Biblio
Filters: First Letter Of Last Name is F [Clear All Filters]
Automating Audit with Policy Inference. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
.
2021. The risk posed by high-profile data breaches has raised the stakes for adhering to data access policies for many organizations, but the complexity of both the policies themselves and the applications that must obey them raises significant challenges. To mitigate this risk, fine-grained audit of access to private data has become common practice, but this is a costly, time-consuming, and error-prone process.We propose an approach for automating much of the work required for fine-grained audit of private data access. Starting from the assumption that the auditor does not have an explicit, formal description of the correct policy, but is able to decide whether a given policy fragment is partially correct, our approach gradually infers a policy from audit log entries. When the auditor determines that a proposed policy fragment is appropriate, it is added to the system's mechanized policy, and future log entries to which the fragment applies can be dealt with automatically. We prove that for a general class of attribute-based data policies, this inference process satisfies a monotonicity property which implies that eventually, the mechanized policy will comprise the full set of access rules, and no further manual audit is necessary. Finally, we evaluate this approach using a case study involving synthetic electronic medical records and the HIPAA rule, and show that the inferred mechanized policy quickly converges to the full, stable rule, significantly reducing the amount of effort needed to ensure compliance in a practical setting.
Backbones for Internet of Battlefield Things. 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS). :1–8.
.
2021. The Internet of Battlefield Things is a relatively new cyberphysical system and even though it shares a lot of concepts from the Internet of Things and wireless ad hoc networking in general, a lot of research is required to address its scale and peculiarities. In this article we examine a fundamental problem pertaining to the routing/dissemination of information, namely the construction of a backbone. We model an IoBT ad hoc network as a multilayer network and employ the concept of domination for multilayer networks which is a complete departure from the volume of earlier works, in order to select sets of nodes that will support the routing of information. Even though there is huge literature on similar topics during the past many years, the problem in military (IoBT) networks is quite different since these wireless networks are multilayer networks and treating them as a single (flat) network or treating each layer in isolation and calculating dominating set produces submoptimal or bad solutions; thus all the past literature which deals with single layer (flat) networks is in principle inappropriate. We design a new, distributed algorithm for calculating connected dominating sets which produces dominating sets of small cardinality. We evaluate the proposed algorithm on synthetic topologies, and compare it against the only two existing competitors. The proposed algorithm establishes itself as the clear winner in all experiments.
A blockchain-based V2X communication system. 2021 44th International Conference on Telecommunications and Signal Processing (TSP). :208—213.
.
2021. The security proposed for Vehicle-to-Everything (V2X) systems in the European Union is specified in the ETSI Cooperative Intelligent Transport System (C-ITS) standards, and related documents are based on the trusted PKI/CAs. The C-ITS trust model platform comprises an EU Root CA and additional Root CAs run in Europe by member state authorities or private organizations offering certificates to individual users. A new method is described in this paper where the security in V2X is based on the Distributed Public Keystore (DPK) platform developed for Ethereum blockchain. The V2X security is considered as one application of the DPK platform. The DPK stores and distributes the vehicles, RSUs, or other C-ITS role-players’ public keys. It establishes a generic key exchange/ agreement scheme that provides mutual key, entity authentication, and distributing a session key between two peers. V2X communication based on this scheme can establish an end-to-end (e2e) secure session and enables vehicle authentication without the need for a vehicle certificate signed by a trusted Certificate Authority.
CCA-Secure Attribute-Based Encryption Supporting Dynamic Membership in the Standard Model. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
.
2021. Attribute-based encryption (ABE) is an access control mechanism where a sender encrypts messages according to an attribute set for multiple receivers. With fine-grained access control, it has been widely applied to cloud storage and file sharing systems. In such a mechanism, it is a challenge to achieve the revocation efficiently on a specific user since different users may share common attributes. Thus, dynamic membership is a critical issue to discuss. On the other hand, most works on LSSS-based ABE do not address the situation about threshold on the access structure, and it lowers the diversity of access policies. This manuscript presents an efficient attribute-based encryption scheme with dynamic membership by using LSSS. The proposed scheme can implement threshold gates in the access structure. Furthermore, it is the first ABE supporting complete dynamic membership that achieves the CCA security in the standard model, i.e. without the assumption of random oracles.
