Biblio
Reliability analysis of concurrent data based on Botnet modeling is conducted in this paper. At present, the detection methods for botnets are mainly focused on two aspects. The first type requires the monitoring of high-privilege systems, which will bring certain security risks to the terminal. The second type is to identify botnets by identifying spam or spam, which is not targeted. By introducing multi-dimensional permutation entropy, the impact of permutation entropy on the permutation entropy is calculated based on the data communicated between zombies, describing the complexity of the network traffic time series, and the clustering variance method can effectively solve the difficulty of the detection. This paper is organized based on the data complex structure analysis. The experimental results show acceptable performance.
Manufacturing limitations, configuration and maintenance flaws associated with the Internet of Things (IoT) devices have resulted in an ever-expanding attack surface. Attackers exploit IoT devices to steal private information, take part in botnets, perform Denial of Service (DoS) attacks and use their resources for the mining of cryptocurrency. In this paper, we experimentally evaluate a hypothesis that attacks on IoT devices follow the generalised Cyber Kill Chain (CKC) model. We used a medium-interaction honeypot to capture and analyse more than 30,000 attacks targeting IoT devices. We classified the steps taken by the attackers using the CKC model and extended CKC to an IoT Kill Chain (IoTKC) model. The IoTKC provides details about IoT-specific attack characteristics and attackers' activities in the exploitation of IoT devices.
Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.
Machine learning (ML) techniques are changing both the offensive and defensive aspects of cybersecurity. The implications are especially strong for privacy, as ML approaches provide unprecedented opportunities to make use of collected data. Thus, education on cybersecurity and AI is needed. To investigate how AI and cybersecurity should be taught together, we look at previous studies on cybersecurity MOOCs by conducting a systematic literature review. The initial search resulted in 72 items and after screening for only peer-reviewed publications on cybersecurity online courses, 15 studies remained. Three of the studies concerned multiple cybersecurity MOOCs whereas 12 focused on individual courses. The number of published work evaluating specific cybersecurity MOOCs was found to be small compared to all available cybersecurity MOOCs. Analysis of the studies revealed that cybersecurity education is, in almost all cases, organised based on the topic instead of used tools, making it difficult for learners to find focused information on AI applications in cybersecurity. Furthermore, there is a gab in academic literature on how AI applications in cybersecurity should be taught in online courses.
The legacy security defense mechanisms cannot resist where emerging sophisticated threats such as zero-day and malware campaigns have profoundly changed the dimensions of cyber-attacks. Recent studies indicate that cyber threat intelligence plays a crucial role in implementing proactive defense operations. It provides a knowledge-sharing platform that not only increases security awareness and readiness but also enables the collaborative defense to diminish the effectiveness of potential attacks. In this paper, we propose a secure distributed model to facilitate cyber threat intelligence sharing among diverse participants. The proposed model uses blockchain technology to assure tamper-proof record-keeping and smart contracts to guarantee immutable logic. We use an open-source permissioned blockchain platform, Hyperledger Fabric, to implement the blockchain application. We also utilize the flexibility and management capabilities of Software-Defined Networking to be integrated with the proposed sharing platform to enhance defense perspectives against threats in the system. In the end, collaborative DDoS attack mitigation is taken as a case study to demonstrate our approach.
Avoiding security vulnerabilities is very important for embedded systems. Dynamic Information Flow Tracking (DIFT) is a powerful technique to analyze SW with respect to security policies in order to protect the system against a broad range of security related exploits. However, existing DIFT approaches either do not exist for Virtual Prototypes (VPs) or fail to model complex hardware/software interactions.In this paper, we present a novel approach that enables early and accurate DIFT of binaries targeting embedded systems with custom peripherals. Leveraging the SystemC framework, our DIFT engine tracks accurate data flow information alongside the program execution to detect violations of security policies at run-time. We demonstrate the effectiveness and applicability of our approach by extensive experiments.
The performance-driven design of SDN architectures leaves many security vulnerabilities, a notable one being the communication bottleneck between the controller and the switches. Functioning as a cache between the controller and the switches, the flow table mitigates this bottleneck by caching flow rules received from the controller at each switch, but is very limited in size due to the high cost and power consumption of the underlying storage medium. It thus presents an easy target for attacks. Observing that many existing defenses are based on simplistic attack models, we develop a model of intelligent attacks that exploit specific cache-like behaviors of the flow table to infer its internal configuration and state, and then design attack parameters accordingly. Our evaluations show that such attacks can accurately expose the internal parameters of the target flow table and cause measurable damage with the minimum effort.
