Biblio

Found 2705 results

Filters: First Letter Of Last Name is G  [Clear All Filters]
2023-07-14
Chen, Xiaofeng, Gao, Ying.  2022.  CDEdit: Redactable Blockchain with Cross-audit and Diversity Editing. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :945–952.
Redactable blockchain allows modifiers or voting committees with modification privileges to edit the data on the chain. Among them, trapdoor holders in chameleon-based hash redactable blockchains can quickly compute hash collisions for arbitrary data without breaking the link of the hash-chain. However, chameleon-based hash redactable blockchain schemes have difficulty solving issues such as editing operations with different granularity or conflicts and auditing modifiers that abuse editing privileges. To address the above challenges, we propose a redactable blockchain with Cross-audit and Diversity Editing (CDEdit). The proposed scheme distributes subdivided transaction-level and block-level tokens to the matching modifier committee to weaken the influence of central power. A number of modifiers are unpredictably selected based on reputation value proportions and the mapping of the consistent hash ring to enable diversity editing operations, and resist Sybil attacks. Meanwhile, an adaptive cross-auditing protocol is proposed to adjust the roles of modifiers and auditors dynamically. This protocol imposes a reputation penalty on the modifiers of illegal edits and solves the problems of abuse of editing privileges and collusion attacks. In addition, We used ciphertext policy attribute-based encryption (CP-ABE) and chameleon hashes with ephemeral trapdoor (CHET) for data modification, and present a system steps and security analysis of CDEdit. Finally, the extensive comparisons and evaluations show that our scheme costs less time overhead than other schemes and is suitable for complex application scenarios, e.g. IoT data management.
ISSN: 2324-9013
2023-02-03
Liang, Xiubo, Guo, Ningxiang, Hong, Chaoqun.  2022.  A Certificate Authority Scheme Based on Trust Ring for Consortium Nodes. 2022 International Conference on High Performance Big Data and Intelligent Systems (HDIS). :90–94.
The access control mechanism of most consortium blockchain is implemented through traditional Certificate Authority scheme based on trust chain and centralized key management such as PKI/CA at present. However, the uneven power distribution of CA nodes may cause problems with leakage of certificate keys, illegal issuance of certificates, malicious rejection of certificates issuance, manipulation of issuance logs and metadata, it could compromise the security and dependability of consortium blockchain. Therefore, this paper design and implement a Certificate Authority scheme based on trust ring model that can not only enhance the reliability of consortium blockchain, but also ensure high performance. Combined public key, transformation matrix and elliptic curve cryptography are applied to the scheme to generate and store keys in a cluster of CA nodes dispersedly and securely for consortium nodes. It greatly reduced the possibility of malicious behavior and key leakage. To achieve the immutability of logs and metadata, the scheme also utilized public blockchain and smart contract technology to organize the whole procedure of certificate issuance, the issuance logs and metadata for certificate validation are stored in public blockchain. Experimental results showed that the scheme can surmount the disadvantages of the traditional scheme while maintaining sufficiently good performance, including issuance speed and storage efficiency of certificates.
2023-07-20
Lourens, Melanie, Naureen, Ayesha, Guha, Shouvik Kumar, Ahamad, Shahanawaj, Dharamvir, Tripathi, Vikas.  2022.  Circumstantial Discussion on Security and Privacy Protection using Cloud Computing Technology. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1589—1593.
Cloud computing is becoming a demanding technology due to its flexibility, sensibility and remote accessibility. Apart from these applications of cloud computing, privacy and security are two terms that pose a circumstantial discussion. Various authors have argued on this topic that cloud computing is more secure than other data sharing and storing methods. The conventional data storing system is a computer system or smartphone storage. The argument debate also states that cloud computing is vulnerable to enormous types of attacks which make it a more concerning technology. This current study has also tried to draw the circumstantial and controversial debate on the security and privacy system of cloud computing. Primary research has been conducted with 65 cloud computing experts to understand whether a cloud computing security technique is highly secure or not. An online survey has been conducted with them where they provided their opinions based on the security and privacy system of cloud computing. Findings showed that no particular technology is available which can provide maximum security. Although the respondents agreed that blockchain is a more secure cloud computing technology; however, the blockchain also has certain threats which need to be addressed. The study has found essential encryption systems that can be integrated to strengthen security; however, continuous improvement is required.
