Biblio
Filters: Keyword is Human Behavior [Clear All Filters]
Survey on Touch Behaviour in Smart Device for User Detection. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–8.
.
2022. Smart Phones being a revolution in this Modern era which is considered a boon as well as a curse, it is a known fact that most kids of the current generation are addictive to smartphones. The National Institute of Health (NIH) has carried out different studies such as exposure of smartphones to children under 12 years old, health risk associated with their usage, social implications, etc. One such study reveals that children who spend more than two hours a day, on smartphones have been seen performing poorly when it comes to language and cognitive skills. In addition, children who spend more than seven hours per day were diagnosed to have a thinner brain cortex. Hence, it is of great importance to control the amount of exposure of children to smartphones, as well as access to irregulated content. Significant research work has gone in this regard with a plethora of inputs features, feature extraction techniques, and machine learning models. This paper is a survey of the State-of-the-art techniques in detecting the age of the user using machine learning models on touch, keystroke dynamics, and sensor data.
ISSN: 2329-7190
Synthesis of Acoustic Wave Multiport Functions by using Coupling Matrix Methodologies. 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM). :56—59.
.
2022. Acoustic wave (AW) synthesis methodologies have become popular among AW filter designers because they provide a fast and precise seed to start with the design of AW devices. Nowadays, with the increasing complexity of carrier aggregation, there is a strong necessity to develop synthesis methods more focused on multiport filtering schemes. However, when dealing with multiport filtering functions, numerical accuracy plays an important role to succeed with the synthesis process since polynomial degrees are much higher as compared to the standalone filter case. In addition to polynomial degree, the number set of polynomial coefficients is also an important source of error during the extraction of the circuital elements of the filter. Nonetheless, in this paper is demonstrated that coupling matrix approaches are the best choice when the objective is to synthesize filtering functions with complex roots in their characteristic polynomials, which is the case of the channel polynomials of the multiport device.
Systematic Generation of XSS and SQLi Vulnerabilities in PHP as Test Cases for Static Code Analysis. 2022 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :261–268.
.
2022. Synthetic static code analysis test suites are important to test the basic functionality of tools. We present a framework that uses different source code patterns to generate Cross Site Scripting and SQL injection test cases. A decision tree is used to determine if the test cases are vulnerable. The test cases are split into two test suites. The first test suite contains 258,432 test cases that have influence on the decision trees. The second test suite contains 20 vulnerable test cases with different data flow patterns. The test cases are scanned with two commercial static code analysis tools to show that they can be used to benchmark and identify problems of static code analysis tools. Expert interviews confirm that the decision tree is a solid way to determine the vulnerable test cases and that the test suites are relevant.
TENET: Temporal CNN with Attention for Anomaly Detection in Automotive Cyber-Physical Systems. 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). :326—331.
.
2022. Modern vehicles have multiple electronic control units (ECUs) that are connected together as part of a complex distributed cyber-physical system (CPS). The ever-increasing communication between ECUs and external electronic systems has made these vehicles particularly susceptible to a variety of cyber-attacks. In this work, we present a novel anomaly detection framework called TENET to detect anomalies induced by cyber-attacks on vehicles. TENET uses temporal convolutional neural networks with an integrated attention mechanism to learn the dependency between messages traversing the in-vehicle network. Post deployment in a vehicle, TENET employs a robust quantitative metric and classifier, together with the learned dependencies, to detect anomalous patterns. TENET is able to achieve an improvement of 32.70% in False Negative Rate, 19.14% in the Mathews Correlation Coefficient, and 17.25% in the ROC-AUC metric, with 94.62% fewer model parameters, and 48.14% lower inference time compared to the best performing prior works on automotive anomaly detection.
The Threat of Deep Fake Technology to Trusted Identity Management. 2022 International Conference on Cyber Resilience (ICCR). :1—5.
.
2022. With the rapid development of artificial intelligence technology, deepfake technology based on deep learning is receiving more and more attention from society or the industry. While enriching people's cultural and entertainment life, in-depth fakes technology has also caused many social problems, especially potential risks to managing network credible identities. With the continuous advancement of deep fakes technology, the security threats and trust crisis caused by it will become more serious. It is urgent to take adequate measures to curb the abuse risk of deep fakes. The article first introduces the principles and characteristics of deep fakes technology and then deeply analyzes its severe challenges to network trusted identity management. Finally, it researches the supervision and technical level and puts forward targeted preventive countermeasures.
Tightly and Loosely Coupled Architectures for Inertial Navigation System and Doppler Velocity Log Integration at Autonomous Underwater Vehicles. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1—4.
.
