Biblio

Found 792 results

Filters: First Letter Of Last Name is O  [Clear All Filters]
2023-05-12
Bouvier, Jean-Baptiste, Ornik, Melkior.  2022.  Quantitative Resilience of Linear Systems. 2022 European Control Conference (ECC). :485–490.
Actuator malfunctions may have disastrous con-sequences for systems not designed to mitigate them. We focus on the loss of control authority over actuators, where some actuators are uncontrolled but remain fully capable. To counter-act the undesirable outputs of these malfunctioning actuators, we use real-time measurements and redundant actuators. In this setting, a system that can still reach its target is deemed resilient. To quantify the resilience of a system, we compare the shortest time for the undamaged system to reach the target with the worst-case shortest time for the malfunctioning system to reach the same target, i.e., when the malfunction makes that time the longest. Contrary to prior work on driftless linear systems, the absence of analytical expression for time-optimal controls of general linear systems prevents an exact calculation of quantitative resilience. Instead, relying on Lyapunov theory we derive analytical bounds on the nominal and malfunctioning reach times in order to bound quantitative resilience. We illustrate our work on a temperature control system.
2023-09-01
Ouyang, Chongjun, Xu, Hao, Zang, Xujie, Yang, Hongwen.  2022.  Some Discussions on PHY Security in DF Relay. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :393—397.
Physical layer (PHY) security in decode-and-forward (DF) relay systems is discussed. Based on the types of wiretap links, the secrecy performance of three typical secure DF relay models is analyzed. Different from conventional works in this field, rigorous derivations of the secrecy channel capacity are provided from an information-theoretic perspective. Meanwhile, closed-form expressions are derived to characterize the secrecy outage probability (SOP). For the sake of unveiling more system insights, asymptotic analyses are performed on the SOP for a sufficiently large signal-to-noise ratio (SNR). The analytical results are validated by computer simulations and are in excellent agreement.
2023-01-05
Omman, Bini, Eldho, Shallet Mary T.  2022.  Speech Emotion Recognition Using Bagged Support Vector Machines. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1—4.
Speech emotion popularity is one of the quite promising and thrilling issues in the area of human computer interaction. It has been studied and analysed over several decades. It’s miles the technique of classifying or identifying emotions embedded inside the speech signal.Current challenges related to the speech emotion recognition when a single estimator is used is difficult to build and train using HMM and neural networks,Low detection accuracy,High computational power and time.In this work we executed emotion category on corpora — the berlin emodb, and the ryerson audio-visible database of emotional speech and track (Ravdess). A mixture of spectral capabilities was extracted from them which changed into further processed and reduced to the specified function set. When compared to single estimators, ensemble learning has been shown to provide superior overall performance. We endorse a bagged ensemble model which consist of support vector machines with a gaussian kernel as a possible set of rules for the hassle handy. Inside the paper, ensemble studying algorithms constitute a dominant and state-of-the-art approach for acquiring maximum overall performance.
2023-03-17
Ali, T., Olivo, R., Kerdilès, S., Lehninger, D., Lederer, M., Sourav, D., Royet, A-S., Sünbül, A., Prabhu, A., Kühnel, K. et al..  2022.  Study of Nanosecond Laser Annealing on Silicon Doped Hafnium Oxide Film Crystallization and Capacitor Reliability. 2022 IEEE International Memory Workshop (IMW). :1–4.