Internet of Things (IoT) is experiencing significant growth in the safety-critical applications which have caused new security challenges. These devices are becoming targets for different types of physical attacks, which are exacerbated by their diversity and accessibility. Therefore, there is a strict necessity to support embedded software developers to identify and remediate the vulnerabilities and create resilient applications against such attacks. In this paper, we propose a hardware security vulnerability assessment based on fault injection of an embedded application. In our security assessment, we apply a fault injection attack by using our clock glitch generator on a critical medical IoT device. Furthermore, we analyze the potential risks of ignoring these attacks in this embedded application. The results will inform the embedded software developers of various security risks and the required steps to improve the security of similar MCU-based applications. Our hardware security assessment approach is easy to apply and can lead to secure embedded IoT applications against fault attacks.
This paper has firstly introduced big data services and cloud computing model based on different process forms, and analyzed the authentication technology and security services of the existing big data to understand their processing characteristics. Operation principles and complexity of the big data services and cloud computing have also been studied, and summary about their suitable environment and pros and cons have been made. Based on the Cloud Computing, the author has put forward the Model of Big Data Cloud Computing based on Extended Subjective Logic (MBDCC-ESL), which has introduced Jφsang's subjective logic to test the data credibility and expanded it to solve the problem of the trustworthiness of big data in the cloud computing environment. Simulation results show that the model works pretty well.
Blockchain, the technology behind the popular Bitcoin, is considered a "security by design" system as it is meant to create security among a group of distrustful parties yet without a central trusted authority. The security of blockchain relies on the premise of honest-majority, namely, the blockchain system is assumed to be secure as long as the majority of consensus voting power is honest. And in the case of proof-of-work (PoW) blockchain, adversaries cannot control more than 50% of the network's gross computing power. However, this 50% threshold is based on the analysis of computing power only, with implicit and idealistic assumptions on the network and node behavior. Recent researches have alluded that factors such as network connectivity, presence of blockchain forks, and mining strategy could undermine the consensus security assured by the honest-majority, but neither concrete analysis nor quantitative evaluation is provided. In this paper we fill the gap by proposing an analytical model to assess the impact of network connectivity on the consensus security of PoW blockchain under different adversary models. We apply our analytical model to two adversarial scenarios: 1) honest-but-potentially-colluding, 2) selfish mining. For each scenario, we quantify the communication capability of nodes involved in a fork race and estimate the adversary's mining revenue and its impact on security properties of the consensus protocol. Simulation results validated our analysis. Our modeling and analysis provide a paradigm for assessing the security impact of various factors in a distributed consensus system.
The Internet of Things (IoT) is rapidly evolving, while introducing several new challenges regarding security, resilience and operational assurance. In the face of an increasing attack landscape, it is necessary to cater for the provision of efficient mechanisms to collectively detect sophisticated malware resulting in undesirable (run-time) device and network modifications. This is not an easy task considering the dynamic and heterogeneous nature of IoT environments; i.e., different operating systems, varied connected networks and a wide gamut of underlying protocols and devices. Malicious IoT nodes or gateways can potentially lead to the compromise of the whole IoT network infrastructure. On the other hand, the SDN control plane has the capability to be orchestrated towards providing enhanced security services to all layers of the IoT networking stack. In this paper, we propose an SDN-enabled control plane based orchestration that leverages emerging Long Short-Term Memory (LSTM) classification models; a Deep Learning (DL) based architecture to combat malicious IoT nodes. It is a first step towards a new line of security mechanisms that enables the provision of scalable AI-based intrusion detection focusing on the operational assurance of only those specific, critical infrastructure components,thus, allowing for a much more efficient security solution. The proposed mechanism has been evaluated with current state of the art datasets (i.e., N\_BaIoT 2018) using standard performance evaluation metrics. Our preliminary results show an outstanding detection accuracy (i.e., 99.9%) which significantly outperforms state-of-the-art approaches. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security does not hinder the deployment of intelligent IoT-based computing systems.
Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.