Biblio

Found 4176 results

Filters: First Letter Of Last Name is M  [Clear All Filters]
2015-04-30
Miyoung Jang, Min Yoon, Jae-Woo Chang.  2014.  A privacy-aware query authentication index for database outsourcing. Big Data and Smart Computing (BIGCOMP), 2014 International Conference on. :72-76.

Recently, cloud computing has been spotlighted as a new paradigm of database management system. In this environment, databases are outsourced and deployed on a service provider in order to reduce cost for data storage and maintenance. However, the service provider might be untrusted so that the two issues of data security, including data confidentiality and query result integrity, become major concerns for users. Existing bucket-based data authentication methods have problem that the original spatial data distribution can be disclosed from data authentication index due to the unsophisticated data grouping strategies. In addition, the transmission overhead of verification object is high. In this paper, we propose a privacy-aware query authentication which guarantees data confidentiality and query result integrity for users. A periodic function-based data grouping scheme is designed to privately partition a spatial database into small groups for generating a signature of each group. The group signature is used to check the correctness and completeness of outsourced data when answering a range query to users. Through performance evaluation, it is shown that proposed method outperforms the existing method in terms of range query processing time up to 3 times.

2015-05-06
Musgrove, J., Cukic, B., Cortellessa, V..  2014.  Proactive Model-Based Performance Analysis and Security Tradeoffs in a Complex System. High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. :211-215.

Application domains in which early performance evaluation is needed are becoming more complex. In addition to traditional measures of complexity due, for example, to the number of components, their interactions, complicated control coordination and schemes, emerging applications may require adaptive response and reconfiguration the impact of externally observable (security) parameters. In this paper we introduce an approach for effective modeling and analysis of performance and security tradeoffs. The approach identifies a suitable allocation of resources that meet performance requirements, while maximizing measurable security effects. We demonstrate this approach through the analysis of performance sensitivity of a Border Inspection Management System (BIMS) with changing security mechanisms (e.g. biometric system parameters for passenger identification). The final result is a model-based approach that allows us to take decisions about BIMS performance and security mechanisms on the basis of rates of traveler arrivals and traveler identification security guarantees. We describe the experience gained when applying this approach to daily flight arrival schedule of a real airport.

2015-04-30
Godwin, J.L., Matthews, P..  2014.  Rapid labelling of SCADA data to extract transparent rules using RIPPER. Reliability and Maintainability Symposium (RAMS), 2014 Annual. :1-7.

This paper addresses a robust methodology for developing a statistically sound, robust prognostic condition index and encapsulating this index as a series of highly accurate, transparent, human-readable rules. These rules can be used to further understand degradation phenomena and also provide transparency and trust for any underlying prognostic technique employed. A case study is presented on a wind turbine gearbox, utilising historical supervisory control and data acquisition (SCADA) data in conjunction with a physics of failure model. Training is performed without failure data, with the technique accurately identifying gearbox degradation and providing prognostic signatures up to 5 months before catastrophic failure occurred. A robust derivation of the Mahalanobis distance is employed to perform outlier analysis in the bivariate domain, enabling the rapid labelling of historical SCADA data on independent wind turbines. Following this, the RIPPER rule learner was utilised to extract transparent, human-readable rules from the labelled data. A mean classification accuracy of 95.98% of the autonomously derived condition was achieved on three independent test sets, with a mean kappa statistic of 93.96% reported. In total, 12 rules were extracted, with an independent domain expert providing critical analysis, two thirds of the rules were deemed to be intuitive in modelling fundamental degradation behaviour of the wind turbine gearbox.

2015-05-01
Marashi, K., Sarvestani, S.S..  2014.  Towards Comprehensive Modeling of Reliability for Smart Grids: Requirements and Challenges. High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on. :105-112.


