Biblio
The possible interactions between a controller and its environment can naturally be modelled as the arena of a two-player game, and adding an appropriate winning condition permits to specify desirable behavior. The classical model here is the positional game, where both players can (fully or partially) observe the current position in the game graph, which in turn is indicative of their mutual current states. In practice, neither sensing and actuating the environment through physical devices nor data forwarding to and from the controller and signal processing in the controller are instantaneous. The resultant delays force the controller to draw decisions before being aware of the recent history of a play and to submit these decisions well before they can take effect asynchronously. It is known that existence of a winning strategy for the controller in games with such delays is decidable over finite game graphs and with respect to ω-regular objectives. The underlying reduction, however, is impractical for non-trivial delays as it incurs a blow-up of the game graph which is exponential in the magnitude of the delay. For safety objectives, we propose a more practical incremental algorithm successively synthesizing a series of controllers handling increasing delays and reducing the game-graph size in between. It is demonstrated using benchmark examples that even a simplistic explicit-state implementation of this algorithm outperforms state-of-the-art symbolic synthesis algorithms as soon as non-trivial delays have to be handled. We furthermore address the practically relevant cases of non-order-preserving delays and bounded message loss, as arising in actual networked control, thereby considerably extending the scope of regular game theory under delay.
In this paper, we propose a convex programming based method to address a long-standing problem of inner-approximating backward reachable sets of state-constrained polynomial systems subject to time-varying uncertainties. The backward reachable set is a set of states, from which all trajectories starting will surely enter a target region at the end of a given time horizon without violating a set of state constraints in spite of the actions of uncertainties. It is equal to the zero sublevel set of the unique Lipschitz viscosity solution to a Hamilton-Jacobi partial differential equation (HJE). We show that inner approximations of the backward reachable set can be formed by zero sublevel sets of its viscosity supersolutions. Consequently, we reduce the inner-approximation problem to a problem of synthesizing polynomial viscosity supersolutions to this HJE. Such a polynomial solution in our method is synthesized by solving a single semidefinite program. We also prove that polynomial solutions to the formulated semidefinite program exist and can produce a convergent sequence of inner approximations to the interior of the backward reachable set in measure under appropriate assumptions. This is the main contribution of this paper. Several illustrative examples demonstrate the merits of our approach.
Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.
Cloud forensics investigates the crime committed over cloud infrastructures like SLA-violations and storage privacy. Cloud storage forensics is the process of recording the history of the creation and operations performed on a cloud data object and investing it. Secure data provenance in the Cloud is crucial for data accountability, forensics, and privacy. Towards this, we present a Cloud-based data provenance framework using Blockchain, which traces data record operations and generates provenance data. Initially, we design a dropbox like application using AWS S3 storage. The application creates a cloud storage application for the students and faculty of the university, thereby making the storage and sharing of work and resources efficient. Later, we design a data provenance mechanism for confidential files of users using Ethereum blockchain. We also evaluate the proposed system using performance parameters like query and transaction latency by varying the load and number of nodes of the blockchain network.
This paper describes a novel distributed mobility management (DMM) scheme for the "named-object" information centric network (ICN) architecture in which the routers forward data based on unique identifiers which are dynamically mapped to the current network addresses of a device. The work proposes and evaluates two specific handover schemes namely, hard handoff with rebinding and soft handoff with multihoming intended to provide seamless data transfer with improved throughput during handovers. The evaluation of the proposed handover schemes using system simulation along with proof-of-concept implementation in ORBIT testbed is described. The proposed handoff and scheduling throughput gains are 12.5% and 44% respectively over multiple interfaces when compared to traditional IP network with equal share split scheme. The handover performance with respect to RTT and throughput demonstrate the benefits of clean slate network architecture for beyond 5G networks.
With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.
Industrial robots are playing an important role in now a day industrial productions. However, due to the increasing in robot hardware modules and the rapid expansion of software modules, the reliability of operating systems for industrial robots is facing severe challenges, especially for the light-weight edge computing platforms. Based on current technologies on resource security isolation protection and access control, a novel resource management model for real-time edge system of multiple robot arms is proposed on light-weight edge devices. This novel resource management model can achieve the following functions: mission-critical resource classification, resource security access control, and multi-level security data isolation transmission. We also propose a fault location and isolation model on each lightweight edge device, which ensures the reliability of the entire system. Experimental results show that the robot operating system can meet the requirements of hierarchical management and resource access control. Compared with the existing methods, the fault location and isolation model can effectively locate and deal with the faults generated by the system.
We propose a high efficiency Early-Complete Brute Force Elimination method that speeds up the analysis flow of the Camouflage Integrated Circuit (IC). The proposed method is targeted for security qualification of the Camouflaged IC netlists in Intellectual Property (IP) protection. There are two main features in the proposed method. First, the proposed method features immediate elimination of the incorrect Camouflage gates combination for the rest of computation, concentrating the resources into other potential correct Camouflage gates combination. Second, the proposed method features early complete, i.e. revealing the correct Camouflage gates once all incorrect gates combination are eliminated, increasing the computation speed for the overall security analysis. Based on the Python programming platform, we implement the algorithm of the proposed method and test it for three circuits including ISCAS’89 benchmarks. From the simulation results, our proposed method, on average, features 71% lesser number of trials and 79% shorter run time as compared to the conventional method in revealing the correct Camouflage gates from the Camouflaged IC netlist.
In the past air-gapped systems that are isolated from networks have been considered to be very secure. Yet there have been reports of such systems being breached. These breaches have shown to use unconventional means for communication also known as covert channels such as Acoustic, Electromagnetic, Magnetic, Electric, Optical, and Thermal to transfer data. In this paper, a review of various attack methods that can compromise an air-gapped system is presented along with a summary of how efficient and dangerous a particular method could be. The capabilities of each covert channel are listed to better understand the threat it poses and also some countermeasures to safeguard against such attack methods are mentioned. These attack methods have already been proven to work and awareness of such covert channels for data exfiltration is crucial in various industries.