A Cloud Data Storage Technology for Alliance Blockchain Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :174–179.
.
2021. The rapid development of blockchain application technology promotes continuous exploration in the field of computer application science. Although it is still in the initial stage of development, the technical features of blockchain technology such as decentralization, identity verification, tamper resistance, data integrity, and security are regarded as excellent solutions to today's computer security technical problems. In this paper, we will analyze and compare blockchain data storage and cloud data processing technologies, focusing on the concept and technology of blockchain distributed data storage technology, and analyze and summarize the key issues. The results of this paper will provide a useful reference for the application and research of blockchain technology in cloud storage security.
Combinatorial Testing Metrics for Machine Learning. 2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :81–84.
.
2021. This paper defines a set difference metric for comparing machine learning (ML) datasets and proposes the difference between datasets be a function of combinatorial coverage. We illustrate its utility for evaluating and predicting performance of ML models. Identifying and measuring differences between datasets is of significant value for ML problems, where the accuracy of the model is heavily dependent on the degree to which training data are sufficiently representative of data encountered in application. The method is illustrated for transfer learning without retraining, the problem of predicting performance of a model trained on one dataset and applied to another.
Construction of immersive scene roaming system of exhibition hall based on virtual reality technology. 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1029–1033.
.
2021. On the basis of analyzing the development and application of virtual reality (VR) technology at home and abroad, and combining with the specific situation of the exhibition hall, this paper establishes an immersive scene roaming system of the exhibition hall. The system is completed by virtual scene modeling technology and virtual roaming interactive technology. The former uses modeling software to establish the basic model in the virtual scene, while the latter uses VR software to enable users to control their own roles to run smoothly in the roaming scene. In interactive roaming, this paper optimizes the A* pathfinding algorithm, uses binary heap to process data, and on this basis, further optimizes the pathfinding algorithm, so that when the pathfinding target is an obstacle, the pathfinder can reach the nearest place to the obstacle. Texture mapping technology, LOD technology and other related technologies are adopted in the modeling, thus finally realizing the immersive scene roaming system of the exhibition hall.
Controller of public vehicles and traffic lights to speed up the response time to emergencies. 2021 XVII International Engineering Congress (CONIIN). :1–6.
.
2021. Frequently emergency services are required nationally and globally, in Mexico during 2020 of the 16,22,879 calls made to 911, statistics reveal that 58.43% were about security, 16.57% assistance, 13.49% medical, 6.29% civil protection, among others. However, the constant traffic of cities generates delays in the time of arrival to medical, military or civil protection services, wasting time that can be critical in an emergency. The objective is to create a connection between the road infrastructure (traffic lights) and emergency vehicles to reduce waiting time as a vehicle on a mission passes through a traffic light with Controller Area Network CAN controller to modify the color and give way to the emergency vehicle that will send signals to the traffic light controller through a controller located in the car. For this, the Controller Area Network Flexible Data (CAN-FD) controllers will be used in traffic lights since it is capable of synchronizing data in the same bus or cable to avoid that two messages arrive at the same time, which could end in car accidents if they are not it respects a hierarchy and the CANblue ll controller that wirelessly connects devices (vehicle and traffic light) at a speed of 1 Mbit / s to avoid delays in data exchange taking into account the high speeds that a car can acquire. It is intended to use the CAN controller for the development of improvements in response times in high-speed data exchange in cities with high traffic flow. As a result of the use of CAN controllers, a better data flow and interconnection is obtained.
