeychik, J. Sztipanovits.  2018.  SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems. Proceedings of the IEEE. 106:93-112.
The exponential growth of information and communication technologies have caused a profound shift in the way humans engineer systems leading to the emergence of closed-loop systems involving strong integration and coordination of physical and cyber components, often referred to as cyber-physical systems (CPSs). Because of these disruptive changes, physical systems can now be attacked through cyberspace and cyberspace can be attacked through physical means. The paper considers security and resilience as system properties emerging from the intersection of system dynamics and the computing architecture. A modeling and simulation integration platform for experimentation and evaluation of resilient CPSs is presented using smart transportation systems as the application domain. Evaluation of resilience is based on attacker-defender games using simulations of sufficient fidelity. The platform integrates 1) realistic models of cyber and physical components and their interactions; 2) cyber attack models that focus on the impact of attacks to CPS behavior and operation; and 3) operational scenarios that can be used for evaluation of cybersecurity risks. Three case studies are presented to demonstrate the advantages of the platform: 1) vulnerability analysis of transportation networks to traffic signal tampering; 2) resilient sensor selection for forecasting traffic flow; and 3) resilient traffic signal control in the presence of denial-of-service attacks.
2019-05-30
Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits.  2018.  SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems. Proceedings of the IEEE. 106:93-112.

The exponential growth of information and communication technologies have caused a profound shift in the way humans engineer systems leading to the emergence of closed-loop systems involving strong integration and coordination of physical and cyber components, often referred to as cyber-physical systems (CPSs). Because of these disruptive changes, physical systems can now be attacked through cyberspace and cyberspace can be attacked through physical means. The paper considers security and resilience as system properties emerging from the intersection of system dynamics and the computing architecture. A modeling and simulation integration platform for experimentation and evaluation of resilient CPSs is presented using smart transportation systems as the application domain. Evaluation of resilience is based on attacker-defender games using simulations of sufficient fidelity. The platform integrates 1) realistic models of cyber and physical components and their interactions; 2) cyber attack models that focus on the impact of attacks to CPS behavior and operation; and 3) operational scenarios that can be used for evaluation of cybersecurity risks. Three case studies are presented to demonstrate the advantages of the platform: 1) vulnerability analysis of transportation networks to traffic signal tampering; 2) resilient sensor selection for forecasting traffic flow; and 3) resilient traffic signal control in the presence of denial-of-service attacks.

2019-05-01
Ando, Ruo.  2018.  Automated Reduction of Attack Surface Using Call Graph Enumeration. Proceedings of the 2018 2Nd International Conference on Management Engineering, Software Engineering and Service Sciences. :118-121.

There have been many research efforts on detecting vulnerability such as model checking and formal method. However, according to Rice's theorem, checking whether a program contains vulnerable code by static checking is undecidable in general. In this paper, we propose a method of attack surface reduction using enumeration of call graph. Proposal system is divided into two steps: enumerating edge E[Function Fi, Function Fi+1] and constructing call graph by recursive search of [E1, E2, En]. Proposed method enables us to find the sum of paths of which leaf node is vulnerable function VF. Also, root node RF of call graph is part of program which is open to attacker. Therefore, call graph [VF, RF] can be eliminated according the situation where the program is running. We apply proposal method to the real programs (Xen) and extracts the attack surface of CVE-2013-4371. These vulnerabilities are classified into two class: use-after-free and assertion failure. Also, numerical result is shown in searching attack surface of Xen with different search depth of constructing call graph.

2019-03-04
Aborisade, O., Anwar, M..  2018.  Classification for Authorship of Tweets by Comparing Logistic Regression and Naive Bayes Classifiers. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :269–276.

At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.

2019-02-21
Aranha, Claus, Junior, Jair Pereira, Kanoh, Hitoshi.  2018.  Comparative study on discrete SI approaches to the graph coloring problem. :81–82.

The Graph Coloring Problem is an important benchmark problem for decision and discrete optimization problems. In this work, we perform a comparative experimental study of four algorithms based on Swarm Intelligence for the 3-Graph Coloring Problem: Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Cuckoo Search (CS) and FireFly Algorithm (FFA). For each algorithm, we test parameter settings published in the literature, as well as parameters found by an automated tuning methodology (irace). This comparison may shed some light at the strengths and weaknesses of each algorithm, as well as their dependence on parameter values.

2020-11-09
Ankam, D., Bouguila, N..  2018.  Compositional Data Analysis with PLS-DA and Security Applications. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :338–345.
In Compositional data, the relative proportions of the components contain important relevant information. In such case, Euclidian distance fails to capture variation when considered within data science models and approaches such as partial least squares discriminant analysis (PLS-DA). Indeed, the Euclidean distance assumes implicitly that the data is normally distributed which is not the case of compositional vectors. Aitchison transformation has been considered as a standard in compositional data analysis. In this paper, we consider two other transformation methods, Isometric log ratio (ILR) transformation and data-based power (alpha) transformation, before feeding the data to PLS-DA algorithm for classification [1]. In order to investigate the merits of both methods, we apply them in two challenging information system security applications namely spam filtering and intrusion detection.
2019-01-21
Umar, K., Sultan, A. B., Zulzalil, H., Admodisastro, N., Abdullah, M. T..  2018.  Formulation of SQL Injection Vulnerability Detection as Grammar Reachability Problem. 2018 International Conference on Information and Communication Technology for the Muslim World (ICT4M). :179–184.