Smart grids utilize computation and communication to improve the efficacy and dependability of power generation, transmission, and distribution. As such, they are among the most critical and complex cyber-physical systems. The success of smart grids in achieving their stated goals is yet to be rigorously proven. In this paper, our focus is on improvements (or lack thereof) in reliability. We discuss vulnerabilities in the smart grid and their potential impact on its reliability, both generally and for the specific example of the IEEE-14 bus system. We conclude the paper by presenting a preliminary Markov imbedded systems model for reliability of smart grids and describe how it can be evolved to capture the vulnerabilities discussed.
 

2015-05-05
Manning, F.J., Mitropoulos, F.J..  2014.  Utilizing Attack Graphs to Measure the Efficacy of Security Frameworks across Multiple Applications. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :4915-4920.

One of the primary challenges when developing or implementing a security framework for any particular environment is determining the efficacy of the implementation. Does the implementation address all of the potential vulnerabilities in the environment, or are there still unaddressed issues? Further, if there is a choice between two frameworks, what objective measure can be used to compare the frameworks? To address these questions, we propose utilizing a technique of attack graph analysis to map the attack surface of the environment and identify the most likely avenues of attack. We show that with this technique we can quantify the baseline state of an application and compare that to the attack surface after implementation of a security framework, while simultaneously allowing for comparison between frameworks in the same environment or a single framework across multiple applications.

Mewara, B., Bairwa, S., Gajrani, J..  2014.  Browser's defenses against reflected cross-site scripting attacks. Signal Propagation and Computer Technology (ICSPCT), 2014 International Conference on. :662-667.

Due to the frequent usage of online web applications for various day-to-day activities, web applications are becoming most suitable target for attackers. Cross-Site Scripting also known as XSS attack, one of the most prominent defacing web based attack which can lead to compromise of whole browser rather than just the actual web application, from which attack has originated. Securing web applications using server side solutions is not profitable as developers are not necessarily security aware. Therefore, browser vendors have tried to evolve client side filters to defend against these attacks. This paper shows that even the foremost prevailing XSS filters deployed by latest versions of most widely used web browsers do not provide appropriate defense. We evaluate three browsers - Internet Explorer 11, Google Chrome 32, and Mozilla Firefox 27 for reflected XSS attack against different type of vulnerabilities. We find that none of above is completely able to defend against all possible type of reflected XSS vulnerabilities. Further, we evaluate Firefox after installing an add-on named XSS-Me, which is widely used for testing the reflected XSS vulnerabilities. Experimental results show that this client side solution can shield against greater percentage of vulnerabilities than other browsers. It is witnessed to be more propitious if this add-on is integrated inside the browser instead being enforced as an extension.
 

2015-04-30
Xiao-Bing Hu, Ming Wang, Leeson, M.S..  2014.  Calculating the complete pareto front for a special class of continuous multi-objective optimization problems. Evolutionary Computation (CEC), 2014 IEEE Congress on. :290-297.

Existing methods for multi-objective optimization usually provide only an approximation of a Pareto front, and there is little theoretical guarantee of finding the real Pareto front. This paper is concerned with the possibility of fully determining the true Pareto front for those continuous multi-objective optimization problems for which there are a finite number of local optima in terms of each single objective function and there is an effective method to find all such local optima. To this end, some generalized theoretical conditions are firstly given to guarantee a complete cover of the actual Pareto front for both discrete and continuous problems. Then based on such conditions, an effective search procedure inspired by the rising sea level phenomenon is proposed particularly for continuous problems of the concerned class. Even for general continuous problems to which not all local optima are available, the new method may still work well to approximate the true Pareto front. The good practicability of the proposed method is especially underpinned by multi-optima evolutionary algorithms. The advantages of the proposed method in terms of both solution quality and computational efficiency are illustrated by the simulation results.

Anwar, Z., Malik, A.W..  2014.  Can a DDoS Attack Meltdown My Data Center? A Simulation Study and Defense Strategies Communications Letters, IEEE. 18:1175-1178.