2023-07-31
He, Yang, Gao, Xianzhou, Liang, Fei, Yang, Ruxia.  2022.  A Classification Method of Power Unstructured Encrypted Data Based on Fuzzy Data Matching. 2022 3rd International Conference on Intelligent Design (ICID). :294—298.
With the development of the digital development transformation of the power grid, the classification of power unstructured encrypted data is an important basis for data security protection. However, most studies focus on exact match classification or single-keyword fuzzy match classification. This paper proposes a fuzzy matching classification method for power unstructured encrypted data. The data owner generates an index vector based on the power unstructured file, and the data user generates a query vector by querying the file through the same process. The index and query vector are uploaded to the cloud server in encrypted form, and the cloud server calculates the relevance score and sorts it, and returns the classification result with the highest score to the user. This method realizes the multi-keyword fuzzy matching classification of unstructured encrypted data of electric power, and through the experimental simulation of a large number of data sets, the effect and feasibility of the method are proved.
2023-03-31
Zhang, Hui, Ding, Jianing, Tan, Jianlong, Gou, Gaopeng, Shi, Junzheng.  2022.  Classification of Mobile Encryption Services Based on Context Feature Enhancement. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :860–866.
Smart phones have become the preferred way for Chinese Internet users currently. The mobile phone traffic is large from the operating system. These traffic is mainly generated by the services. In the context of the universal encryption of the traffic, classification identification of mobile encryption services can effectively reduce the difficulty of analytical difficulty due to mobile terminals and operating system diversity, and can more accurately identify user access targets, and then enhance service quality and network security management. The existing mobile encryption service classification methods have two shortcomings in feature selection: First, the DL model is used as a black box, and the features of large dimensions are not distinguished as input of classification model, which resulting in sharp increase in calculation complexity, and the actual application is limited. Second, the existing feature selection method is insufficient to use the time and space associated information of traffic, resulting in less robustness and low accuracy of the classification. In this paper, we propose a feature enhancement method based on adjacent flow contextual features and evaluate the Apple encryption service traffic collected from the real world. Based on 5 DL classification models, the refined classification accuracy of Apple services is significantly improved. Our work can provide an effective solution for the fine management of mobile encryption services.
2023-01-20
Kumar, Santosh, Kumar, N M G, Geetha, B.T., Sangeetha, M., Chakravarthi, M. Kalyan, Tripathi, Vikas.  2022.  Cluster, Cloud, Grid Computing via Network Communication Using Control Communication and Monitoring of Smart Grid. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1220—1224.
Traditional power consumption management systems are not showing enough reliability and thus, smart grid technology has been introduced to reduce the excess power wastages. In the context of smart grid systems, network communication is another term that is used for developing the network between the users and the load profiles. Cloud computing and clustering are also executed for efficient power management. Based on the facts, this research is going to identify wireless network communication systems to monitor and control smart grid power consumption. Primary survey-based research has been carried out with 62 individuals who worked in the smart grid system, tracked, monitored and controlled the power consumptions using WSN technology. The survey was conducted online where the respondents provided their opinions via a google survey form. The responses were collected and analyzed on Microsoft Excel. Results show that hybrid commuting of cloud and edge computing technology is more advantageous than individual computing. Respondents agreed that deep learning techniques will be more beneficial to analyze load profiles than machine learning techniques. Lastly, the study has explained the advantages and challenges of using smart grid network communication systems. Apart from the findings from primary research, secondary journal articles were also observed to emphasize the research findings.
2023-07-12
Ravi, Renjith V., Goyal, S. B., Islam, Sardar M N.  2022.  Colour Image Encryption Using Chaotic Trigonometric Map and DNA Coding. 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). :172—176.
The problem of information privacy has grown more significant in terms of data storage and communication in the 21st century due to the technological explosion during which information has become a highly important strategic resource. The idea of employing DNA cryptography has been highlighted as a potential technology that offers fresh hope for unbreakable algorithms since standard cryptosystems are becoming susceptible to assaults. Due to biological DNA's outstanding energy efficiency, enormous storage capacity, and extensive parallelism, a new branch of cryptography based on DNA computing is developing. There is still more study to be done since this discipline is still in its infancy. This work proposes a DNA encryption strategy based on cryptographic key generation techniques and chaotic diffusion operation.
2023-07-11
Yarlagadda, Venu, Garikapati, Annapurna Karthika, Gadupudi, Lakshminarayana, Kapoor, Rashmi, Veeresham, K..  2022.  Comparative Analysis of STATCOM and SVC on Power System Dynamic Response and Stability Margins with time and frequency responses using Modelling. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—8.