Study on the effect of nanosecond laser anneal (NLA) induced crystallization of ferroelectric (FE) Si-doped hafnium oxide (HSO) material is reported. The laser energy density (0.3 J/cm2 to 1.3 J/cm2) and pulse count (1.0 to 30) variations are explored as pathways for the HSO based metal-ferroelectric-metal (MFM) capacitors. The increase in energy density shows transition toward ferroelectric film crystallization monitored by the remanent polarization (2Pr) and coercive field (2Ec). The NLA conditions show maximum 2Pr (\$\textbackslashsim 24\textbackslash \textbackslashmu\textbackslashmathrmC/\textbackslashtextcmˆ2\$) comparable to the values obtained from reference rapid thermal processing (RTP). Reliability dependence in terms of fatigue (107 cycles) of MFMs on NLA versus RTP crystallization anneal is highlighted. The NLA based MFMs shows improved fatigue cycling at high fields for the low energy densities compared to an RTP anneal. The maximum fatigue cycles to breakdown shows a characteristic dependence on the laser energy density and pulse count. Leakage current and dielectric breakdown of NLA based MFMs at the transition of amorphous to crystalline film state is reported. The role of NLA based anneal on ferroelectric film crystallization and MFM stack reliability is reported in reference with conventional RTP based anneal.
ISSN: 2573-7503
2023-02-17
Alimi, Oyeniyi Akeem, Ouahada, Khmaies, Abu-Mahfouz, Adnan M., Rimer, Suvendi, Alimi, Kuburat Oyeranti Adefemi.  2022.  Supervised learning based intrusion detection for SCADA systems. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). :1–5.
Supervisory control and data acquisition (SCADA) systems play pivotal role in the operation of modern critical infrastructures (CIs). Technological advancements, innovations, economic trends, etc. have continued to improve SCADA systems effectiveness and overall CIs’ throughput. However, the trends have also continued to expose SCADA systems to security menaces. Intrusions and attacks on SCADA systems can cause service disruptions, equipment damage or/and even fatalities. The use of conventional intrusion detection models have shown trends of ineffectiveness due to the complexity and sophistication of modern day SCADA attacks and intrusions. Also, SCADA characteristics and requirement necessitate exceptional security considerations with regards to intrusive events’ mitigations. This paper explores the viability of supervised learning algorithms in detecting intrusions specific to SCADA systems and their communication protocols. Specifically, we examine four supervised learning algorithms: Random Forest, Naïve Bayes, J48 Decision Tree and Sequential Minimal Optimization-Support Vector Machines (SMO-SVM) for evaluating SCADA datasets. Two SCADA datasets were used for evaluating the performances of our approach. To improve the classification performances, feature selection using principal component analysis was used to preprocess the datasets. Using prominent classification metrics, the SVM-SMO presented the best overall results with regards to the two datasets. In summary, results showed that supervised learning algorithms were able to classify intrusions targeted against SCADA systems with satisfactory performances.
ISSN: 2377-2697
2023-03-17
Colter, Jamison, Kinnison, Matthew, Henderson, Alex, Schlager, Stephen M., Bryan, Samuel, O’Grady, Katherine L., Abballe, Ashlie, Harbour, Steven.  2022.  Testing the Resiliency of Consumer Off-the-Shelf Drones to a Variety of Cyberattack Methods. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–5.
An often overlooked but equally important aspect of unmanned aerial system (UAS) design is the security of their networking protocols and how they deal with cyberattacks. In this context, cyberattacks are malicious attempts to monitor or modify incoming and outgoing data from the system. These attacks could target anywhere in the system where a transfer of data occurs but are most common in the transfer of data between the control station and the UAS. A compromise in the networking system of a UAS could result in a variety of issues including increased network latency between the control station and the UAS, temporary loss of control over the UAS, or a complete loss of the UAS. A complete loss of the system could result in the UAS being disabled, crashing, or the attacker overtaking command and control of the platform, all of which would be done with little to no alert to the operator. Fortunately, the majority of higher-end, enterprise, and government UAS platforms are aware of these threats and take actions to mitigate them. However, as the consumer market continues to grow and prices continue to drop, network security may be overlooked or ignored in favor of producing the lowest cost product possible. Additionally, these commercial off-the-shelf UAS often use uniform, standardized frequency bands, autopilots, and security measures, meaning a cyberattack could be developed to affect a wide variety of models with minimal changes. This paper will focus on a low-cost educational-use UAS and test its resilience to a variety of cyberattack methods, including man-in-the-middle attacks, spoofing of data, and distributed denial-of-service attacks. Following this experiment will be a discussion of current cybersecurity practices for counteracting these attacks and how they can be applied onboard a UAS. Although in this case the cyberattacks were tested against a simpler platform, the methods discussed are applicable to any UAS platform attempting to defend against such cyberattack methods.
