Biblio
Wireless Sensor Networks (WSNs) are used in many applications in military, environmental, and health-related areas. These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building. Security is important in WSNs. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the use of insecure wireless communication channels. These constraints make security in WSNs a challenge. In this paper, we try to explore security issue in WSN. First, the constraints, security requirements and attacks with their corresponding countermeasures in WSNs are explained. Individual sensor nodes are subject to compromised security. An adversary can inject false reports into the networks via compromised nodes. Furthermore, an adversary can create a Gray hole by compromised nodes. If these two kinds of attacks occur simultaneously in a network, some of the existing methods fail to defend against those attacks. The Ad-hoc On Demand Distance (AODV) Vector scheme for detecting Gray-Hole attack and Statistical En-Route Filtering is used for detecting false report. For increasing security level, the Elliptic Curve Cryptography (ECC) algorithm is used. Simulations results obtain so far reduces energy consumption and also provide greater network security to some extent.
Technical Report SS-14-02, ``Formal Verification and Modeling in Human-Machine Systems''
Although current Internet operations generate voluminous data, they remain largely oblivious of traffic data semantics. This poses many inefficiencies and challenges due to emergent or anomalous behavior impacting the vast array of Internet elements such as services and protocols. In this paper, we propose a Data Semantics Management System (DSMS) for learning Internet traffic data semantics to enable smarter semantics- driven networking operations. We extract networking semantics and build and utilize a dynamic ontology of network concepts to better recognize and act upon emergent or abnormal behavior. Our DSMS utilizes: (1) Latent Dirichlet Allocation algorithm (LDA) for latent features extraction and semantics reasoning; (2) big tables as a cloud-like data storage technique to maintain large-scale data; and (3) Locality Sensitive Hashing algorithm (LSH) for reducing data dimensionality. Our preliminary evaluation using real Internet traffic shows the efficacy of DSMS for learning behavior of normal and abnormal traffic data and for accurately detecting anomalies at low cost.
As multi-tenant authorization and federated identity management systems for cloud computing matures, the provisioning of services using this paradigm allows maximum efficiency on business that requires access control. However, regarding scalability support, mainly horizontal, some characteristics of those approaches based on central authentication protocols are problematic. The objective of this work is to address these issues by providing an adapted sticky-session mechanism for a Shibboleth architecture using CAS. This alternative, compared with the recommended shared memory approach, shown improved efficiency and less overall infrastructure complexity.
As multi-tenant authorization and federated identity management systems for cloud computing matures, the provisioning of services using this paradigm allows maximum efficiency on business that requires access control. However, regarding scalability support, mainly horizontal, some characteristics of those approaches based on central authentication protocols are problematic. The objective of this work is to address these issues by providing an adapted sticky-session mechanism for a Shibboleth architecture using CAS. This alternative, compared with the recommended shared memory approach, shown improved efficiency and less overall infrastructure complexity.
Near Field Communication (NFC)-based mobile phone services offer a lifeline to the under-appreciated multiapplication smart card initiative. The initiative could effectively replace heavy wallets full of smart cards for mundane tasks. However, the issue of the deployment model still lingers on. Possible approaches include, but are not restricted to, the User Centric Smart card Ownership Model (UCOM), GlobalPlatform Consumer Centric Model, and Trusted Service Manager (TSM). In addition, multiapplication smart card architecture can be a GlobalPlatform Trusted Execution Environment (TEE) and/or User Centric Tamper-Resistant Device (UCTD), which provide cross-device security and privacy preservation platforms to their users. In the multiapplication smart card environment, there might not be a prior off-card trusted relationship between a smart card and an application provider. Therefore, as a possible solution to overcome the absence of prior trusted relationships, this paper proposes the concept of Trusted Platform Module (TPM) for smart cards (embedded devices) that can act as a point of reference for establishing the necessary trust between the device and an application provider, and among applications.