Cross-Site Scripting (XSS) and SQL Injection Attacks Multi-classification Using Bidirectional LSTM Recurrent Neural Network. 2021 IEEE International Conference on Progress in Informatics and Computing (PIC). :358–363.
.
2021. E-commerce, ticket booking, banking, and other web-based applications that deal with sensitive information, such as passwords, payment information, and financial information, are widespread. Some web developers may have different levels of understanding about securing an online application. The two vulnerabilities identified by the Open Web Application Security Project (OWASP) for its 2017 Top Ten List are SQL injection and Cross-site Scripting (XSS). Because of these two vulnerabilities, an attacker can take advantage of these flaws and launch harmful web-based actions. Many published articles concentrated on a binary classification for these attacks. This article developed a new approach for detecting SQL injection and XSS attacks using deep learning. SQL injection and XSS payloads datasets are combined into a single dataset. The word-embedding technique is utilized to convert the word’s text into a vector. Our model used BiLSTM to auto feature extraction, training, and testing the payloads dataset. BiLSTM classified the payloads into three classes: XSS, SQL injection attacks, and normal. The results showed great results in classifying payloads into three classes: XSS attacks, injection attacks, and non-malicious payloads. BiLSTM showed high performance reached 99.26% in terms of accuracy.
Cyberbullying Predictive Model: Implementation of Machine Learning Approach. 2021 Fifth International Conference on Information Retrieval and Knowledge Management (CAMP). :65–69.
.
2021. Machine learning is implemented extensively in various applications. The machine learning algorithms teach computers to do what comes naturally to humans. The objective of this study is to do comparison on the predictive models in cyberbullying detection between the basic machine learning system and the proposed system with the involvement of feature selection technique, resampling and hyperparameter optimization by using two classifiers; Support Vector Classification Linear and Decision Tree. Corpus from ASKfm used to extract word n-grams features before implemented into eight different experiments setup. Evaluation on performance metric shows that Decision Tree gives the best performance when tested using feature selection without resampling and hyperparameter optimization involvement. This shows that the proposed system is better than the basic setting in machine learning.
Data Wiping Tool: ByteEditor Technique. 2021 3rd International Cyber Resilience Conference (CRC). :1–6.
.
2021. This Wiping Tool is an anti-forensic tool that is built to wipe data permanently from laptop's storage. This tool is capable to ensure the data from being recovered with any recovery tools. The objective of building this wiping tool is to maintain the confidentiality and integrity of the data from unauthorized access. People tend to delete the file in normal way, however, the file face the risk of being recovered. Hence, the integrity and confidentiality of the deleted file cannot be protected. Through wiping tools, the files are overwritten with random strings to make the files no longer readable. Thus, the integrity and the confidentiality of the file can be protected. Regarding wiping tools, nowadays, lots of wiping tools face issue such as data breach because the wiping tools are unable to delete the data permanently from the devices. This situation might affect their main function and a threat to their users. Hence, a new wiping tool is developed to overcome the problem. A new wiping tool named Data Wiping tool is applying two wiping techniques. The first technique is Randomized Data while the next one is enhancing wiping technique, known as ByteEditor. ByteEditor is a combination of two different techniques, byte editing and byte deletion. With the implementation of Object-Oriented methodology, this wiping tool is built. This methodology consists of analyzing, designing, implementation and testing. The tool is analyzed and compared with other wiping tools before the designing of the tool start. Once the designing is done, implementation phase take place. The code of the tool is created using Visual Studio 2010 with C\# language and being tested their functionality to ensure the developed tool meet the objectives of the project. This tool is believed able to contribute to the development of wiping tools and able to solve problems related to other wiping tools.
Deep Poisoning: Towards Robust Image Data Sharing against Visual Disclosure. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). :686–696.
.