The goal of this letter is to explore the extent to which the vulnerabilities plaguing the Internet, particularly susceptibility to distributed denial-of-service (DDoS) attacks, impact the Cloud. DDoS has been known to disrupt Cloud services, but could it do worse by permanently damaging server and switch hardware? Services are hosted in data centers with thousands of servers generating large amounts of heat. Heating, ventilation, and air-conditioning (HVAC) systems prevent server downtime due to overheating. These are remotely managed using network management protocols that are susceptible to network attacks. Recently, Cloud providers have experienced outages due to HVAC malfunctions. Our contributions include a network simulation to study the feasibility of such an attack motivated by our experiences of such a security incident in a real data center. It demonstrates how a network simulator can study the interplay of the communication and thermal properties of a network and help prevent the Cloud provider's worst nightmare: meltdown of the data center as a result of a DDoS attack.

2015-05-05
Sabaliauskaite, G., Mathur, A.P..  2014.  Countermeasures to Enhance Cyber-physical System Security and Safety. Computer Software and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th International. :13-18.

An application of two Cyber-Physical System (CPS) security countermeasures - Intelligent Checker (IC) and Cross-correlator - for enhancing CPS safety and achieving required CPS safety integrity level is presented. ICs are smart sensors aimed at detecting attacks in CPS and alerting the human operators. Cross-correlator is an anomaly detection technique for detecting deception attacks. We show how ICs could be implemented at three different CPS safety protection layers to maintain CPS in a safe state. In addition, we combine ICs with the cross-correlator technique to assure high probability of failure detection. Performance simulations show that a combination of these two security countermeasures is effective in detecting and mitigating CPS failures, including catastrophic failures.
 

2015-05-06
Bayat-sarmadi, S., Mozaffari-Kermani, M., Reyhani-Masoleh, A..  2014.  Efficient and Concurrent Reliable Realization of the Secure Cryptographic SHA-3 Algorithm. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on. 33:1105-1109.

The secure hash algorithm (SHA)-3 has been selected in 2012 and will be used to provide security to any application which requires hashing, pseudo-random number generation, and integrity checking. This algorithm has been selected based on various benchmarks such as security, performance, and complexity. In this paper, in order to provide reliable architectures for this algorithm, an efficient concurrent error detection scheme for the selected SHA-3 algorithm, i.e., Keccak, is proposed. To the best of our knowledge, effective countermeasures for potential reliability issues in the hardware implementations of this algorithm have not been presented to date. In proposing the error detection approach, our aim is to have acceptable complexity and performance overheads while maintaining high error coverage. In this regard, we present a low-complexity recomputing with rotated operands-based scheme which is a step-forward toward reducing the hardware overhead of the proposed error detection approach. Moreover, we perform injection-based fault simulations and show that the error coverage of close to 100% is derived. Furthermore, we have designed the proposed scheme and through ASIC analysis, it is shown that acceptable complexity and performance overheads are reached. By utilizing the proposed high-performance concurrent error detection scheme, more reliable and robust hardware implementations for the newly-standardized SHA-3 are realized.
 

Tuia, D., Munoz-Mari, J., Rojo-Alvarez, J.L., Martinez-Ramon, M., Camps-Valls, G..  2014.  Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces. Neural Networks and Learning Systems, IEEE Transactions on. 25:1413-1419.

This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the γ-filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time series prediction, complex nonlinear system identification, and adaptive antenna array processing demonstrate the potential of the approach for scenarios where recursivity and nonlinearity have to be readily combined.

2015-05-05
McDaniel, P., Rivera, B., Swami, A..  2014.  Toward a Science of Secure Environments. Security Privacy, IEEE. 12:68-70.

The longstanding debate on a fundamental science of security has led to advances in systems, software, and network security. However, existing efforts have done little to inform how an environment should react to emerging and ongoing threats and compromises. The authors explore the goals and structures of a new science of cyber-decision-making in the Cyber-Security Collaborative Research Alliance, which seeks to develop a fundamental theory for reasoning under uncertainty the best possible action in a given cyber environment. They also explore the needs and limitations of detection mechanisms; agile systems; and the users, adversaries, and defenders that use and exploit them, and conclude by considering how environmental security can be cast as a continuous optimization problem.
 