ISSN: 2155-7209
Bianco, Giulio Maria, Raso, Emanuele, Fiore, Luca, Riente, Alessia, Barba, Adina Bianca, Miozzi, Carolina, Bracciale, Lorenzo, Arduini, Fabiana, Loreti, Pierpaolo, Marrocco, Gaetano et al..  2022.  Towards a Hybrid UHF RFID and NFC Platform for the Security of Medical Data from a Point of Care. 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA). :142–145.
In recent years, body-worn RFID and NFC (near field communication) devices have become one of the principal technologies concurring to the rise of healthcare internet of thing (H-IoT) systems. Similarly, points of care (PoCs) moved increasingly closer to patients to reduce the costs while supporting precision medicine and improving chronic illness management, thanks to timely and frequent feedback from the patients themselves. A typical PoC involves medical sensing devices capable of sampling human health, personal equipment with communications and computing capabilities (smartphone or tablet) and a secure software environment for data transmission to medical centers. Hybrid platforms simultaneously employing NFC and ultra-high frequency (UHF) RFID could be successfully developed for the first sensing layer. An application example of the proposed hybrid system for the monitoring of acute myocardial infarction (AMI) survivors details how the combined use of NFC and UHF-RFID in the same PoC can support the multifaceted need of AMI survivors while protecting the sensitive data on the patient’s health.
2023-05-12
Desta, Araya Kibrom, Ohira, Shuji, Arai, Ismail, Fujikawa, Kazutoshi.  2022.  U-CAN: A Convolutional Neural Network Based Intrusion Detection for Controller Area Networks. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1481–1488.
The Controller area network (CAN) is the most extensively used in-vehicle network. It is set to enable communication between a number of electronic control units (ECU) that are widely found in most modern vehicles. CAN is the de facto in-vehicle network standard due to its error avoidance techniques and similar features, but it is vulnerable to various attacks. In this research, we propose a CAN bus intrusion detection system (IDS) based on convolutional neural networks (CNN). U-CAN is a segmentation model that is trained by monitoring CAN traffic data that are preprocessed using hamming distance and saliency detection algorithm. The model is trained and tested using publicly available datasets of raw and reverse-engineered CAN frames. With an F\_1 Score of 0.997, U-CAN can detect DoS, Fuzzy, spoofing gear, and spoofing RPM attacks of the publicly available raw CAN frames. The model trained on reverse-engineered CAN signals that contain plateau attacks also results in a true positive rate and false-positive rate of 0.971 and 0.998, respectively.
ISSN: 0730-3157
Ogawa, Kanta, Sawada, Kenji, Sakata, Kosei.  2022.  Vulnerability Modeling and Protection Strategies via Supervisory Control Theory. 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE). :559–560.
The paper aims to discover vulnerabilities by application of supervisory control theory and to design a defensive supervisor against vulnerability attacks. Supervisory control restricts the system behavior to satisfy the control specifications. The existence condition of the supervisor, sometimes results in undesirable plant behavior, which can be regarded as a vulnerability of the control specifications. We aim to design a more robust supervisor against this vulnerability.
ISSN: 2378-8143
2023-01-20
Chinthavali, Supriya, Hasan, S.M.Shamimul, Yoginath, Srikanth, Xu, Haowen, Nugent, Phil, Jones, Terry, Engebretsen, Cozmo, Olatt, Joseph, Tansakul, Varisara, Christopher, Carter et al..  2022.  An Alternative Timing and Synchronization Approach for Situational Awareness and Predictive Analytics. 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). :172–177.