To ensure dynamic and transient angle and load stability in order to maintain the power system security is a major task of the power Engineer. FACTS Controllers are most effective devices to ensure system security by enhancing the stability margins with reactive power support all over the power system network. The major shunt compensation devices of FACTS are SVC and STATCOM. This article dispenses the modelling and simulation of both the shunt devices viz. Oneis the Static Synchronous Compensator (STATCOM) and the other is Static Var Compensator (SVC). The small signal models of these devices have been derived from the first principles and obtained the transfer function models of weak and strong power systems. The weak power system has the Short Circuit Ratio (SCR) is about less than 3 and that of the strong power system has the SCR of more than 5. The performance of the both weak and strong power systems has been evaluated with time and frequency responses. The dynamic response is obtained with the exact models for both weak and strong systems, subsequently the root locus plots as well as bode plots have been obtained with MATLAB Programs and evaluated the performance of these devices and comparison is made. The Stability margins of both the systems with SVC and STATCOM have been obtained from the bode plots. The dynamic behaviour of the both kinds of power systems have been assessed with time responses of SVC and STATCOM models. All of these results viz. dynamic response, root locus and bode plots proves the superiority of the STATCOM over SVC with indices, viz. peak overshoot, settling time, gain margin and phase margins. The dynamic, steady state performance indices obtained from time response and bode plots proves the superior performance of STATCOM.
2022-12-23
Faramondi, Luca, Grassi, Marta, Guarino, Simone, Setola, Roberto, Alcaraz, Cristina.  2022.  Configuration vulnerability in SNORT for Windows Operating Systems. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :82–89.
Cyber-attacks against Industrial Control Systems (ICS) can lead to catastrophic events which can be prevented by the use of security measures such as the Intrusion Prevention Systems (IPS). In this work we experimentally demonstrate how to exploit the configuration vulnerabilities of SNORT one of the most adopted IPSs to significantly degrade the effectiveness of the IPS and consequently allowing successful cyber-attacks. We illustrate how to design a batch script able to retrieve and modify the configuration files of SNORT in order to disable its ability to detect and block Denial of Service (DoS) and ARP poisoning-based Man-In-The-Middle (MITM) attacks against a Programmable Logic Controller (PLC) in an ICS network. Experimental tests performed on a water distribution testbed show that, despite the presence of IPS, the DoS and ARP spoofed packets reach the destination causing respectively the disconnection of the PLC from the ICS network and the modification of packets payload.
2023-04-14
Priya, A, Ganesh, Abishek, Akil Prasath, R, Jeya Pradeepa, K.  2022.  Cracking CAPTCHAs using Deep Learning. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :437–443.
In this decade, digital transactions have risen exponentially demanding more reliable and secure authentication systems. CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) system plays a major role in these systems. These CAPTCHAs are available in character sequence, picture-based, and audio-based formats. It is very essential that these CAPTCHAs should be able to differentiate a computer program from a human precisely. This work tests the strength of text-based CAPTCHAs by breaking them using an algorithm built on CNN (Convolution Neural Network) and RNN (Recurrent Neural Network). The algorithm is designed in such a way as an attempt to break the security features designers have included in the CAPTCHAs to make them hard to be cracked by machines. This algorithm is tested against the synthetic dataset generated in accordance with the schemes used in popular websites. The experiment results exhibit that the model has shown a considerable performance against both the synthetic and real-world CAPTCHAs.
2023-05-30
Zhang, Weibo, Zhu, Fuqing, Han, Jizhong, Guo, Tao, Hu, Songlin.  2022.  Cross-Layer Aggregation with Transformers for Multi-Label Image Classification. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3448—3452.
Multi-label image classification task aims to predict multiple object labels in a given image and faces the challenge of variable-sized objects. Limited by the size of CNN convolution kernels, existing CNN-based methods have difficulty capturing global dependencies and effectively fusing multiple layers features, which is critical for this task. Recently, transformers have utilized multi-head attention to extract feature with long range dependencies. Inspired by this, this paper proposes a Cross-layer Aggregation with Transformers (CAT) framework, which leverages transformers to capture the long range dependencies of CNN-based features with Long Range Dependencies module and aggregate the features layer by layer with Cross-Layer Fusion module. To make the framework efficient, a multi-head pre-max attention is designed to reduce the computation cost when fusing the high-resolution features of lower-layers. On two widely-used benchmarks (i.e., VOC2007 and MS-COCO), CAT provides a stable improvement over the baseline and produces a competitive performance.
