Biblio

Found 2636 results

Filters: First Letter Of Last Name is Z  [Clear All Filters]
2022-05-10
Li, Hongrui, Zhou, Lili, Xing, Mingming, Taha, Hafsah binti.  2021.  Vulnerability Detection Algorithm of Lightweight Linux Internet of Things Application with Symbolic Execution Method. 2021 International Symposium on Computer Technology and Information Science (ISCTIS). :24–27.
The security of Internet of Things (IoT) devices has become a matter of great concern in recent years. The existence of security holes in the executable programs in the IoT devices has resulted in difficult to estimate security risks. For a long time, vulnerability detection is mainly completed by manual debugging and analysis, and the detection efficiency is low and the accuracy is difficult to guarantee. In this paper, the mainstream automated vulnerability analysis methods in recent years are studied, and a vulnerability detection algorithm based on symbol execution is presented. The detection algorithm is suitable for lightweight applications in small and medium-sized IoT devices. It realizes three functions: buffer overflow vulnerability detection, encryption reliability detection and protection state detection. The robustness of the detection algorithm was tested in the experiment, and the detection of overflow vulnerability program was completed within 2.75 seconds, and the detection of encryption reliability was completed within 1.79 seconds. Repeating the test with multiple sets of data showed a small difference of less than 6.4 milliseconds. The results show that the symbol execution detection algorithm presented in this paper has high detection efficiency and more robust accuracy and robustness.
2022-01-31
Zhao, Rui.  2021.  The Vulnerability of the Neural Networks Against Adversarial Examples in Deep Learning Algorithms. 2021 2nd International Conference on Computing and Data Science (CDS). :287–295.
With the further development in the fields of computer vision, network security, natural language processing and so on so forth, deep learning technology gradually exposed certain security risks. The existing deep learning algorithms cannot effectively describe the essential characteristics of data, making the algorithm unable to give the correct result in the face of malicious input. Based on current security threats faced by deep learning, this paper introduces the problem of adversarial examples in deep learning, sorts out the existing attack and defense methods of black box and white box, and classifies them. It briefly describes the application of some adversarial examples in different scenarios in recent years, compares several defense technologies of adversarial examples, and finally summarizes the problems in this research field and prospects its future development. This paper introduces the common white box attack methods in detail, and further compares the similarities and differences between the attack of black and white boxes. Correspondingly, the author also introduces the defense methods, and analyzes the performance of these methods against the black and white box attack.
2022-03-09
Gong, Peiyong, Zheng, Kai, Jiang, Yi, Liu, Jia.  2021.  Water Surface Object Detection Based on Neural Style Learning Algorithm. 2021 40th Chinese Control Conference (CCC). :8539—8543.
In order to detect the objects on the water surface, a neural style learning algorithm is proposed in this paper. The algorithm uses the Gram matrix of a pre-trained convolutional neural network to represent the style of the texture in the image, which is originally used for image style transfer. The objects on the water surface can be easily distinguished by the difference in their styles of the image texture. The algorithm is tested on the dataset of the Airbus Ship Detection Challenge on Kaggle. Compared to the other water surface object detection algorithms, the proposed algorithm has a good precision of 0.925 with recall equals to 0.86.
2022-01-31
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna, Ali, Waleed.  2021.  Web Caching Strategy Optimization Based on Ant Colony Optimization and Genetic Algorithm. 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). :75—81.
Web caching is a strategy that can be used to speed up website access on the client-side. This strategy is implemented by storing as many popular web objects as possible on the cache server. All web objects stored on a cache server are called cached data. Requests for cached web data on the cache server are much faster than requests directly to the origin server. Not all web objects can fit on the cache server due to their limited capacity. Therefore, optimizing cached data in a web caching strategy will determine which web objects can enter the cache server to have maximum profit. This paper simulates a web caching strategy optimization with a knapsack problem approach using the Ant Colony optimization (ACO), Genetic Algorithm (GA), and a combination of the two. Knapsack profit is seen from the number of web objects that can be entered into the cache server but with the minimum objective function value. The simulation results show that the combination of ACO and GA is faster to produce an optimal solution and is not easily trapped by the local optimum.
2022-04-19
Zheng, Tong-Xing, Yang, Ziteng, Wang, Chao, Li, Zan, Yuan, Jinhong, Guan, Xiaohong.  2021.  Wireless Covert Communications Aided by Distributed Cooperative Jamming Over Slow Fading Channels. IEEE Transactions on Wireless Communications. 20:7026–7039.
In this paper, we study covert communications between a pair of legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication from being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.
Conference Name: IEEE Transactions on Wireless Communications
2022-04-18
Miyamae, Takeshi, Kozakura, Fumihiko, Nakamura, Makoto, Zhang, Shenbin, Hua, Song, Pi, Bingfeng, Morinaga, Masanobu.  2021.  ZGridBC: Zero-Knowledge Proof Based Scalable and Private Blockchain Platform for Smart Grid. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
The total number of photovoltaic power producing facilities whose FIT-based ten-year contract expires by 2023 is expected to reach approximately 1.65 million in Japan. If the number of renewable electricity-producing/consuming facilities reached two million, an enormous number of transactions would be invoked beyond blockchain's scalability.We propose mutually cooperative two novel methods to simultaneously solve scalability, data size, and privacy problems in blockchain-based trading platforms for renewable energy environmental value. One is a management scheme of electricity production resources (EPRs) using an extended UTXO token. The other is a data aggregation scheme that aggregates a significant number of smart meter records with evidentiality using zero-knowledge proof (ZKP).
2022-09-09
Wang, Wan, Xu, Fengjiao, Zhang, Chao, Qin, Tingxin.  2021.  Analysis on security management for supply chain under Emergencies. 2021 International Conference on Public Management and Intelligent Society (PMIS). :208—211.