Accurate and synchronized timing information is required by power system operators for controlling the grid infrastructure (relays, Phasor Measurement Units (PMUs), etc.) and determining asset positions. Satellite-based global positioning system (GPS) is the primary source of timing information. However, GPS disruptions today (both intentional and unintentional) can significantly compromise the reliability and security of our electric grids. A robust alternate source for accurate timing is critical to serve both as a deterrent against malicious attacks and as a redundant system in enhancing the resilience against extreme events that could disrupt the GPS network. To achieve this, we rely on the highly accurate, terrestrial atomic clock-based network for alternative timing and synchronization. In this paper, we discuss an experimental setup for an alternative timing approach. The data obtained from this experimental setup is continuously monitored and analyzed using various time deviation metrics. We also use these metrics to compute deviations of our clock with respect to the National Institute of Standards and Technologys (NIST) GPS data. The results obtained from these metric computations are elaborately discussed. Finally, we discuss the integration of the procedures involved, like real-time data ingestion, metric computation, and result visualization, in a novel microservices-based architecture for situational awareness.

2023-03-31
Bauspieß, Pia, Olafsson, Jonas, Kolberg, Jascha, Drozdowski, Pawel, Rathgeb, Christian, Busch, Christoph.  2022.  Improved Homomorphically Encrypted Biometric Identification Using Coefficient Packing. 2022 International Workshop on Biometrics and Forensics (IWBF). :1–6.

Efficient large-scale biometric identification is a challenging open problem in biometrics today. Adding biometric information protection by cryptographic techniques increases the computational workload even further. Therefore, this paper proposes an efficient and improved use of coefficient packing for homomorphically protected biometric templates, allowing for the evaluation of multiple biometric comparisons at the cost of one. In combination with feature dimensionality reduction, the proposed technique facilitates a quadratic computational workload reduction for biometric identification, while long-term protection of the sensitive biometric data is maintained throughout the system. In previous works on using coefficient packing, only a linear speed-up was reported. In an experimental evaluation on a public face database, efficient identification in the encrypted domain is achieved on off-the-shelf hardware with no loss in recognition performance. In particular, the proposed improved use of coefficient packing allows for a computational workload reduction down to 1.6% of a conventional homomorphically protected identification system without improved packing.

2023-01-13
Oulaaffart, Mohamed, Badonnel, Remi, Bianco, Christophe.  2022.  An Automated SMT-based Security Framework for Supporting Migrations in Cloud Composite Services. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–9.
The growing maturity of orchestration languages is contributing to the elaboration of cloud composite services, whose resources may be deployed over different distributed infrastructures. These composite services are subject to changes over time, that are typically required to support cloud properties, such as scalability and rapid elasticity. In particular, the migration of their elementary resources may be triggered by performance constraints. However, changes induced by this migration may introduce vulnerabilities that may compromise the resources, or even the whole cloud service. In that context, we propose an automated SMT1-based security framework for supporting the migration of resources in cloud composite services, and preventing the occurrence of new configuration vulnerabilities. We formalize the underlying security automation based on SMT solving, in order to assess the migrated resources and select adequate counter-measures, considering both endogenous and exogenous security mechanisms. We then evaluate its benefits and limits through large series of experiments based on a proof-of-concept prototype implemented over the CVC4 commonly-used open-source solver. These experiments show a minimal overhead with regular operating systems deployed in cloud environments.
2022-12-07
Cejas, José Manuel Carmona, Mirea, Teona, Clement, Marta, Olivares, Jimena.  2022.  Solidly Mounted Resonators Based on ZnO/SiO2 Acoustic Reflectors and Their Performance After High-temperature Exposure. 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—3.