In this paper, we propose an adaptive specification-based intrusion detection system (IDS) for detecting malicious unmanned air vehicles (UAVs) in an airborne system in which continuity of operation is of the utmost importance. An IDS audits UAVs in a distributed system to determine if the UAVs are functioning normally or are operating under malicious attacks. We investigate the impact of reckless, random, and opportunistic attacker behaviors (modes which many historical cyber attacks have used) on the effectiveness of our behavior rule-based UAV IDS (BRUIDS) which bases its audit on behavior rules to quickly assess the survivability of the UAV facing malicious attacks. Through a comparative analysis with the multiagent system/ant-colony clustering model, we demonstrate a high detection accuracy of BRUIDS for compliant performance. By adjusting the detection strength, BRUIDS can effectively trade higher false positives for lower false negatives to cope with more sophisticated random and opportunistic attackers to support ultrasafe and secure UAV applications.
The high usability of smartphones and tablets is embraced by consumers as well as the corporate and public sector. However, especially in the non-consumer area the factor security plays a decisive role for the platform-selection process. All of the current companies within the mobile device sector added a wide range of security features to the initially consumer-oriented devices (Apple, Google, Microsoft), or have dealt with security as a core feature from the beginning (RIM, now Blackerry). One of the key security features for protecting data on the device or in device backups are encryption systems, which are available in the majority of current devices. However, even under the assumption that the systems are implemented correctly, there is a wide range of parameters, specific use cases, and weaknesses that need to be considered when deploying mobile devices in security-critical environments. As the second part in a series of papers (the first part was on iOS), this work analyzes the deployment of the Android platform and the usage of its encryption systems within a security-critical context. For this purpose, Android's different encryption systems are assessed and their susceptibility to different attacks is analyzed in detail. Based on these results a workflow is presented, which supports deployment of the Android platform and usage of its encryption systems within security-critical application scenarios.
This paper presents a framework to identify the authors of Thai online messages. The identification is based on 53 writing attributes and the selected algorithms are support vector machine (SVM) and C4.5 decision tree. Experimental results indicate that the overall accuracies achieved by the SVM and the C4.5 were 79% and 75%, respectively. This difference was not statistically significant (at 95% confidence interval). As for the performance of identifying individual authors, in some cases the SVM was clearly better than the C4.5. But there were also other cases where both of them could not distinguish one author from another.
The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of autonomic computing and a simple object access protocol (SOAP)-based interface to metadata access points (IF-MAP) external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, and self-managed framework. The contribution of this paper is twofold: 1) A flexible two-level communication layer based on autonomic computing and service oriented architecture is detailed and 2) three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real-world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific operating system and port configurations. In addition, the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.
The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of autonomic computing and a simple object access protocol (SOAP)-based interface to metadata access points (IF-MAP) external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, and self-managed framework. The contribution of this paper is twofold: 1) A flexible two-level communication layer based on autonomic computing and service oriented architecture is detailed and 2) three complementary modules that dynamically reconfigure in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real-world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific operating system and port configurations. In addition, the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.
Botnets are one of the most destructive threats against the cyber security. Recently, HTTP protocol is frequently utilized by botnets as the Command and Communication (C&C) protocol. In this work, we aim to detect HTTP based botnet activity based on botnet behaviour analysis via machine learning approach. To achieve this, we employ flow-based network traffic utilizing NetFlow (via Softflowd). The proposed botnet analysis system is implemented by employing two different machine learning algorithms, C4.5 and Naive Bayes. Our results show that C4.5 learning algorithm based classifier obtained very promising performance on detecting HTTP based botnet activity.
