Biblio
Existing approaches to cyber defense have been inadequate at defending the targets from advanced persistent threats (APTs). APTs are stealthy and orchestrated attacks, which target both corporations and governments to exfiltrate important data. In this paper, we present a novel comprehensibility manipulation framework (CMF) to generate a haystack of hard to comprehend fake documents, which can be used for deceiving attackers and increasing the cost of data exfiltration by wasting their time and resources. CMF requires an original document as input and generates fake documents that are both believable and readable for the attacker, possess no important information, and are hard to comprehend. To evaluate CMF, we experimented with college aptitude tests and compared the performance of many readers on separate reading comprehension exercises with fake and original content. Our results showed a statistically significant difference in the correct responses to the same questions across the fake and original exercises, thus validating the effectiveness of CMF operations to mislead.
This paper advocates programming high-performance code using partial evaluation. We present a clean-slate programming system with a simple, annotation-based, online partial evaluator that operates on a CPS-style intermediate representation. Our system exposes code generation for accelerators (vectorization/parallelization for CPUs and GPUs) via compiler-known higher-order functions that can be subjected to partial evaluation. This way, generic implementations can be instantiated with target-specific code at compile time. In our experimental evaluation we present three extensive case studies from image processing, ray tracing, and genome sequence alignment. We demonstrate that using partial evaluation, we obtain high-performance implementations for CPUs and GPUs from one language and one code base in a generic way. The performance of our codes is mostly within 10%, often closer to the performance of multi man-year, industry-grade, manually-optimized expert codes that are considered to be among the top contenders in their fields.
Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of how such data propagate within the control plane is inadequate, apps can co-opt other apps, causing them to poison the control plane’s integrity.
We present a class of SDN control plane integrity attacks that we call cross-app poisoning (CAP), in which an unprivileged app manipulates the shared control plane state to trick a privileged app into taking actions on its behalf. We demonstrate how role-based access control (RBAC) schemes are insufficient for preventing such attacks because they neither track information flow nor enforce information flow control (IFC). We also present a defense, ProvSDN, that uses data provenance to track information flow and serves as an online reference monitor to prevent CAP attacks. We implement ProvSDN on the ONOS SDN controller and demonstrate that information flow can be tracked with low-latency overheads.
Mining is the foundation of blockchain-based cryptocurrencies such as Bitcoin rewarding the miner for finding blocks for new transactions. The Monero currency enables mining with standard hardware in contrast to special hardware (ASICs) as often used in Bitcoin, paving the way for in-browser mining as a new revenue model for website operators. In this work, we study the prevalence of this new phenomenon. We identify and classify mining websites in 138M domains and present a new fingerprinting method which finds up to a factor of 5.7 more miners than publicly available block lists. Our work identifies and dissects Coinhive as the major browser-mining stakeholder. Further, we present a new method to associate mined blocks in the Monero blockchain to mining pools and uncover that Coinhive currently contributes 1.18% of mined blocks having turned over 1293 Moneros in June 2018.
Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments.
The primary objective of Cognitive Radio Networks (CRN) is to opportunistically utilize the available spectrum for efficient and seamless communication. Like all other radio networks, Cognitive Radio Network also suffers from a number of security attacks and Primary User Emulation Attack (PUEA) is vital among them. Primary user Emulation Attack not only degrades the performance of the Cognitive Radio Networks but also dissolve the objective of Cognitive Radio Network. Efficient and secure authentication of Primary Users (PU) is an only solution to mitigate Primary User Emulation Attack but most of the mechanisms designed for this are either complex or make changes to the spectrum. Here, we proposed a mechanism to authenticate Primary Users in Cognitive Radio Network which is neither complex nor make any changes to spectrum. The proposed mechanism is secure and also has improved the performance of the Cognitive Radio Network substantially.
Embedded systems that communicate with each other over the internet and build up a larger, loosely coupled (hardware) system with an unknown configuration at runtime is often referred to as a cyberphysical system. Many of these systems can become, due to its associated risks during their operation, safety critical. With increased complexity of such systems, the number of configurations can either be infinite or even unknown at design time. Hence, a certification at design time for such systems that documents a safe interaction for all possible configurations of all participants at runtime can become unfeasible. If such systems come together in a new configuration, a mechanism is required that can decide whether or not it is safe for them to interact. Such a mechanism can generally not be part of such systems for the sake of trust. Therefore, we present in the following sections the SEnSE device, short for Secure and Safe Embedded, that tackles these challenges and provides a secure and safe integration of safety-critical embedded systems.
Due to the recent technological development, home appliances and electric devices are equipped with high-performance hardware device. Since demand of hardware devices is increased, production base become internationalized to mass-produce hardware devices with low cost and hardware vendors outsource their products to third-party vendors. Accordingly, malicious third-party vendors can easily insert malfunctions (also known as "hardware Trojans'') into their products. In this paper, we design six kinds of hardware Trojans at a gate-level netlist, and apply a neural-network (NN) based hardware-Trojan detection method to them. The designed hardware Trojans are different in trigger circuits. In addition, we insert them to normal circuits, and detect hardware Trojans using a machine-learning-based hardware-Trojan detection method with neural networks. In our experiment, we learned Trojan-infected benchmarks using NN, and performed cross validation to evaluate the learned NN. The experimental results demonstrate that the average TPR (True Positive Rate) becomes 72.9%, the average TNR (True Negative Rate) becomes 90.0%.