Solidly mounted resonators (SMRs) built on dielectric acoustic reflectors can save several fabrication steps as well as avoid undesired parasitic effects when exciting extended electrodes via capacitive coupling. In this work we manufacture and measure the frequency response of AlN-based SMRs built on 7-layer ZnO/SiO2 acoustic reflectors with SiO2 working as low impedance material and ZnO as high impedance material. After applying a 700°C treatment, their frequency response is measured again and compared with the pre-treatment measurements.
2023-02-02
Oakley, Lisa, Oprea, Alina, Tripakis, Stavros.  2022.  Adversarial Robustness Verification and Attack Synthesis in Stochastic Systems. 2022 IEEE 35th Computer Security Foundations Symposium (CSF). :380–395.

Probabilistic model checking is a useful technique for specifying and verifying properties of stochastic systems including randomized protocols and reinforcement learning models. However, these methods rely on the assumed structure and probabilities of certain system transitions. These assumptions may be incorrect, and may even be violated by an adversary who gains control of some system components. In this paper, we develop a formal framework for adversarial robustness in systems modeled as discrete time Markov chains (DTMCs). We base our framework on existing methods for verifying probabilistic temporal logic properties and extend it to include deterministic, memoryless policies acting in Markov decision processes (MDPs). Our framework includes a flexible approach for specifying structure-preserving and non structure-preserving adversarial models. We outline a class of threat models under which adversaries can perturb system transitions, constrained by an ε ball around the original transition probabilities. We define three main DTMC adversarial robustness problems: adversarial robustness verification, maximal δ synthesis, and worst case attack synthesis. We present two optimization-based solutions to these three problems, leveraging traditional and parametric probabilistic model checking techniques. We then evaluate our solutions on two stochastic protocols and a collection of Grid World case studies, which model an agent acting in an environment described as an MDP. We find that the parametric solution results in fast computation for small parameter spaces. In the case of less restrictive (stronger) adversaries, the number of parameters increases, and directly computing property satisfaction probabilities is more scalable. We demonstrate the usefulness of our definitions and solutions by comparing system outcomes over various properties, threat models, and case studies.

2023-07-21
Eze, Emmanuel O., Keates, Simeon, Pedram, Kamran, Esfahani, Alireza, Odih, Uchenna.  2022.  A Context-Based Decision-Making Trust Scheme for Malicious Detection in Connected and Autonomous Vehicles. 2022 International Conference on Computing, Electronics & Communications Engineering (iCCECE). :31—36.
The fast-evolving Intelligent Transportation Systems (ITS) are crucial in the 21st century, promising answers to congestion and accidents that bother people worldwide. ITS applications such as Connected and Autonomous Vehicle (CAVs) update and broadcasts road incident event messages, and this requires significant data to be transmitted between vehicles for a decision to be made in real-time. However, broadcasting trusted incident messages such as accident alerts between vehicles pose a challenge for CAVs. Most of the existing-trust solutions are based on the vehicle's direct interaction base reputation and the psychological approaches to evaluate the trustworthiness of the received messages. This paper provides a scheme for improving trust in the received incident alert messages for real-time decision-making to detect malicious alerts between CAVs using direct and indirect interactions. This paper applies artificial intelligence and statistical data classification for decision-making on the received messages. The model is trained based on the US Department of Technology Safety Pilot Deployment Model (SPMD). An Autonomous Decision-making Trust Scheme (ADmTS) that incorporates a machine learning algorithm and a local trust manager for decision-making has been developed. The experiment showed that the trained model could make correct predictions such as 98% and 0.55% standard deviation accuracy in predicting false alerts on the 25% malicious data
2023-07-10
Obien, Joan Baez, Calinao, Victor, Bautista, Mary Grace, Dadios, Elmer, Jose, John Anthony, Concepcion, Ronnie.  2022.  AEaaS: Artificial Intelligence Edge-of-Things as a Service for Intelligent Remote Farm Security and Intrusion Detection Pre-alarm System. 2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). :1—6.