Focusing on security management for supply chain under emergencies, this paper analyzes the characteristics of supply chain risk, clarifies the relationship between business continuity management and security management for supply chain, organizational resilience and security management for supply chain separately, so as to propose suggestions to promote the realization of security management for supply chain combined these two concepts, which is of guiding significance for security management for supply chain and quality assurance of products and services under emergencies.

2022-04-01
Liu, Dongqi, Wang, Zhou, Liang, Haolan, Zeng, Xiangjun.  2021.  Artificial Immune Technology Architecture for Electric Power Equipment Embedded System. 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). :485–490.
This paper proposes an artificial immune information security protection technology architecture for embedded system of Electric power equipment. By simulating the three functions of human immunity, namely "immune homeostasis", "immune surveillance" and "immune defense", the power equipment is endowed with the ability of human like active immune security protection. Among them, "immune homeostasis" is constructed by trusted computing technology components to establish a trusted embedded system running environment. Through fault-tolerant component construction, "immune surveillance" and "immune defense" realize illegal data defense, business logic legitimacy check and equipment status evaluation, realize real-time perception and evaluation of power equipment's own security status, as well as fault emergency handling and event backtracking record, so that power equipment can realize self recovery from abnormal status. The proposed technology architecture is systematic, scientific and rich in scalability, which can significantly improve the information security protection ability of electric power equipment.
2022-02-22
Zhang, Kun, Wang, Yubo, Ning, Zhenhu.  2021.  Certificateless Peer-to-Peer Key Agreement Protocol for the Perception Layer of Internet of Things. 2021 6th International Conference on Image, Vision and Computing (ICIVC). :436—440.
Due to the computing capability limitation of the Internet of things devices in the perception layer, the traditional security solutions are difficult to be used directly. How to design a new lightweight, secure and reliable protocol suitable for the Internet of Things application environment, and realize the secure transmission of information among many sensing checkpoints is an urgent problem to be solved. In this paper, we propose a decentralized lightweight authentication key protocol based on the combination of public key and trusted computing technology, which is used to establish secure communication between nodes in the perception layer. The various attacks that the protocol may suffer are analyzed, and the formal analysis method is used to verify the security of the protocol. To verify the validity of the protocol, the computation and communication cost of the protocol are compared with the existing key protocols. And the results show that the protocol achieved the promised performance.
2022-04-18
Yin, Yi, Tateiwa, Yuichiro, Zhang, Guoqiang, Wang, Yun.  2021.  Consistency Decision Between IPv6 Firewall Policy and Security Policy. 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). :577–581.