Wang, Binbin, Wu, Yi, Guo, Naiwang, Zhang, Lei, Liu, Chang.  2022.  A cross-layer attack path detection method for smart grid dynamics. 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :142—146.
With the intelligent development of power system, due to the double-layer structure of smart grid and the characteristics of failure propagation across layers, the attack path also changes significantly: from single-layer to multi-layer and from static to dynamic. In response to the shortcomings of the single-layer attack path of traditional attack path identification methods, this paper proposes the idea of cross-layer attack, which integrates the threat propagation mechanism of the information layer and the failure propagation mechanism of the physical layer to establish a forward-backward bi-directional detection model. The model is mainly used to predict possible cross-layer attack paths and evaluate their path generation probabilities to provide theoretical guidance and technical support for defenders. The experimental results show that the method proposed in this paper can well identify the dynamic cross-layer attacks in the smart grid.
2023-04-14
Paul, Shuva, Chen, Yu-Cheng, Grijalva, Santiago, Mooney, Vincent John.  2022.  A Cryptographic Method for Defense Against MiTM Cyber Attack in the Electricity Grid Supply Chain. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
Critical infrastructures such as the electricity grid can be severely impacted by cyber-attacks on its supply chain. Hence, having a robust cybersecurity infrastructure and management system for the electricity grid is a high priority. This paper proposes a cyber-security protocol for defense against man-in-the-middle (MiTM) attacks to the supply chain, which uses encryption and cryptographic multi-party authentication. A cyber-physical simulator is utilized to simulate the power system, control system, and security layers. The correctness of the attack modeling and the cryptographic security protocol against this MiTM attack is demonstrated in four different attack scenarios.
ISSN: 2472-8152
2023-06-09
Devliyal, Swati, Sharma, Sachin, Goyal, Himanshu Rai.  2022.  Cyber Physical System Architectures for Pharmaceutical Care Services: Challenges and Future Trends. 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET). :1—6.
The healthcare industry is confronted with a slew of significant challenges, including stringent regulations, privacy concerns, and rapidly rising costs. Many leaders and healthcare professionals are looking to new technology and informatics to expand more intelligent forms of healthcare delivery. Numerous technologies have advanced during the last few decades. Over the past few decades, pharmacy has changed and grown, concentrating less on drugs and more on patients. Pharmaceutical services improve healthcare's affordability and security. The primary invention was a cyber-infrastructure made up of smart gadgets that are connected to and communicate with one another. These cyber infrastructures have a number of problems, including privacy, trust, and security. These gadgets create cyber-physical systems for pharmaceutical care services in p-health. In the present period, cyber-physical systems for pharmaceutical care services are dealing with a variety of important concerns and demanding conditions, i.e., problems and obstacles that need be overcome to create a trustworthy and effective medical system. This essay offers a thorough examination of CPS's architectural difficulties and emerging tendencies.
2023-03-03
Khant, Shailesh, Patel, Atul, Patel, Sanskruti, Ganatra, Nilay, Patel, Rachana.  2022.  Cyber Security Actionable Education during COVID19 Third Wave in India. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :274–278.
Still in many countries COVID19 virus is changing its structure and creating damages in terms of economy and education. In India during the period of January 2022 third wave is on its high peak. Many colleges and schools are still forced to teach online. This paper describes how cyber security actionable or practical fundamental were taught by school or college teachers. Various cyber security tools are used to explain the actionable insight of the subject. Main Topics or concepts covered are MITM (Man In the Middle Attack) using ethercap tool in Kali Linux, spoofing methods like ARP (Address Resolution Protocol) spoofing and DNS (Domain Name System) spoofing, network intrusion detection using snort , finding information about packets using wireshark tool and other tools like nmap and netcat for finding the vulnerability. Even brief details were given about how to crack password using wireshark.
2023-04-14
Garcia, Ailen B., Bongo, Shaina Mae C..  2022.  A Cyber Security Cognizance among College Teachers and Students in Embracing Online Education. 2022 8th International Conference on Information Management (ICIM). :116—119.