2022. The Inertial Navigation System(INS) and Doppler Velocity Logs(DVL) which are used frequently on autonomous underwater vehicles can be fused under different types of integration architectures. These architectures differ in terms of algorithm requirements and complexity. DVL may experience acoustic beam losses during operation due to environmental factors and abilities of the sensor. In these situations, radial velocity information cannot be received from lost acoustic beam. In this paper, the performances of INS and DVL integration under tightly and loosely coupled architectures are comparatively presented with simulations. In the tightly coupled approach, navigation filter is updated with solely available beam measurements by using sequential measurement update method, and the sensitivity of this method is investigated for acoustic beam losses.
Towards a New Taxonomy of Insider Threats. 2022 IST-Africa Conference (IST-Africa). :1—10.
.
2022. This paper discusses the outcome of combining insider threat agent taxonomies with the aim of enhancing insider threat detection. The objectives sought to explore taxonomy combinations and investigate threat sophistication from the taxonomy combinations. Investigations revealed the plausibility of combining the various taxonomy categories to derive a new taxonomy. An observation on category combinations yielded the introduction of the concept of a threat path. The proposed taxonomy tree consisted of more than a million threat-paths obtained using a formula from combinatorics analysis. The taxonomy category combinations thus increase the insider threat landscape and hence the gap between insider threat agent sophistication and countermeasures. On the defensive side, knowledge of insider threat agent taxonomy category combinations has the potential to enhance defensive countermeasure tactics, techniques and procedures, thus increasing the chances of insider threat detection.
Towards a secure Software Defined Network with Adaptive Mitigation of DDoS attacks by Machine Learning Approaches. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–13.
.
2022. DDoS attacks produce a lot of traffic on the network. DDoS attacks may be fought in a novel method thanks to the rise of Software Defined Networking (SDN). DDoS detection and data gathering may lead to larger system load utilization among SDN as well as systems, much expense of SDN, slow reaction period to DDoS if they are conducted at regular intervals. Using the Identification Retrieval algorithm, we offer a new DDoS detection framework for detecting resource scarcity type DDoS attacks. In designed to check low-density DDoS attacks, we employ a combination of network traffic characteristics. The KSVD technique is used to generate a dictionary of network traffic parameters. In addition to providing legitimate and attack traffic models for dictionary construction, the suggested technique may be used to network traffic as well. Matching Pursuit and Wavelet-based DDoS detection algorithms are also implemented and compared using two separate data sets. Despite the difficulties in identifying LR-DoS attacks, the results of the study show that our technique has a detection accuracy of 89%. DDoS attacks are explained for each type of DDoS, and how SDN weaknesses may be exploited. We conclude that machine learning-based DDoS detection mechanisms and cutoff point DDoS detection techniques are the two most prevalent methods used to identify DDoS attacks in SDN. More significantly, the generational process, benefits, and limitations of each DDoS detection system are explained. This is the case in our testing environment, where the intrusion detection system (IDS) is able to block all previously identified threats
Towards Characterization of General Conditions for Correlated Differential Privacy. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :364–372.
.
2022. Differential privacy is a widely-used metric, which provides rigorous privacy definitions and strong privacy guarantees. Much of the existing studies on differential privacy are based on datasets where the tuples are independent, and thus are not suitable for correlated data protection. In this paper, we focus on correlated differential privacy, by taking the data correlations and the prior knowledge of the initial data into account. The data correlations are modeled by Bayesian conditional probabilities, and the prior knowledge refers to the exact values of the data. We propose general correlated differential privacy conditions for the discrete and continuous random noise-adding mechanisms, respectively. In case that the conditions are inaccurate due to the insufficient prior knowledge, we introduce the tuple dependence based on rough set theory to improve the correlated differential privacy conditions. The obtained theoretical results reveal the relationship between the correlations and the privacy parameters. Moreover, the improved privacy condition helps strengthen the mechanism utility. Finally, evaluations are conducted over a micro-grid system to verify the privacy protection levels and utility guaranteed by correlated differential private mechanisms.
ISSN: 2155-6814
Towards Design Patterns for Production Security. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—4.
.
2022. In Production System Engineering (PSE), domain experts aim at effectively and efficiently analyzing and mitigating information security risks to product and process qualities for manufacturing. However, traditional security standards do not connect security analysis to the value stream of the production system nor to production quality requirements. This paper aims at facilitating security analysis for production quality already in the design phase of PSE. In this paper, we (i) identify the connection between security and production quality, and (ii) introduce the Production Security Network (PSN) to efficiently derive reusable security requirements and design patterns for PSE. We evaluate the PSN with threat scenarios in a feasibility study. The study results indicate that the PSN satisfies the requirements for systematic security analysis. The design patterns provide a good foundation for improving the communication of domain experts by connecting security and quality concerns.