Firewall is the first defense line for network security. Packet filtering is a basic function in firewall, which filter network packets according to a series of rules called firewall policy. The design of firewall policy is invariably under the instruction of security policy, which is a generic guideline that lists the needs for network access permissions. The design of firewall policy should observe the regulations of security policy. However, even for IPv4 firewall policy, it is extremely difficult to keep the consistency between security policy and firewall policy. Some consistency decision methods of security policy and IPv4 firewall policy were proposed. However, the address space of IPv6 address is a very large, the existing consistency decision methods can not be directly used to deal with IPv6 firewall policy. To resolve the above problem, in this paper, we use a formal technique to decide the consistency between IPv6 firewall policy and security policy effectively and rapidly. We also developed a prototype model and evaluated the effectiveness of the proposed method.

2022-03-01
Zhou, Jingwei.  2021.  Construction of Computer Network Security Defense System Based On Big Data. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :5–8.

The development and popularization of big data technology bring more convenience to users, it also bring a series of computer network security problems. Therefore, this paper will briefly analyze the network security threats faced by users under the background of big data, and then combine the application function of computer network security defense system based on big data to propose an architecture design of computer network security defense system based on big data.

2022-08-26
Zhang, Fan, Bu, Bing.  2021.  A Cyber Security Risk Assessment Methodology for CBTC Systems Based on Complex Network Theory and Attack Graph. 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC). :15—20.

Cyber security risk assessment is very important to quantify the security level of communication-based train control (CBTC) systems. In this paper, a methodology is proposed to assess the cyber security risk of CBTC systems that integrates complex network theory and attack graph method. On one hand, in order to determine the impact of malicious attacks on train control, we analyze the connectivity of movement authority (MA) paths based on the working state of nodes, the connectivity of edges. On the other hand, attack graph is introduced to quantify the probabilities of potential attacks that combine multiple vulnerabilities in the cyber world of CBTC. Experiments show that our methodology can assess the security risks of CBTC systems and improve the security level after implementing reinforcement schemes.

2022-07-15
Zhang, Dayin, Chen, Xiaojun, Shi, Jinqiao, Wang, Dakui, Zeng, Shuai.  2021.  A Differential Privacy Collaborative Deep Learning Algorithm in Pervasive Edge Computing Environment. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :347—354.

With the development of 5G technology and intelligent terminals, the future direction of the Industrial Internet of Things (IIoT) evolution is Pervasive Edge Computing (PEC). In the pervasive edge computing environment, intelligent terminals can perform calculations and data processing. By migrating part of the original cloud computing model's calculations to intelligent terminals, the intelligent terminal can complete model training without uploading local data to a remote server. Pervasive edge computing solves the problem of data islands and is also successfully applied in scenarios such as vehicle interconnection and video surveillance. However, pervasive edge computing is facing great security problems. Suppose the remote server is honest but curious. In that case, it can still design algorithms for the intelligent terminal to execute and infer sensitive content such as their identity data and private pictures through the information returned by the intelligent terminal. In this paper, we research the problem of honest but curious remote servers infringing intelligent terminal privacy and propose a differential privacy collaborative deep learning algorithm in the pervasive edge computing environment. We use a Gaussian mechanism that meets the differential privacy guarantee to add noise on the first layer of the neural network to protect the data of the intelligent terminal and use analytical moments accountant technology to track the cumulative privacy loss. Experiments show that with the Gaussian mechanism, the training data of intelligent terminals can be protected reduction inaccuracy.

2022-01-31
Levina, Alla, Kamnev, Ivan, Zikratov, Igor.  2021.  Implementation White-Box Cryptography for Elliptic Curve Cryptography. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–4.

The development of technologies makes it possible to increase the power of information processing systems, but the modernization of processors brings not only an increase in performance but also an increase in the number of errors and vulnerabilities that can allow an attacker to attack the system and gain access to confidential information. White-Box cryptography allows (due to its structure) not only monitoring possible changes but also protects the processed data even with full access of the attacker to the environment. Elliptic Curve Cryptography (ECC) due to its properties, is becoming stronger and stronger in our lives, as it allows you to get strong encryption at a lower cost of processing your own algorithm. This allows you to reduce the load on the system and increase its performance.