Cyber security is everybody's responsibility. It is the capability of the person to protect or secure the use of cyberspace from cyber-attacks. Cyber security awareness is the combination of both knowing and doing to safeguard one's personal information or assets. Online threats continue to rise in the Philippines which is the focus of this study, to identify the level of cyber security awareness among the students and teachers of Occidental Mindoro State College (OMSC) Philippines. Results shows that the level of cyber security awareness in terms of Knowledge, majority of the students and teachers got the passing score and above however there are almost fifty percent got below the passing score. In terms of Practices, both the teachers and the students need to strengthen the awareness of system and browser updates to boost the security level of the devices used. More than half of the IT students are aware of the basic cyber security protocol but there is a big percentage in the Non-IT students which is to be considered. Majority of the teachers are aware of the basic cyber security protocols however the remaining number must be looked into. There is a need to intensity the awareness of the students in the proper etiquette in using the social media. Boost the basic cyber security awareness training to all students and teachers to avoid cybercrime victims.
2023-04-28
Ghazal, Taher M., Hasan, Mohammad Kamrul, Zitar, Raed Abu, Al-Dmour, Nidal A., Al-Sit, Waleed T., Islam, Shayla.  2022.  Cybers Security Analysis and Measurement Tools Using Machine Learning Approach. 2022 1st International Conference on AI in Cybersecurity (ICAIC). :1–4.
Artificial intelligence (AI) and machine learning (ML) have been used in transforming our environment and the way people think, behave, and make decisions during the last few decades [1]. In the last two decades everyone connected to the Internet either an enterprise or individuals has become concerned about the security of his/their computational resources. Cybersecurity is responsible for protecting hardware and software resources from cyber attacks e.g. viruses, malware, intrusion, eavesdropping. Cyber attacks either come from black hackers or cyber warfare units. Artificial intelligence (AI) and machine learning (ML) have played an important role in developing efficient cyber security tools. This paper presents Latest Cyber Security Tools Based on Machine Learning which are: Windows defender ATP, DarckTrace, Cisco Network Analytic, IBM QRader, StringSifter, Sophos intercept X, SIME, NPL, and Symantec Targeted Attack Analytic.
2023-08-04
Hyder, Burhan, Majerus, Harrison, Sellars, Hayden, Greazel, Jonathan, Strobel, Joseph, Battani, Nicholas, Peng, Stefan, Govindarasu, Manimaran.  2022.  CySec Game: A Framework and Tool for Cyber Risk Assessment and Security Investment Optimization in Critical Infrastructures. 2022 Resilience Week (RWS). :1–6.
Cyber physical system (CPS) Critical infrastructures (CIs) like the power and energy systems are increasingly becoming vulnerable to cyber attacks. Mitigating cyber risks in CIs is one of the key objectives of the design and maintenance of these systems. These CPS CIs commonly use legacy devices for remote monitoring and control where complete upgrades are uneconomical and infeasible. Therefore, risk assessment plays an important role in systematically enumerating and selectively securing vulnerable or high-risk assets through optimal investments in the cybersecurity of the CPS CIs. In this paper, we propose a CPS CI security framework and software tool, CySec Game, to be used by the CI industry and academic researchers to assess cyber risks and to optimally allocate cybersecurity investments to mitigate the risks. This framework uses attack tree, attack-defense tree, and game theory algorithms to identify high-risk targets and suggest optimal investments to mitigate the identified risks. We evaluate the efficacy of the framework using the tool by implementing a smart grid case study that shows accurate analysis and feasible implementation of the framework and the tool in this CPS CI environment.
2023-06-22
Kukreti, Sambhavi, Modgil, Sumit Kumar, Gehlot, Neha, Kumar, Vinod.  2022.  DDoS Attack using SYN Flooding: A Case Study. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :323–329.
Undoubtedly, technology has not only transformed our world of work and lifestyle, but it also carries with it a lot of security challenges. The Distributed Denial-of-Service (DDoS) attack is one of the most prominent attacks witnessed by cyberspace of the current era. This paper outlines several DDoS attacks, their mitigation stages, propagation of attacks, malicious codes, and finally provides redemptions of exhibiting normal and DDoS attacked scenarios. A case study of a SYN flooding attack has been exploited by using Metasploit. The utilization of CPU frame length and rate have been observed in normal and attacked phases. Preliminary results clearly show that in a normal scenario, CPU usage is about 20%. However, in attacked phases with the same CPU load, CPU execution overhead is nearly 90% or 100%. Thus, through this research, the major difference was found in CPU usage, frame length, and degree of data flow. Wireshark tool has been used for network traffic analyzer.