User authentication depends largely on the concept of passwords. However, users find it difficult to remember alphanumerical passwords over time. When user is required to choose a secure password, they tend to choose an easy, short and insecure password. Graphical password method is proposed as an alternative solution to text-based alphanumerical passwords. The reason of such proposal is that human brain is better in recognizing and memorizing pictures compared to traditional alphanumerical string. Therefore, in this paper, we propose a conceptual framework to better understand the user performance for new high-end graphical password method. Our proposed framework is based on hybrid approach combining different features into one. The user performance experimental analysis pointed out the effectiveness of the proposed framework.
Science Gateways bridge multiple computational grids and clouds, acting as overlay cyber infrastructure. Gateways have three logical tiers: a user interfacing tier, a resource tier and a bridging middleware tier. Different groups may operate these tiers. This introduces three security challenges. First, the gateway middleware must manage multiple types of credentials associated with different resource providers. Second, the separation of the user interface and middleware layers means that security credentials must be securely delegated from the user interface to the middleware. Third, the same middleware may serve multiple gateways, so the middleware must correctly isolate user credentials associated with different gateways. We examine each of these three scenarios, concentrating on the requirements and implementation of the middleware layer. We propose and investigate the use of a Credential Store to solve the three security challenges.
Probing attacks are serious threats on integrated circuits. Security products often include a protective layer called shield that acts like a digital fence. In this article, we demonstrate a new shield structure that is cryptographically secure. This shield is based on the newly proposed SIMON lightweight block cipher and independent mesh lines to ensure the security against probing attacks of the hardware located behind the shield. Such structure can be proven secure against state-of-the-art invasive attacks. For the first time in the open literature, we describe a chip designed with a digital shield, and give an extensive report of its cost, in terms of power, metal layer(s) to sacrifice and of logic (including the logic to connect it to the CPU). Also, we explain how “Through Silicon Vias” (TSV) technology can be used for the protection against both frontside and backside probing.
With the arrival of the big data era, information privacy and security issues become even more crucial. The Mining Associations with Secrecy Konstraints (MASK) algorithm and its improved versions were proposed as data mining approaches for privacy preserving association rules. The MASK algorithm only adopts a data perturbation strategy, which leads to a low privacy-preserving degree. Moreover, it is difficult to apply the MASK algorithm into practices because of its long execution time. This paper proposes a new algorithm based on data perturbation and query restriction (DPQR) to improve the privacy-preserving degree by multi-parameters perturbation. In order to improve the time-efficiency, the calculation to obtain an inverse matrix is simplified by dividing the matrix into blocks; meanwhile, a further optimization is provided to reduce the number of scanning database by set theory. Both theoretical analyses and experiment results prove that the proposed DPQR algorithm has better performance.
With the arrival of the big data era, information privacy and security issues become even more crucial. The Mining Associations with Secrecy Konstraints (MASK) algorithm and its improved versions were proposed as data mining approaches for privacy preserving association rules. The MASK algorithm only adopts a data perturbation strategy, which leads to a low privacy-preserving degree. Moreover, it is difficult to apply the MASK algorithm into practices because of its long execution time. This paper proposes a new algorithm based on data perturbation and query restriction (DPQR) to improve the privacy-preserving degree by multi-parameters perturbation. In order to improve the time-efficiency, the calculation to obtain an inverse matrix is simplified by dividing the matrix into blocks; meanwhile, a further optimization is provided to reduce the number of scanning database by set theory. Both theoretical analyses and experiment results prove that the proposed DPQR algorithm has better performance.
Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These hashes find extensive applications in content authentication, image indexing for database search and watermarking. Modern robust hashing algorithms consist of feature extraction, a randomization stage to introduce non-invertibility, followed by quantization and binary encoding to produce a binary hash. This paper describes a novel algorithm for generating an image hash based on Log-Polar transform features. The Log-Polar transform is a part of the Fourier-Mellin transformation, often used in image recognition and registration techniques due to its invariant properties to geometric operations. First, we show that the proposed perceptual hash is resistant to content-preserving operations like compression, noise addition, moderate geometric and filtering. Second, we illustrate the discriminative capability of our hash in order to rapidly distinguish between two perceptually different images. Third, we study the security of our method for image authentication purposes. Finally, we show that the proposed hashing method can provide both excellent security and robustness.