2015-04-30
McDaniel, P., Rivera, B., Swami, A..  2014.  Toward a Science of Secure Environments. Security Privacy, IEEE. 12:68-70.

The longstanding debate on a fundamental science of security has led to advances in systems, software, and network security. However, existing efforts have done little to inform how an environment should react to emerging and ongoing threats and compromises. The authors explore the goals and structures of a new science of cyber-decision-making in the Cyber-Security Collaborative Research Alliance, which seeks to develop a fundamental theory for reasoning under uncertainty the best possible action in a given cyber environment. They also explore the needs and limitations of detection mechanisms; agile systems; and the users, adversaries, and defenders that use and exploit them, and conclude by considering how environmental security can be cast as a continuous optimization problem.

2015-05-05
Marchal, S., Xiuyan Jiang, State, R., Engel, T..  2014.  A Big Data Architecture for Large Scale Security Monitoring. Big Data (BigData Congress), 2014 IEEE International Congress on. :56-63.

Network traffic is a rich source of information for security monitoring. However the increasing volume of data to treat raises issues, rendering holistic analysis of network traffic difficult. In this paper we propose a solution to cope with the tremendous amount of data to analyse for security monitoring perspectives. We introduce an architecture dedicated to security monitoring of local enterprise networks. The application domain of such a system is mainly network intrusion detection and prevention, but can be used as well for forensic analysis. This architecture integrates two systems, one dedicated to scalable distributed data storage and management and the other dedicated to data exploitation. DNS data, NetFlow records, HTTP traffic and honeypot data are mined and correlated in a distributed system that leverages state of the art big data solution. Data correlation schemes are proposed and their performance are evaluated against several well-known big data framework including Hadoop and Spark.

2015-05-01
Cardoso, L.S., Massouri, A., Guillon, B., Ferrand, P., Hutu, F., Villemaud, G., Risset, T., Gorce, J.-M..  2014.  CorteXlab: A facility for testing cognitive radio networks in a reproducible environment. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014 9th International Conference on. :503-507.


While many theoretical and simulation works have highlighted the potential gains of cognitive radio, several technical issues still need to be evaluated from an experimental point of view. Deploying complex heterogeneous system scenarios is tedious, time consuming and hardly reproducible. To address this problem, we have developed a new experimental facility, called CorteXlab, that allows complex multi-node cognitive radio scenarios to be easily deployed and tested by anyone in the world. Our objective is not to design new software defined radio (SDR) nodes, but rather to provide a comprehensive access to a large set of high performance SDR nodes. The CorteXlab facility offers a 167 m2 electromagnetically (EM) shielded room and integrates a set of 24 universal software radio peripherals (USRPs) from National Instruments, 18 PicoSDR nodes from Nutaq and 42 IoT-Lab wireless sensor nodes from Hikob. CorteXlab is built upon the foundations of the SensLAB testbed and is based the free and open-source toolkit GNU Radio. Automation in scenario deployment, experiment start, stop and results collection is performed by an experiment controller, called Minus. CorteXlab is in its final stages of development and is already capable of running test scenarios. In this contribution, we show that CorteXlab is able to easily cope with the usual issues faced by other testbeds providing a reproducible experiment environment for CR experimentation.
 

2015-05-05
Khojastepour, M.A., Aryafar, E., Sundaresan, K., Mahindra, R., Rangarajan, S..  2014.  Exploring the potential for full-duplex in legacy LTE systems. Sensing, Communication, and Networking (SECON), 2014 Eleventh Annual IEEE International Conference on. :10-18.