2022-06-08
Huang, Song, Yang, Zhen, Zheng, Changyou, Wan, Jinyong.  2021.  An Intellectual Property Data Access Control Method for Crowdsourced Testing System. 2021 8th International Conference on Dependable Systems and Their Applications (DSA). :434–438.

In the crowdsourced testing system, due to the openness of crowdsourced testing platform and other factors, the security of crowdsourced testing intellectual property cannot be effectively protected. We proposed an attribute-based double encryption scheme, combined with the blockchain technology, to achieve the data access control method of the code to be tested. It can meet the privacy protection and traceability of specific intellectual property in the crowdsourced testing environment. Through the experimental verification, the access control method is feasible, and the performance test is good, which can meet the normal business requirements.

2022-02-24
Zhou, Andy, Sultana, Kazi Zakia, Samanthula, Bharath K..  2021.  Investigating the Changes in Software Metrics after Vulnerability Is Fixed. 2021 IEEE International Conference on Big Data (Big Data). :5658–5663.
Preventing software vulnerabilities while writing code is one of the most effective ways for avoiding cyber attacks on any developed system. Although developers follow some standard guiding principles for ensuring secure code, the code can still have security bottlenecks and be compromised by an attacker. Therefore, assessing software security while developing code can help developers in writing vulnerability free code. Researchers have already focused on metrics-based and text mining based software vulnerability prediction models. The metrics based models showed higher precision in predicting vulnerabilities although the recall rate is low. In addition, current research did not investigate the impact of individual software metric on the occurrences of vulnerabilities. The main objective of this paper is to track the changes in every software metric after the developer fixes a particular vulnerability. The results of our research will potentially motivate further research on building more accurate vulnerability prediction models based on the appropriate software metrics. In particular, we have compared a total of 250 files from Apache Tomcat and Apache CXF. These files were extracted from the Apache database and were chosen because Apache released these files as vulnerable in their publicly available security advisories. Using a static analysis tool, metrics of the targeted vulnerable files and relevant fixed files (files where vulnerable code is removed by the developers) were extracted and compared. We show that eight of the 40 metrics have an average increase of 2% from vulnerable to fixed files. These metrics include CountDeclClass, CountDeclClassMethod, CountDeclClassVariable, CountDeclInstanceVariable, CountDeclMethodDefault, CountLineCode, MaxCyclomaticStrict, MaxNesting. This study will help developers to assess software security through utilizing software metrics in secure coding practices.
2022-08-26
Zhang, Yuan, Li, Jian, Yang, Jiayu, Xing, Yitao, Zhuang, Rui, Xue, Kaiping.  2021.  Low Priority Congestion Control for Multipath TCP. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.

Many applications are bandwidth consuming but may tolerate longer flow completion times. Multipath protocols, such as multipath TCP (MPTCP), can offer bandwidth aggregation and resilience to link failures for such applications, and low priority congestion control (LPCC) mechanisms can make these applications yield to other time-sensitive ones. Properly combining the above two can improve the overall user experience. However, the existing LPCC mechanisms are not adequate for MPTCP. They do not take into account the characteristics of multiple network paths, and cannot ensure fairness among the same priority flows. Therefore, we propose a multipath LPCC mechanism, i.e., Dynamic Coupled Low Extra Delay Background Transport, named DC-LEDBAT. Our scheme is designed based on a standardized LPCC mechanism LEDBAT. To avoid unfairness among the same priority flows, DC-LEDBAT trades little throughput for precisely measuring the minimum delay. Moreover, to be friendly to single-path LEDBAT, our scheme leverages the correlation of the queuing delay to detect whether multiple paths go through a shared bottleneck. Then, DC-LEDBAT couples the congestion window at shared bottlenecks to control the sending rate. We implement DC-LEDBAT in a Linux kernel and experimental results show that DC-LEDBAT can not only utilize the excess bandwidth of MPTCP but also ensure fairness among the same priority flows.