With the continues growth of our technology, majority in our sectors are becoming smart and one of its great applications is in agriculture, which we call it as smart farming. The application of sensors, IoT, artificial intelligence, networking in the agricultural setting with the main purpose of increasing crop production and security level. With this advancement in farming, this provides a lot of privileges like remote monitoring, optimization of produce and too many to mention. In light of the thorough systematic analysis performed in this study, it was discovered that Edge-of-things is a potential computing scheme that could boost an artificial intelligence for intelligent remote farm security and intrusion detection pre-alarm system over other computing schemes. Again, the purpose of this study is not to replace existing cloud computing, but rather to highlight the potential of the Edge. The Edge architecture improves end-user experience by improving the time-related response of the system. response time of the system. One of the strengths of this system is to provide time-critical response service to make a decision with almost no delay, making it ideal for a farm security setting. Moreover, this study discussed the comparative analysis of Cloud, Fog and Edge in relation to farm security, the demand for a farm security system and the tools needed to materialize an Edge computing in a farm environment.
2023-08-03
Brian, Gianluca, Faonio, Antonio, Obremski, Maciej, Ribeiro, João, Simkin, Mark, Skórski, Maciej, Venturi, Daniele.  2022.  The Mother of All Leakages: How to Simulate Noisy Leakages via Bounded Leakage (Almost) for Free. IEEE Transactions on Information Theory. 68:8197–8227.
We show that the most common flavors of noisy leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to a small statistical simulation error and a slight loss in the leakage parameter. The latter holds true in particular for one of the most used noisy-leakage models, where the noisiness is measured using the conditional average min-entropy (Naor and Segev, CRYPTO’09 and SICOMP’12). Our reductions between noisy and bounded leakage are achieved in two steps. First, we put forward a new leakage model (dubbed the dense leakage model) and prove that dense leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to small statistical distance. Second, we show that the most common noisy-leakage models fall within the class of dense leakage, with good parameters. Third, we prove lower bounds on the amount of bounded leakage required for simulation with sub-constant error, showing that our reductions are nearly optimal. In particular, our results imply that useful general simulation of noisy leakage based on statistical distance and mutual information is impossible. We also provide a complete picture of the relationships between different noisy-leakage models. Our result finds applications to leakage-resilient cryptography, where we are often able to lift security in the presence of bounded leakage to security in the presence of noisy leakage, both in the information-theoretic and in the computational setting. Remarkably, this lifting procedure makes only black-box use of the underlying schemes. Additionally, we show how to use lower bounds in communication complexity to prove that bounded-collusion protocols (Kumar, Meka, and Sahai, FOCS’19) for certain functions do not only require long transcripts, but also necessarily need to reveal enough information about the inputs.
Conference Name: IEEE Transactions on Information Theory
2023-08-23
Alja'afreh, Mohammad, Obaidat, Muath, Karime, Ali, Alouneh, Sahel.  2022.  Optimizing System-on-Chip Performance Using AI and SDN: Approaches and Challenges. 2022 Ninth International Conference on Software Defined Systems (SDS). :1—8.
The advancement of modern multimedia and data-intensive classes of applications demands the development of hardware that delivers better performance. Due to the evolution of 5G, Edge-Computing, the Internet of Things, Software-Defined networks, etc., the data produced by the devices such as sensors are increasing. A software-Defined network is a powerful paradigm that is capable of automating networking and cloud computing. Software-Defined Network has controllers, devices, and applications which produce a huge amount of data. The processing of data inside the device as well as between the devices needs a better hardware architecture with more cores to ensure speedy performance. The System-on-Chip approach alone will not be capable to handle this dense core comprised of hardware. We have to blend Network-on-Chip along with System-on-Chip to increase the potential to include more cores capable to handle more threads. Artificial Intelligence, a key enabler in next-generation devices is capable of producing a better architecture design with optimized performance. In this paper, we are discussing and endeavouring how System-on-Chip, Network-on-Chip, Software-Defined Networks, and Artificial Intelligence can be physically, logically, and contextually incorporated to deliver improved computation and networking outcomes.
