Biblio
Accurate and synchronized timing information is required by power system operators for controlling the grid infrastructure (relays, Phasor Measurement Units (PMUs), etc.) and determining asset positions. Satellite-based global positioning system (GPS) is the primary source of timing information. However, GPS disruptions today (both intentional and unintentional) can significantly compromise the reliability and security of our electric grids. A robust alternate source for accurate timing is critical to serve both as a deterrent against malicious attacks and as a redundant system in enhancing the resilience against extreme events that could disrupt the GPS network. To achieve this, we rely on the highly accurate, terrestrial atomic clock-based network for alternative timing and synchronization. In this paper, we discuss an experimental setup for an alternative timing approach. The data obtained from this experimental setup is continuously monitored and analyzed using various time deviation metrics. We also use these metrics to compute deviations of our clock with respect to the National Institute of Standards and Technologys (NIST) GPS data. The results obtained from these metric computations are elaborately discussed. Finally, we discuss the integration of the procedures involved, like real-time data ingestion, metric computation, and result visualization, in a novel microservices-based architecture for situational awareness.
Efficient large-scale biometric identification is a challenging open problem in biometrics today. Adding biometric information protection by cryptographic techniques increases the computational workload even further. Therefore, this paper proposes an efficient and improved use of coefficient packing for homomorphically protected biometric templates, allowing for the evaluation of multiple biometric comparisons at the cost of one. In combination with feature dimensionality reduction, the proposed technique facilitates a quadratic computational workload reduction for biometric identification, while long-term protection of the sensitive biometric data is maintained throughout the system. In previous works on using coefficient packing, only a linear speed-up was reported. In an experimental evaluation on a public face database, efficient identification in the encrypted domain is achieved on off-the-shelf hardware with no loss in recognition performance. In particular, the proposed improved use of coefficient packing allows for a computational workload reduction down to 1.6% of a conventional homomorphically protected identification system without improved packing.
Probabilistic model checking is a useful technique for specifying and verifying properties of stochastic systems including randomized protocols and reinforcement learning models. However, these methods rely on the assumed structure and probabilities of certain system transitions. These assumptions may be incorrect, and may even be violated by an adversary who gains control of some system components. In this paper, we develop a formal framework for adversarial robustness in systems modeled as discrete time Markov chains (DTMCs). We base our framework on existing methods for verifying probabilistic temporal logic properties and extend it to include deterministic, memoryless policies acting in Markov decision processes (MDPs). Our framework includes a flexible approach for specifying structure-preserving and non structure-preserving adversarial models. We outline a class of threat models under which adversaries can perturb system transitions, constrained by an ε ball around the original transition probabilities. We define three main DTMC adversarial robustness problems: adversarial robustness verification, maximal δ synthesis, and worst case attack synthesis. We present two optimization-based solutions to these three problems, leveraging traditional and parametric probabilistic model checking techniques. We then evaluate our solutions on two stochastic protocols and a collection of Grid World case studies, which model an agent acting in an environment described as an MDP. We find that the parametric solution results in fast computation for small parameter spaces. In the case of less restrictive (stronger) adversaries, the number of parameters increases, and directly computing property satisfaction probabilities is more scalable. We demonstrate the usefulness of our definitions and solutions by comparing system outcomes over various properties, threat models, and case studies.