The detectability of malicious circuitry on FPGAs with varying placement properties yet has to be investigated. The authors utilize a Xilinx Virtex-II Pro target platform in order to insert a sequential denial-of-service Trojan into an existing AES design by manipulating a Xilinx-specific, intermediate file format prior to the bitstream generation. Thereby, there is no need for an attacker to acquire access to the hardware description language representation of a potential target architecture. Using a side-channel analysis setup for electromagnetic emanation (EM) measurements, they evaluate the detectability of different Trojan designs with varying location and logic distribution properties. The authors successfully distinguish the malicious from the genuine designs and provide information on how the location and distribution properties of the Trojan logic affect its detectability. To the best of their knowledge, this has been the first practically conducted Trojan detection using localized EM measurements.
The University of Illinois at Urbana Champaign (Illinois), Pacific Northwest National Labs (PNNL), and the University of Southern California Information Sciences Institute (USC-ISI) consortium is working toward providing tools and expertise to enable collaborative research to improve security and resiliency of cyber physical systems. In this extended abstract we discuss the challenges and the solution space. We demonstrate the feasibility of some of the proposed components through a wide-area situational awareness experiment for the power grid across the three sites.
Information technology is continually changing, discoveries are made every other day. Cyber-physical systems consist of both physical and computational elements and are becoming more and more popular in today's society. They are complex systems, used in complex applications. Therefore, security is a critical and challenging aspect when developing cyber-physical systems. In this paper, we present a solution for ensuring data confidentiality and security by combining some of the most common methods in the area of security - cryptography and steganography. Furthermore, we use hierarchical access to information to ensure confidentiality and also increase the overall security of the cyber-physical system.
The electric network frequency (ENF) signal can be captured in multimedia recordings due to electromagnetic influences from the power grid at the time of recording. Recent work has exploited the ENF signals for forensic applications, such as authenticating and detecting forgery of ENF-containing multimedia signals, and inferring their time and location of creation. In this paper, we explore a new potential of ENF signals for automatic synchronization of audio and video. The ENF signal as a time-varying random process can be used as a timing fingerprint of multimedia signals. Synchronization of audio and video recordings can be achieved by aligning their embedded ENF signals. We demonstrate the proposed scheme with two applications: multi-view video synchronization and synchronization of historical audio recordings. The experimental results show the ENF based synchronization approach is effective, and has the potential to solve problems that are intractable by other existing methods.
This paper propose a fast human detection algorithm of video surveillance in emergencies. Firstly through the background subtraction based on the single Guassian model and frame subtraction, we get the target mask which is optimized by Gaussian filter and dilation. Then the interest points of head is obtained from figures with target mask and edge detection. Finally according to detecting these pionts we can track the head and count the number of people with the frequence of moving target at the same place. Simulation results show that the algorithm can detect the moving object quickly and accurately.
This paper presents a novel design of content fingerprints based on maximization of the mutual information across the distortion channel. We use the information bottleneck method to optimize the filters and quantizers that generate these fingerprints. A greedy optimization scheme is used to select filters from a dictionary and allocate fingerprint bits. We test the performance of this method for audio fingerprinting and show substantial improvements over existing learning based fingerprints.
Fingerprint-based Audio recognition system must address concurrent objectives. Indeed, fingerprints must be both robust to distortions and discriminative while their dimension must remain to allow fast comparison. This paper proposes to restate these objectives as a penalized sparse representation problem. On top of this dictionary-based approach, we propose a structured sparsity model in the form of a probabilistic distribution for the sparse support. A practical suboptimal greedy algorithm is then presented and evaluated on robustness and recognition tasks. We show that some existing methods can be seen as particular cases of this algorithm and that the general framework allows to reach other points of a Pareto-like continuum.