2022-04-19
Zukran, Busra, Siraj, Maheyzah Md.  2021.  Performance Comparison on SQL Injection and XSS Detection using Open Source Vulnerability Scanners. 2021 International Conference on Data Science and Its Applications (ICoDSA). :61–65.

Web technologies are typically built with time constraints and security vulnerabilities. Automatic software vulnerability scanners are common tools for detecting such vulnerabilities among software developers. It helps to illustrate the program for the attacker by creating a great deal of engagement within the program. SQL Injection and Cross-Site Scripting (XSS) are two of the most commonly spread and dangerous vulnerabilities in web apps that cause to the user. It is very important to trust the findings of the site vulnerability scanning software. Without a clear idea of the accuracy and the coverage of the open-source tools, it is difficult to analyze the result from the automatic vulnerability scanner that provides. The important to do a comparison on the key figure on the automated vulnerability scanners because there are many kinds of a scanner on the market and this comparison can be useful to decide which scanner has better performance in term of SQL Injection and Cross-Site Scripting (XSS) vulnerabilities. In this paper, a method by Jose Fonseca et al, is used to compare open-source automated vulnerability scanners based on detection coverage and a method by Yuki Makino and Vitaly Klyuev for precision rate. The criteria vulnerabilities will be injected into the web applications which then be scanned by the scanners. The results then are compared by analyzing the precision rate and detection coverage of vulnerability detection. Two leading open source automated vulnerability scanners will be evaluated. In this paper, the scanner that being utilizes is OW ASP ZAP and Skipfish for comparison. The results show that from precision rate and detection rate scope, OW ASP ZAP has better performance than Skipfish by two times for precision rate and have almost the same result for detection coverage where OW ASP ZAP has a higher number in high vulnerabilities.

2022-01-31
Liu, Yong, Zhu, Xinghua, Wang, Jianzong, Xiao, Jing.  2021.  A Quantitative Metric for Privacy Leakage in Federated Learning. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3065–3069.
In the federated learning system, parameter gradients are shared among participants and the central modulator, while the original data never leave their protected source domain. However, the gradient itself might carry enough information for precise inference of the original data. By reporting their parameter gradients to the central server, client datasets are exposed to inference attacks from adversaries. In this paper, we propose a quantitative metric based on mutual information for clients to evaluate the potential risk of information leakage in their gradients. Mutual information has received increasing attention in the machine learning and data mining community over the past few years. However, existing mutual information estimation methods cannot handle high-dimensional variables. In this paper, we propose a novel method to approximate the mutual information between the high-dimensional gradients and batched input data. Experimental results show that the proposed metric reliably reflect the extent of information leakage in federated learning. In addition, using the proposed metric, we investigate the influential factors of risk level. It is proven that, the risk of information leakage is related to the status of the task model, as well as the inherent data distribution.
2022-05-05
Wang, Qibing, Du, Xin, Zhang, Kai, Pan, Junjun, Yu, Weiguo, Gao, Xiaoquan, Lin, Rihong.  2021.  Reliability Test Method of Power Grid Security Control System Based on BP Neural Network and Dynamic Group Simulation. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :680—685.

Aiming at the problems of imperfect dynamic verification of power grid security and stability control strategy and high test cost, a reliability test method of power grid security control system based on BP neural network and dynamic group simulation is proposed. Firstly, the fault simulation results of real-time digital simulation system (RTDS) software are taken as the data source, and the dynamic test data are obtained with the help of the existing dispatching data network, wireless virtual private network, global positioning system and other communication resources; Secondly, the important test items are selected through the minimum redundancy maximum correlation algorithm, and the test items are used to form a feature set, and then the BP neural network model is used to predict the test results. Finally, the dynamic remote test platform is tested by the dynamic whole group simulation of the security and stability control system. Compared with the traditional test methods, the proposed method reduces the test cost by more than 50%. Experimental results show that the proposed method can effectively complete the reliability test of power grid security control system based on dynamic group simulation, and reduce the test cost.