2021. Due to respectively limited training data, different entities addressing the same vision task based on certain sensitive images may not train a robust deep network. This paper introduces a new vision task where various entities share task-specific image data to enlarge each other's training data volume without visually disclosing sensitive contents (e.g. illegal images). Then, we present a new structure-based training regime to enable different entities learn task-specific and reconstruction-proof image representations for image data sharing. Specifically, each entity learns a private Deep Poisoning Module (DPM) and insert it to a pre-trained deep network, which is designed to perform the specific vision task. The DPM deliberately poisons convolutional image features to prevent image reconstructions, while ensuring that the altered image data is functionally equivalent to the non-poisoned data for the specific vision task. Given this equivalence, the poisoned features shared from one entity could be used by another entity for further model refinement. Experimental results on image classification prove the efficacy of the proposed method.
Delegated Authorization Framework for EHR Services using Attribute Based Encryption. 2021 IEEE World Congress on Services (SERVICES). :18–18.
.
2021. Medical organizations find it challenging to adopt cloud-based Electronic Health Records (EHR) services due to the risk of data breaches and the resulting compromise of patient data. Existing authorization models follow a patient-centric approach for EHR management, where the responsibility of authorizing data access is handled at the patients’ end. This creates significant overhead for the patient, who must authorize every access of their health record. It is also not practical given that multiple personnel are typically involved in providing care and that the patient may not always be in a state to provide this authorization.
Deletion Error Correction based on Polar Codes in Skyrmion Racetrack Memory. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
.
2021. Skyrmion racetrack memory (Sk-RM) is a new storage technology in which skyrmions are used to represent data bits to provide high storage density. During the reading procedure, the skyrmion is driven by a current and sensed by a fixed read head. However, synchronization errors may happen if the skyrmion does not pass the read head on time. In this paper, a polar coding scheme is proposed to correct the synchronization errors in the Sk-RM. Firstly, we build two error correction models for the reading operation of Sk-RM. By connecting polar codes with the marker codes, the number of deletion errors can be determined. We also redesign the decoding algorithm to recover the information bits from the readout sequence, where a tighter bound of the segmented deletion errors is derived and a novel parity check strategy is designed for better decoding performance. Simulation results show that the proposed coding scheme can efficiently improve the decoding performance.
Demonstrating Physical Layer Security Via Weighted Fractional Fourier Transform. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
.
2021. Recently, there has been significant enthusiasms in exploiting physical (PHY-) layer characteristics for secure wireless communication. However, most existing PHY-layer security paradigms are information theoretical methodologies, which are infeasible to real and practical systems. In this paper, we propose a weighted fractional Fourier transform (WFRFT) pre-coding scheme to enhance the security of wireless transmissions against eavesdropping. By leveraging the concept of WFRFT, the proposed scheme can easily change the characteristics of the underlying radio signals to complement and secure upper-layer cryptographic protocols. We demonstrate a running prototype based on the LTE-framework. First, the compatibility between the WFRFT pre-coding scheme and the conversational LTE architecture is presented. Then, the security mechanism of the WFRFT pre-coding scheme is demonstrated. Experimental results validate the practicability and security performance superiority of the proposed scheme.
Design of Intermediate Frequency Module of Microwave Radiometer Based on Polyphase Filter Bank. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. :7984–7987.
.
2021. In this work, an IF(intermediate frequency) module of a hyperspectral microwave radiometer based on a polyphase filter bank (PFB) and Discrete Fourier Transformation (DFT)is introduced. The IF module is designed with an 800MSPS sampling-rate ADC and a Xilinx Virtex-7 FPGA. The module can achieve 512 channels and a bandwidth of 400M and process all the sampled data in real-time. The test results of this module are given and analyzed, such as linearity, accuracy, etc. It can be used in various applications of microwave remote sensing. The system has strong expandability.
Detecting Attack Surface With Full-System Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1161–1162.
.