2023-07-19
Vekić, Marko, Isakov, Ivana, Rapaić, Milan, Grabić, Stevan, Todorović, Ivan, Porobić, Vlado.  2022.  Decentralized microgrid control "beyond droop". 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.
2023-01-05
C, Chethana, Pareek, Piyush Kumar, Costa de Albuquerque, Victor Hugo, Khanna, Ashish, Gupta, Deepak.  2022.  Deep Learning Technique Based Intrusion Detection in Cyber-Security Networks. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1–7.
As a result of the inherent weaknesses of the wireless medium, ad hoc networks are susceptible to a broad variety of threats and assaults. As a direct consequence of this, intrusion detection, as well as security, privacy, and authentication in ad-hoc networks, have developed into a primary focus of current study. This body of research aims to identify the dangers posed by a variety of assaults that are often seen in wireless ad-hoc networks and provide strategies to counteract those dangers. The Black hole assault, Wormhole attack, Selective Forwarding attack, Sybil attack, and Denial-of-Service attack are the specific topics covered in this thesis. In this paper, we describe a trust-based safe routing protocol with the goal of mitigating the interference of black hole nodes in the course of routing in mobile ad-hoc networks. The overall performance of the network is negatively impacted when there are black hole nodes in the route that routing takes. As a result, we have developed a routing protocol that reduces the likelihood that packets would be lost as a result of black hole nodes. This routing system has been subjected to experimental testing in order to guarantee that the most secure path will be selected for the delivery of packets between a source and a destination. The invasion of wormholes into a wireless network results in the segmentation of the network as well as a disorder in the routing. As a result, we provide an effective approach for locating wormholes by using ordinal multi-dimensional scaling and round trip duration in wireless ad hoc networks with either sparse or dense topologies. Wormholes that are linked by both short route and long path wormhole linkages may be found using the approach that was given. In order to guarantee that this ad hoc network does not include any wormholes that go unnoticed, this method is subjected to experimental testing. In order to fight against selective forwarding attacks in wireless ad-hoc networks, we have developed three different techniques. The first method is an incentive-based algorithm that makes use of a reward-punishment system to drive cooperation among three nodes for the purpose of vi forwarding messages in crowded ad-hoc networks. A unique adversarial model has been developed by our team, and inside it, three distinct types of nodes and the activities they participate in are specified. We have shown that the suggested strategy that is based on incentives prohibits nodes from adopting an individualistic behaviour, which ensures collaboration in the process of packet forwarding. To guarantee that intermediate nodes in resource-constrained ad-hoc networks accurately convey packets, the second approach proposes a game theoretic model that uses non-cooperative game theory. This model is based on the idea that game theory may be used. This game reaches a condition of desired equilibrium, which assures that cooperation in multi-hop communication is physically possible, and it is this state that is discovered. In the third algorithm, we present a detection approach that locates malicious nodes in multihop hierarchical ad-hoc networks by employing binary search and control packets. We have shown that the cluster head is capable of accurately identifying the malicious node by analysing the sequences of packets that are dropped along the path leading from a source node to the cluster head. A lightweight symmetric encryption technique that uses Binary Playfair is presented here as a means of safeguarding the transport of data. We demonstrate via experimentation that the suggested encryption method is efficient with regard to the amount of energy used, the amount of time required for encryption, and the memory overhead. This lightweight encryption technique is used in clustered wireless ad-hoc networks to reduce the likelihood of a sybil attack occurring in such networks
2023-08-23
Nalinipriya, G, Govarthini, V, Kayalvizhi, S., Christika, S, Vishvaja, J., Royal Amara, Kumar Raghuveer.  2022.  DefendR - An Advanced Security Model Using Mini Filter in Unix Multi-Operating System. 2022 8th International Conference on Smart Structures and Systems (ICSSS). :1—6.
DefendR is a Security operation used to block the access of the user to edit or overwrite the contents in our personal file that is stored in our system. This approach of applying a certain filter for the sensitive or sensitive data that are applicable exclusively in read-only mode. This is an improvisation of security for the personal data that restricts undo or redo related operations in the shared file. We use a mini-filter driver tool. Specifically, IRP (Incident Response Plan)-based I/O operations, as well as fast FSFilter callback activities, may additionally all be filtered with a mini-filter driver. A mini-filter can register a preoperation callback procedure, a postoperative Each of the I/O operations it filters is filtered by a callback procedure. By registering all necessary callback filtering methods in a filter manager, a mini-filter driver interfaces to the file system indirectly. When a mini-filter is loaded, the latter is a Windows file system filter driver that is active and connects to the file system stack.