2022-08-26
Zhao, Yue, Shen, Yang, Qi, Yuanbo.  2021.  A Security Analysis of Chinese Robot Supply Chain Based on Open-Source Intelligence. 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). :219—222.

This paper argues that the security management of the robot supply chain would preferably focus on Sino-US relations and technical bottlenecks based on a comprehensive security analysis through open-source intelligence and data mining of associated discourses. Through the lens of the newsboy model and game theory, this study reconstructs the risk appraisal model of the robot supply chain and rebalances the process of the Sino-US competition game, leading to the prediction of China's strategic movements under the supply risks. Ultimately, this paper offers a threefold suggestion: increasing the overall revenue through cost control and scaled expansion, resilience enhancement and risk prevention, and outreach of a third party's cooperation for confrontation capabilities reinforcement.

2022-06-08
Dhoot, Anshita, Zong, Boyang, Saeed, Muhammad Salman, Singh, Karan.  2021.  Security Analysis of Private Intellectual Property. 2021 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1–7.

Intellectual Property Rights (IPR) results from years of research and wisdom by property owners, and it plays an increasingly important role in promoting economic development, technological progress, and cultural prosperity. Thus, we need to strengthen the degree of protection of IPR. However, as internet technology continues to open up the market for IPR, the ease of network operation has led to infringement of IPR in some cases. Intellectual property infringement has occurred in some cases. Also, Internet development's concealed and rapid nature has led to the fact that IPR infringers cannot be easily detected. This paper addresses how to protect the rights and interests of IPR holders in the context of the rapid development of the internet. This paper explains the IPR and proposes an algorithm to enhance security for a better security model to protect IPR. This proposes optimization techniques to detect intruder attacks for securing IPR, by using support vector machines (SVM), it provides better results to secure public and private intellectual data by optimizing technologies.

2022-02-04
Zhang, Mingyue.  2021.  System Component-Level Self-Adaptations for Security via Bayesian Games. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :102–104.

Security attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. However, modeling the system as a single player, as done in prior works in security domain, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game and model the defender (i.e., the system) at the granularity of components in system architecture. The system architecture model is translated into a Bayesian multi-player game, where each component is modeled as an independent player while security attacks are encoded as variant types for the components. The defensive strategy for the system is dynamically computed by solving the pure equilibrium to achieve the best possible system utility, improving the resiliency of the system against security attacks.

2022-03-08
Tian, Qian, Song, Qishun, Wang, Hongbo, Hu, Zhihong, Zhu, Siyu.  2021.  Verification Code Recognition Based on Convolutional Neural Network. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:1947—1950.

Verification code recognition system based on convolutional neural network. In order to strengthen the network security defense work, this paper proposes a novel verification code recognition system based on convolutional neural network. The system combines Internet technology and big data technology, combined with advanced captcha technology, can prevent hackers from brute force cracking behavior to a certain extent. In addition, the system combines convolutional neural network, which makes the verification code combine numbers and letters, which improves the complexity of the verification code and the security of the user account. Based on this, the system uses threshold segmentation method and projection positioning method to construct an 8-layer convolutional neural network model, which enhances the security of the verification code input link. The research results show that the system can enhance the complexity of captcha, improve the recognition rate of captcha, and improve the security of user accounting.

2023-01-30
Li, Nianyu, Zhang, Mingyue, Kang, Eunsuk, Garlan, David.  2021.  Engineering Secure Self-adaptive Systems with Bayesian Games. Fundamental Approaches to Software Engineering - 24th International Conference, FASE 2021.

Security attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. Game theory approaches have been explored in security to model malicious behaviors and design reliable defense for the system in a mathematically grounded manner. However, modeling the system as a single player, as done in prior works, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game theory and model the defender (i.e., the system) at the granularity of components. Under security attacks, the architecture model of the system is translated into a Bayesian multi-player game, where each component is explicitly modeled as an independent player while security attacks are encoded as variant types for the components. The optimal defensive strategy for the system is dynamically computed by solving the pure equilibrium (i.e., adaptation response) to achieve the best possible system utility, improving the resiliency of the system against security attacks. We illustrate our approach using an example involving load balancing and a case study on inter-domain routing.