Data dependency flow have been reformulated as Context Free Grammar (CFG) reachability problem, and the idea was explored in detection of some web vulnerabilities, particularly Cross Site Scripting (XSS) and Access Control. However, reformulation of SQL Injection Vulnerability (SQLIV) detection as grammar reachability problem has not been investigated. In this paper, concepts of data dependency flow was used to reformulate SQLIVs detection as a CFG reachability problem. The paper, consequently defines reachability analysis strategy for SQLIVs detection.

2020-04-24
Ogale, Pushkar, Shin, Michael, Abeysinghe, Sasanka.  2018.  Identifying Security Spots for Data Integrity. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). 02:462—467.

This paper describes an approach to detecting malicious code introduced by insiders, which can compromise the data integrity in a program. The approach identifies security spots in a program, which are either malicious code or benign code. Malicious code is detected by reviewing each security spot to determine whether it is malicious or benign. The integrity breach conditions (IBCs) for object-oriented programs are specified to identify security spots in the programs. The IBCs are specified by means of the concepts of coupling within an object or between objects. A prototype tool is developed to validate the approach with a case study.

2020-11-09
Patooghy, A., Aerabi, E., Rezaei, H., Mark, M., Fazeli, M., Kinsy, M. A..  2018.  Mystic: Mystifying IP Cores Using an Always-ON FSM Obfuscation Method. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :626–631.
The separation of manufacturing and design processes in the integrated circuit industry to tackle the ever increasing circuit complexity and time to market issues has brought with it some major security challenges. Chief among them is IP piracy by untrusted parties. Hardware obfuscation which locks the functionality and modifies the structure of an IP core to protect it from malicious modifications or piracy has been proposed as a solution. In this paper, we develop an efficient hardware obfuscation method, called Mystic (Mystifying IP Cores), to protect IP cores from reverse engineering, IP overproduction, and IP piracy. The key idea behind Mystic is to add additional state transitions to the original/functional FSM (Finite State Machine) that are taken only when incorrect keys are applied to the circuit. Using the proposed Mystic obfuscation approach, the underlying functionality of the IP core is locked and normal FSM transitions are only available to authorized chip users. The synthesis results of ITC99 circuit benchmarks for ASIC 45nm technology reveal that the Mystic protection method imposes on average 5.14% area overhead, 5.21% delay overhead, and 8.06% power consumption overheads while it exponentially lowers the probability that an unauthorized user will gain access to or derive the chip functionality.
Ya'u, B. I., Nordin, A., Salleh, N., Aliyu, I..  2018.  Requirements Patterns Structure for Specifying and Reusing Software Product Line Requirements. 2018 International Conference on Information and Communication Technology for the Muslim World (ICT4M). :185–190.
A well-defined structure is essential in all software development, thus providing an avenue for smooth execution of the processes involved during various software development phases. One of the potential benefits provided by a well-defined structure is systematic reuse of software artifacts. Requirements pattern approach provides guidelines and modality that enables a systematic way of specifying and documenting requirements, which in turn supports a systematic reuse. Although there is a great deal of research concerning requirements pattern in the literature, the research focuses are not on requirement engineering (RE) activities of SPLE. In this paper, we proposed a software requirement pattern (SRP) structure based on RePa Requirements Pattern Template, which was adapted to best suit RE activities in SPLE. With this requirement pattern structure, RE activities such as elicitation and identification of common and variable requirements as well as the specification, documentation, and reuse in SPLE could be substantially improved.
2018-12-10
Lee, J., Hao, Y., Abdelzaher, T., Marcus, K., Hobbs, R..  2018.  A Command-by-Intent Architecture for Battlefield Information Acquisition Systems. 2018 21st International Conference on Information Fusion (FUSION). :2298–2305.

In military operations, Commander's Intent describes the desired end state and purpose of the operation, expressed in a concise and clear manner. Command by intent is a paradigm that empowers subordinate units to exercise measured initiative to meet mission goals and accept prudent risk within commander's intent. It improves agility of military operations by allowing exploitation of local opportunities without an explicit directive from the commander to do so. This paper discusses what the paradigm entails in terms of architectural decisions for data fusion systems tasked with real-time information collection to satisfy operational mission goals. In our system, information needs of decisions are expressed at a high level, and shared among relevant nodes. The selected nodes, then, jointly operate to meet mission information needs by forwarding and caching relevant data without explicit directives regarding the objects to fetch and sources to contact. A preliminary evaluation of the system is presented using a target tracking application, set in the context of a NATO-based mission scenario, called Anglova. Evaluation results show that delegating some decision authority to the data fusion system (in terms of objects to fetch and sources to contact) allows it to save more network resources, while also increasing mission success rate. The system is therefore particularly well-suited to operation in partially denied or contested environments, where resource bottlenecks caused by adversarial activity impair one's ability to collect real-time information for mission-critical decision making.

Murray, B., Islam, M. A., Pinar, A. J., Havens, T. C., Anderson, D. T., Scott, G..  2018.  Explainable AI for Understanding Decisions and Data-Driven Optimization of the Choquet Integral. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.

To date, numerous ways have been created to learn a fusion solution from data. However, a gap exists in terms of understanding the quality of what was learned and how trustworthy the fusion is for future-i.e., new-data. In part, the current paper is driven by the demand for so-called explainable AI (XAI). Herein, we discuss methods for XAI of the Choquet integral (ChI), a parametric nonlinear aggregation function. Specifically, we review existing indices, and we introduce new data-centric XAI tools. These various XAI-ChI methods are explored in the context of fusing a set of heterogeneous deep convolutional neural networks for remote sensing.