2021. Attack surface detection for the complex software is needed to find targets for the fuzzing, because testing the whole system with many inputs is not realistic. Researchers that previously applied taint analysis for dealing with different security tasks in the virtual machines did not examined how to apply it for attack surface detection. I.e., getting the program modules and functions, that may be affected by input data. We propose using taint tracking within a virtual machine and virtual machine introspection to create a new approach that can detect the internal module interfaces that can be fuzz tested to assure that software is safe or find the vulnerabilities.
Differentially Private String Sanitization for Frequency-Based Mining Tasks. 2021 IEEE International Conference on Data Mining (ICDM). :41—50.
.
2021. Strings are used to model genomic, natural language, and web activity data, and are thus often shared broadly. However, string data sharing has raised privacy concerns stemming from the fact that knowledge of length-k substrings of a string and their frequencies (multiplicities) may be sufficient to uniquely reconstruct the string; and from that the inference of such substrings may leak confidential information. We thus introduce the problem of protecting length-k substrings of a single string S by applying Differential Privacy (DP) while maximizing data utility for frequency-based mining tasks. Our theoretical and empirical evidence suggests that classic DP mechanisms are not suitable to address the problem. In response, we employ the order-k de Bruijn graph G of S and propose a sampling-based mechanism for enforcing DP on G. We consider the task of enforcing DP on G using our mechanism while preserving the normalized edge multiplicities in G. We define an optimization problem on integer edge weights that is central to this task and develop an algorithm based on dynamic programming to solve it exactly. We also consider two variants of this problem with real edge weights. By relaxing the constraint of integer edge weights, we are able to develop linear-time exact algorithms for these variants, which we use as stepping stones towards effective heuristics. An extensive experimental evaluation using real-world large-scale strings (in the order of billions of letters) shows that our heuristics are efficient and produce near-optimal solutions which preserve data utility for frequency-based mining tasks.
The Dual-Channel IP-to-NDN Translation Gateway. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–2.
.
2021. The co-existence between Internet Protocol (IP) and Named-Data Networking (NDN) protocol is inevitable during the transition period. We propose a privacy-preserving translation method between IP and NDN called the dual-channel translation gateway. The gateway provides two different channels dedicated to the interest and the data packet to translate the IP to the NDN protocol and vice versa. Additionally, the name resolution table is provided at the gateway that binds an IP packet securely with a prefix name. Moreover, we compare the dual-channel gateway performance with the encapsulation gateway.
Dynamic Management of Identity Federations using Blockchain. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–9.
.
2021. Federated Identity Management (FIM) is a model of identity management in which different trusted organizations can provide secure online services to their uses. Security Assertion Markup Language (SAML) is one of the widely-used technologies for FIM. However, a SAML-based FIM has two significant issues: the metadata (a crucial component in SAML) has security issues, and federation management is hard to scale. The concept of dynamic identity federation has been introduced, enabling previously unknown entities to join in a new federation facilitating inter-organization service provisioning to address federation management's scalability issue. However, the existing dynamic federation approaches have security issues concerning confidentiality, integrity, authenticity, and transparency. In this paper, we present the idea of facilitating dynamic identity federations utilizing blockchain technology to improve the existing approaches' security issues. We demonstrate its architecture based on a rigorous threat model and requirement analysis. We also discuss its implementation details, current protocol flows and analyze its performance to underline its applicability.
ECG Signal Classification Using Convolutional Neural Networks for Biometric Identification. 2021 44th International Conference on Telecommunications and Signal Processing (TSP). :167–170.
.
2021. The latest security methods are based on biometric features. The electrocardiogram is increasingly used in such systems because it provides biometric features that are difficult to falsify. This paper aims to study the use of the electrocardiogram together with the Convolutional Neural Networks, in order to identify the subjects based on the ECG signal and to improve the security. In this study, we used the Fantasia database, available on the PhysioNet platform, which contains 40 ECG recordings. The ECG signal is pre-processed, and then spectrograms are generated for each ECG signal. Spectrograms are applied to the input of several architectures of Convolutional Neural Networks like Inception-v3, Xception, MobileNet and NasNetLarge. An analysis of performance metrics reveals that the subject identification method based on ECG signal and CNNs provides remarkable results. The best accuracy value is 99.5% and is obtained for Inception-v3.