2023-01-20
Qian, Sen, Deng, Hui, Chen, Chuan, Huang, Hui, Liang, Yun, Guo, Jinghong, Hu, Zhengyong, Si, Wenrong, Wang, Hongkang, Li, Yunjia.  2022.  Design of a Nonintrusive Current Sensor with Large Dynamic Range Based on Tunneling Magnetoresistive Devices. 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). :3405—3409.
Current sensors are widely used in power grid for power metering, automation and power equipment monitoring. Since the tradeoff between the sensitivity and the measurement range needs to be made to design a current sensor, it is difficult to deploy one sensor to measure both the small-magnitude and the large-magnitude current. In this research, we design a surface-mount current sensor by using the tunneling magneto-resistance (TMR) devices and show that the tradeoff between the sensitivity and the detection range can be broken. Two TMR devices of different sensitivity degrees were integrated into one current sensor module, and a signal processing algorithm was implemented to fusion the outputs of the two TMR devices. Then, a platform was setup to test the performance of the surface-mount current sensor. The results showed that the designed current sensor could measure the current from 2 mA to 100 A with an approximate 93 dB dynamic range. Besides, the nonintrusive feature of the surface-mount current sensor could make it convenient to be deployed on-site.
2023-02-03
Shah, Rajeev Kumar, Hasan, Mohammad Kamrul, Islam, Shayla, Khan, Asif, Ghazal, Taher M., Khan, Ahmad Neyaz.  2022.  Detect Phishing Website by Fuzzy Multi-Criteria Decision Making. 2022 1st International Conference on AI in Cybersecurity (ICAIC). :1–8.
Phishing activity is undertaken by the hackers to compromise the computer networks and financial system. A compromised computer system or network provides data and or processing resources to the world of cybercrime. Cybercrimes are projected to cost the world \$6 trillion by 2021, in this context phishing is expected to continue being a growing challenge. Statistics around phishing growth over the last decade support this theory as phishing numbers enjoy almost an exponential growth over the period. Recent reports on the complexity of the phishing show that the fight against phishing URL as a means of building more resilient cyberspace is an evolving challenge. Compounding the problem is the lack of cyber security expertise to handle the expected rise in incidents. Previous research have proposed different methods including neural network, data mining technique, heuristic-based phishing detection technique, machine learning to detect phishing websites. However, recently phishers have started to use more sophisticated techniques to attack the internet users such as VoIP phishing, spear phishing etc. For these modern methods, the traditional ways of phishing detection provide low accuracy. Hence, the requirement arises for the application and development of modern tools and techniques to use as a countermeasure against such phishing attacks. Keeping in view the nature of recent phishing attacks, it is imperative to develop a state-of-the art anti-phishing tool which should be able to predict the phishing attacks before the occurrence of actual phishing incidents. We have designed such a tool that will work efficiently to detect the phishing websites so that a user can understand easily the risk of using of his personal and financial data.
2023-01-06
Erbil, Pinar, Gursoy, M. Emre.  2022.  Detection and Mitigation of Targeted Data Poisoning Attacks in Federated Learning. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1—8.
Federated learning (FL) has emerged as a promising paradigm for distributed training of machine learning models. In FL, several participants train a global model collaboratively by only sharing model parameter updates while keeping their training data local. However, FL was recently shown to be vulnerable to data poisoning attacks, in which malicious participants send parameter updates derived from poisoned training data. In this paper, we focus on defending against targeted data poisoning attacks, where the attacker’s goal is to make the model misbehave for a small subset of classes while the rest of the model is relatively unaffected. To defend against such attacks, we first propose a method called MAPPS for separating malicious updates from benign ones. Using MAPPS, we propose three methods for attack detection: MAPPS + X-Means, MAPPS + VAT, and their Ensemble. Then, we propose an attack mitigation approach in which a "clean" model (i.e., a model that is not negatively impacted by an attack) can be trained despite the existence of a poisoning attempt. We empirically evaluate all of our methods using popular image classification datasets. Results show that we can achieve \textgreater 95% true positive rates while incurring only \textless 2% false positive rate. Furthermore, the clean models that are trained using our proposed methods have accuracy comparable to models trained in an attack-free scenario.