2023-05-19
Acheampong, Edward Mensah, Zhou, Shijie, Liao, Yongjian, Antwi-Boasiako, Emmanuel, Obiri, Isaac Amankona.  2022.  Smart Health Records Sharing Scheme based on Partially Policy-Hidden CP-ABE with Leakage Resilience. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). :1408—1415.
With the rapid innovation of cloud computing technologies, which has enhanced the application of the Internet of Things (IoT), smart health (s-health) is expected to enhance the quality of the healthcare system. However, s-health records (SHRs) outsourcing, storage, and sharing via a cloud server must be protected and users attribute privacy issues from the public domain. Ciphertext policy attribute-based encryption (CP-ABE) is the cryptographic primitive which is promising to provide fine-grained access control in the cloud environment. However, the direct application of traditional CP-ABE has brought a lot of security issues like attributes' privacy violations and vulnerability in the future by potential powerful attackers like side-channel and cold-bot attacks. To solve these problems, a lot of CP-ABE schemes have been proposed but none of them concurrently support partially policy-hidden and leakage resilience. Hence, we propose a new Smart Health Records Sharing Scheme that will be based on Partially Policy-Hidden CP-ABE with Leakage Resilience which is resilient to bound leakage from each of many secret keys per user, as well as many master keys, and ensure attribute privacy. Our scheme hides attribute values of users in both secret key and ciphertext which contain sensitive information in the cloud environment and are fully secure in the standard model under the static assumptions.
2023-08-17
Otta, Soumya Prakash, Panda, Subhrakanta.  2022.  Decentralized Identity and Access Management of Cloud for Security as a Service. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :299—303.
Many cyber-related untoward incidents and multiple instances of a data breach of system are being reported. User identity and its usage for valid entry to system depend upon successful authentication. Researchers have explored many threats and vulnerabilities in a centralized system. It has initiated concept of a decentralized way to overcome them. In this work, we have explored application of Self-Sovereign Identity and Verifiable Credentials using decentralized identifiers over cloud.
2023-02-24
Figueira, Nina, Pochmann, Pablo, Oliveira, Abel, de Freitas, Edison Pignaton.  2022.  A C4ISR Application on the Swarm Drones Context in a Low Infrastructure Scenario. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
The military operations in low communications infrastructure scenarios employ flexible solutions to optimize the data processing cycle using situational awareness systems, guaranteeing interoperability and assisting in all processes of decision-making. This paper presents an architecture for the integration of Command, Control, Computing, Communication, Intelligence, Surveillance and Reconnaissance Systems (C4ISR), developed within the scope of the Brazilian Ministry of Defense, in the context of operations with Unmanned Aerial Vehicles (UAV) - swarm drones - and the Internet-to-the-battlefield (IoBT) concept. This solution comprises the following intelligent subsystems embedded in UAV: STFANET, an SDN-Based Topology Management for Flying Ad Hoc Network focusing drone swarms operations, developed by University of Rio Grande do Sul; Interoperability of Command and Control (INTERC2), an intelligent communication middleware developed by Brazilian Navy; A Mission-Oriented Sensors Array (MOSA), which provides the automatization of data acquisition, data fusion, and data sharing, developed by Brazilian Army; The In-Flight Awareness Augmentation System (IFA2S), which was developed to increase the safety navigation of Unmanned Aerial Vehicles (UAV), developed by Brazilian Air Force; Data Mining Techniques to optimize the MOSA with data patterns; and an adaptive-collaborative system, composed of a Software Defined Radio (SDR), to solve the identification of electromagnetic signals and a Geographical Information System (GIS) to organize the information processed. This research proposes, as a main contribution in this conceptual phase, an application that describes the premises for increasing the capacity of sensing threats in the low structured zones, such as the Amazon rainforest, using existing communications solutions of Brazilian defense monitoring systems.