An Efficient Approach for Secure Data Outsourcing using Hybrid Data Partitioning. 2021 International Conference on Information Technology (ICIT). :418—423.
.
2021. This paper presents an implementation of a novel approach, utilizing hybrid data partitioning, to secure sensitive data and improve query performance. In this novel approach, vertical and horizontal data partitioning are combined together in an approach that called hybrid partitioning and the new approach is implemented using Microsoft SQL server to generate divided/partitioned relations. A group of proposed rules is applied to the query request process using query binning (QB) and Metadata of partitioning. The proposed approach is validated using experiments involving a collection of data evaluated by outcomes of advanced stored procedures. The suggested approach results are satisfactory in achieving the properties of defining the data security: non-linkability and indistinguishability. The results of the proposed approach were satisfactory. The proposed novel approach outperforms a well-known approach called PANDA.
EncDBDB: Searchable Encrypted, Fast, Compressed, In-Memory Database Using Enclaves. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :438—450.
.
2021. Data confidentiality is an important requirement for clients when outsourcing databases to the cloud. Trusted execution environments, such as Intel SGX, offer an efficient solution to this confidentiality problem. However, existing TEE-based solutions are not optimized for column-oriented, in-memory databases and pose impractical memory requirements on the enclave. We present EncDBDB, a novel approach for client-controlled encryption of a column-oriented, in-memory databases allowing range searches using an enclave. EncDBDB offers nine encrypted dictionaries, which provide different security, performance, and storage efficiency tradeoffs for the data. It is especially suited for complex, read-oriented, analytic queries as present, e.g., in data warehouses. The computational overhead compared to plaintext processing is within a millisecond even for databases with millions of entries and the leakage is limited. Compressed encrypted data requires less space than a corresponding plaintext column. Furthermore, EncDBDB's enclave is very small reducing the potential for security-relevant implementation errors and side-channel leakages.
Enhancing Security in the Industrial IoT Sector using Quantum Computing. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1—5.
.
2021. The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.
Evaluating the Performance of Various Deep Reinforcement Learning Algorithms for a Conversational Chatbot. 2021 2nd International Conference for Emerging Technology (INCET). :1–8.
.
2021. Conversational agents are the most popular AI technology in IT trends. Domain specific chatbots are now used by almost every industry in order to upgrade their customer service. The Proposed paper shows the modelling and performance of one such conversational agent created using deep learning. The proposed model utilizes NMT (Neural Machine Translation) from the TensorFlow software libraries. A BiRNN (Bidirectional Recurrent Neural Network) is used in order to process input sentences that contain large number of tokens (20-40 words). In order to understand the context of the input sentence attention model is used along with BiRNN. The conversational models usually have one drawback, that is, they sometimes provide irrelevant answer to the input. This happens quite often in conversational chatbots as the chatbot doesn't realize that it is answering without context. This drawback is solved in the proposed system using Deep Reinforcement Learning technique. Deep reinforcement Learning follows a reward system that enables the bot to differentiate between right and wrong answers. Deep Reinforcement Learning techniques allows the chatbot to understand the sentiment of the query and reply accordingly. The Deep Reinforcement Learning algorithms used in the proposed system is Q-Learning, Deep Q Neural Network (DQN) and Distributional Reinforcement Learning with Quantile Regression (QR-DQN). The performance of each algorithm is evaluated and compared in this paper in order to find the best DRL algorithm. The dataset used in the proposed system is Cornell Movie-dialogs corpus and CoQA (A Conversational Question Answering Challenge). CoQA is a large dataset that contains data collected from 8000+ conversations in the form of questions and answers. The main goal of the proposed work is to increase the relevancy of the chatbot responses and to increase the perplexity of the conversational chatbot.