With the growing demand for increased spectral efficiencies, there has been renewed interest in enabling full-duplex communications. However, existing approaches to enable full-duplex require a clean-slate approach to address the key challenge in full-duplex, namely self-interference suppression. This serves as a big deterrent to enabling full-duplex in existing cellular networks. Towards our vision of enabling full-duplex in legacy cellular, specifically LTE networks, with no modifications to existing hardware at BS and client as well as technology specific industry standards, we present the design of our experimental system FD-LTE, that incorporates a combination of passive SI cancellation schemes, with legacy LTE half-duplex BS and client devices. We build a prototype of FD-LTE, integrate it with LTE's evolved packet core and conduct over-the-air experiments to explore the feasibility and potential for full-duplex with legacy LTE networks. We report promising experimental results from FD-LTE, which currently applies to scenarios with limited ranges that is typical of small cells.
 

2015-05-06
Djouadi, S.M., Melin, A.M., Ferragut, E.M., Laska, J.A., Jin Dong.  2014.  Finite energy and bounded attacks on control system sensor signals. American Control Conference (ACC), 2014. :1716-1722.

Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) from attacks has been in securing the networks using information security techniques. Effort has also been applied to increasing the protection and reliability of the control system against random hardware and software failures. However, the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis methods need to be developed. In this paper, sensor signal attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop systems under optimal signal attacks are provided. Finally, an illustrative numerical example using a power generation network is provided together with distributed LQ controllers.

2015-04-30
Djouadi, S.M., Melin, A.M., Ferragut, E.M., Laska, J.A., Jin Dong.  2014.  Finite energy and bounded attacks on control system sensor signals. American Control Conference (ACC), 2014. :1716-1722.

Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) from attacks has been in securing the networks using information security techniques. Effort has also been applied to increasing the protection and reliability of the control system against random hardware and software failures. However, the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis methods need to be developed. In this paper, sensor signal attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop systems under optimal signal attacks are provided. Finally, an illustrative numerical example using a power generation network is provided together with distributed LQ controllers.

Saoud, Z., Faci, N., Maamar, Z., Benslimane, D..  2014.  A Fuzzy Clustering-Based Credibility Model for Trust Assessment in a Service-Oriented Architecture. WETICE Conference (WETICE), 2014 IEEE 23rd International. :56-61.

This paper presents a credibility model to assess trust of Web services. The model relies on consumers' ratings whose accuracy can be questioned due to different biases. A category of consumers known as strict are usually excluded from the process of reaching a majority consensus. We demonstrated that this exclusion should not be. The proposed model reduces the gap between these consumers' ratings and the current majority rating. Fuzzy clustering is used to compute consumers' credibility. To validate this model a set of experiments are carried out.

2015-05-06
Talamo, M., Barchiesi, M.L., Merella, D., Schunck, C.H..  2014.  Global convergence in digital identity and attribute management: Emerging needs for standardization. ITU Kaleidoscope Academic Conference: Living in a converged world - Impossible without standards?, Proceedings of the 2014. :15-21.

In a converging world, where borders between countries are surpassed in the digital environment, it is necessary to develop systems that effectively replace the recognition “vis-a-vis” with digital means of recognizing and identifying entities and people. In this work we summarize the current standardization efforts in the area of digital identity management. We identify a number of open challenges that need to be addressed in the near future to ensure the interoperability and usability of digital identity management services in an efficient and privacy maintaining international framework. These challenges for standardization include: the management of identifiers for digital identities at the global level; attribute management including attribute format, structure, and assurance; procedures and protocols to link attributes to digital identities. Attention is drawn to key elements that should be considered in addressing these issues through standardization.

2015-04-30
Howser, G., McMillin, B..  2014.  A Modal Model of Stuxnet Attacks on Cyber-physical Systems: A Matter of Trust. Software Security and Reliability (SERE), 2014 Eighth International Conference on. :225-234.

Multiple Security Domains Nondeducibility, MSDND, yields results even when the attack hides important information from electronic monitors and human operators. Because MSDND is based upon modal frames, it is able to analyze the event system as it progresses rather than relying on traces of the system. Not only does it provide results as the system evolves, MSDND can point out attacks designed to be missed in other security models. This work examines information flow disruption attacks such as Stuxnet and formally explains the role that implicit trust in the cyber security of a cyber physical system (CPS) plays in the success of the attack. The fact that the attack hides behind MSDND can be used to help secure the system by modifications to break MSDND and leave the attack nowhere to hide. Modal operators are defined to allow the manipulation of belief and trust states within the model. We show how the attack hides and uses the operator's trust to remain undetected. In fact, trust in the CPS is key to the success of the attack.