2023-04-14
Alcaraz-Velasco, Francisco, Palomares, José M., Olivares, Joaquín.  2022.  Analysis of the random shuffling of message blocks as a low-cost integrity and security measure. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
Recently, a mechanism that randomly shuffles the data sent and allows securing the communication without the need to encrypt all the information has been proposed. This proposal is ideal for IoT systems with low computational capacity. In this work, we analyze the strength of this proposal from a brute-force attack approach to obtain the original message without knowledge of the applied disordering. It is demonstrated that for a set of 10x10 16-bit data, the processing time and the required memory are unfeasible with current technology. Therefore, it is safe.
ISSN: 2166-0727
2022-12-02
Liu, Mengyao, Oostvogels, Jonathan, Michiels, Sam, Joosen, Wouter, Hughes, Danny.  2022.  BoboLink: Low Latency and Low Power Communication for Intelligent Environments. 2022 18th International Conference on Intelligent Environments (IE). :1—4.
Intelligent Environments (IEs) enrich the physical world by connecting it to software applications in order to increase user comfort, safety and efficiency. IEs are often supported by wireless networks of smart sensors and actuators, which offer multi-year battery life within small packages. However, existing radio mesh networks suffer from high latency, which precludes their use in many user interface systems such as real-time speech, touch or positioning. While recent advances in optical networks promise low end-to-end latency through symbol-synchronous transmission, current approaches are power hungry and therefore cannot be battery powered. We tackle this problem by introducing BoboLink, a mesh network that delivers low-power and low-latency optical networking through a combination of symbol-synchronous transmission and a novel wake-up technology. BoboLink delivers mesh-wide wake-up in 1.13ms, with a quiescent power consumption of 237µW. This enables building-wide human computer interfaces to be seamlessly delivered using wireless mesh networks for the first time.
2023-06-09
Wintenberg, Andrew, Lafortune, Stéphane, Ozay, Necmiye.  2022.  Communication Obfuscation for Privacy and Utility against Obfuscation-Aware Eavesdroppers. 2022 American Control Conference (ACC). :3363—3363.
Networked cyber-physical systems must balance the utility of communication for monitoring and control with the risks of revealing private information. Many of these networks, such as wireless communication, are vulnerable to eavesdrop-ping by illegitimate recipients. Obfuscation can hide information from eaves-droppers by ensuring their observations are ambiguous or misleading. At the same time, coordination with recipients can enable them to interpret obfuscated data. In this way, we propose an obfuscation framework for dynamic systems that ensures privacy against eavesdroppers while maintaining utility for legitimate recipients. We consider eavesdroppers unaware of obfuscation by requiring that their observations are consistent with the original system, as well as eaves-droppers aware of the goals of obfuscation by assuming they learn of the specific obfuscation implementation used. We present a method for bounded synthesis of solutions based upon distributed reactive synthesis and the synthesis of publicly-known obfuscators.
ISSN: 2378-5861
2023-01-13
Onoja, Daniel, Hitchens, Michael, Shankaran, Rajan.  2022.  Security Policy to Manage Responses to DDoS Attacks on 5G IoT Enabled Devices. 2022 13th International Conference on Information and Communication Systems (ICICS). :30–35.
In recent years, the need for seamless connectivity has increased across various network platforms with demands coming from industries, home, mobile, transportation and office networks. The 5th generation (5G) network is being deployed to meet such demand of high-speed seamless network device connections. The seamless connectivity 5G provides could be a security threat allowing attacks such as distributed denial of service (DDoS) because attackers might have easy access into the network infrastructure and higher bandwidth to enhance the effects of the attack. The aim of this research is to provide a security solution for 5G technology to DDoS attacks by managing the response to threats posed by DDoS. Deploying a security policy language which is reactive and event-oriented fits into a flexible, efficient, and lightweight security approach. A policy in our language consists of an event whose occurrence triggers a policy rule where one or more actions are taken.