2015-05-01
Yang, Y., McLaughlin, K., Sezer, S., Littler, T., Im, E.G., Pranggono, B., Wang, H.F..  2014.  Multiattribute SCADA-Specific Intrusion Detection System for Power Networks. Power Delivery, IEEE Transactions on. 29:1092-1102.

The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.

2015-05-05
Dressler, J., Bowen, C.L., Moody, W., Koepke, J..  2014.  Operational data classes for establishing situational awareness in cyberspace. Cyber Conflict (CyCon 2014), 2014 6th International Conference On. :175-186.

The United States, including the Department of Defense, relies heavily on information systems and networking technologies to efficiently conduct a wide variety of missions across the globe. With the ever-increasing rate of cyber attacks, this dependency places the nation at risk of a loss of confidentiality, integrity, and availability of its critical information resources; degrading its ability to complete the mission. In this paper, we introduce the operational data classes for establishing situational awareness in cyberspace. A system effectively using our key information components will be able to provide the nation's leadership timely and accurate information to gain an understanding of the operational cyber environment to enable strategic, operational, and tactical decision-making. In doing so, we present, define and provide examples of our key classes of operational data for cyber situational awareness and present a hypothetical case study demonstrating how they must be consolidated to provide a clear and relevant picture to a commander. In addition, current organizational and technical challenges are discussed, and areas for future research are addressed.
 

Linda, O., Wijayasekara, D., Manic, M., McQueen, M..  2014.  Optimal placement of Phasor Measurement Units in power grids using Memetic Algorithms. Industrial Electronics (ISIE), 2014 IEEE 23rd International Symposium on. :2035-2041.

Wide area monitoring, protection and control for power network systems are one of the fundamental components of the smart grid concept. Synchronized measurement technology such as the Phasor Measurement Units (PMUs) will play a major role in implementing these components and they have the potential to provide reliable and secure full system observability. The problem of Optimal Placement of PMUs (OPP) consists of locating a minimal set of power buses where the PMUs must be placed in order to provide full system observability. In this paper a novel solution to the OPP problem using a Memetic Algorithm (MA) is proposed. The implemented MA combines the global optimization power of genetic algorithms with local solution tuning using the hill-climbing method. The performance of the proposed approach was demonstrated on IEEE benchmark power networks as well as on a segment of the Idaho region power network. It was shown that the proposed solution using a MA features significantly faster convergence rate towards the optimum solution.
 

2015-05-01
Abd Aziz, N., Udzir, N.I., Mahmod, R..  2014.  Performance analysis for extended TLS with mutual attestation for platform integrity assurance. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2014 IEEE 4th Annual International Conference on. :13-18.

A web service is a web-based application connected via the internet connectivity. The common web-based applications are deployed using web browsers and web servers. However, the security of Web Service is a major concern issues since it is not widely studied and integrated in the design stage of Web Service standard. They are add-on modules rather a well-defined solutions in standards. So, various web services security solutions have been defined in order to protect interaction over a network. Remote attestation is an authentication technique proposed by the Trusted Computing Group (TCG) which enables the verification of the trusted environment of platforms and assuring the information is accurate. To incorporate this method in web services framework in order to guarantee the trustworthiness and security of web-based applications, a new framework called TrustWeb is proposed. The TrustWeb framework integrates the remote attestation into SSL/TLS protocol to provide integrity information of the involved endpoint platforms. The framework enhances TLS protocol with mutual attestation mechanism which can help to address the weaknesses of transferring sensitive computations, and a practical way to solve the remote trust issue at the client-server environment. In this paper, we describe the work of designing and building a framework prototype in which attestation mechanism is integrated into the Mozilla Firefox browser and Apache web server. We also present framework solution to show improvement in the efficiency level.