Towards Inference of DDoS Mitigation Rules. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–5.
.
2022. DDoS attacks still represent a severe threat to network services. While there are more or less workable solutions to defend against these attacks, there is a significant space for further research regarding automation of reactions and subsequent management. In this paper, we focus on one piece of the whole puzzle. We strive to automatically infer filtering rules which are specific to the current DoS attack to decrease the time to mitigation. We employ a machine learning technique to create a model of the traffic mix based on observing network traffic during the attack and normal period. The model is converted into the filtering rules. We evaluate our approach with various setups of hyperparameters. The results of our experiments show that the proposed approach is feasible in terms of the capability of inferring successful filtering rules.
ISSN: 2374-9709
Towards Modern Card Games with Large-Scale Action Spaces Through Action Representation. 2022 IEEE Conference on Games (CoG). :576–579.
.
2022. Axie infinity is a complicated card game with a huge-scale action space. This makes it difficult to solve this challenge using generic Reinforcement Learning (RL) algorithms. We propose a hybrid RL framework to learn action representations and game strategies. To avoid evaluating every action in the large feasible action set, our method evaluates actions in a fixed-size set which is determined using action representations. We compare the performance of our method with two baseline methods in terms of their sample efficiency and the winning rates of the trained models. We empirically show that our method achieves an overall best winning rate and the best sample efficiency among the three methods.
ISSN: 2325-4289
Traceability Method of Network Attack Based on Evolutionary Game. 2022 International Conference on Networking and Network Applications (NaNA). :232–236.
.
2022. Cyberspace is vulnerable to continuous malicious attacks. Traceability of network attacks is an effective defense means to curb and counter network attacks. In this paper, the evolutionary game model is used to analyze the network attack and defense behavior. On the basis of the quantification of attack and defense benefits, the replication dynamic learning mechanism is used to describe the change process of the selection probability of attack and defense strategies, and finally the evolutionary stability strategies and their solution curves of both sides are obtained. On this basis, the attack behavior is analyzed, and the probability curve of attack strategy and the optimal attack strategy are obtained, so as to realize the effective traceability of attack behavior.
Trampoline Over the Air: Breaking in IoT Devices Through MQTT Brokers. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :171—187.
.
2022. MQTT is widely adopted by IoT devices because it allows for the most efficient data transfer over a variety of communication lines. The security of MQTT has received increasing attention in recent years, and several studies have demonstrated the configurations of many MQTT brokers are insecure. Adversaries are allowed to exploit vulnerable brokers and publish malicious messages to subscribers. However, little has been done to understanding the security issues on the device side when devices handle unauthorized MQTT messages. To fill this research gap, we propose a fuzzing framework named ShadowFuzzer to find client-side vulnerabilities when processing incoming MQTT messages. To avoiding ethical issues, ShadowFuzzer redirects traffic destined for the actual broker to a shadow broker under the control to monitor vulnerabilities. We select 15 IoT devices communicating with vulnerable brokers and leverage ShadowFuzzer to find vulnerabilities when they parse MQTT messages. For these devices, ShadowFuzzer reports 34 zero-day vulnerabilities in 11 devices. We evaluated the exploitability of these vulnerabilities and received a total of 44,000 USD bug bounty rewards. And 16 CVE/CNVD/CN-NVD numbers have been assigned to us.
True Random Number Generation with the Shift-register Reconvergent-Fanout (SiRF) PUF. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :101–104.
.
2022. True Random Number Generator (TRNG) is an important hardware security primitive for system security. TRNGs are capable of providing random bits for initialization vectors in encryption engines, for padding and nonces in authentication protocols and for seeds to pseudo random number generators (PRNG). A TRNG needs to meet the same statistical quality standards as a physical unclonable function (PUF) with regard to randomness and uniqueness, and therefore one can envision a unified architecture for both functions. In this paper, we investigate a FPGA implementation of a TRNG using the Shift-register Reconvergent-Fanout (SiRF) PUF. The SiRF PUF measures path delays as a source of entropy within a engineered logic gate netlist. The delays are measured at high precision using a time-to-digital converter, and then processed into a random bitstring using a series of linear-time mathematical operations. The SiRF PUF algorithm that is used for key generation is reused for the TRNG, with simplifications that improve the bit generation rate of the algorithm. This enables the TRNG to leverage both fixed PUF-based entropy and random noise sources, and makes the TRNG resilient to temperature-voltage attacks. TRNG bitstrings generated from a programmable logic implementation of the SiRF PUF-TRNG on a set of FPGAs are evaluated using statistical testing tools.
U-CAN: A Convolutional Neural Network Based Intrusion Detection for Controller Area Networks. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1481–1488.
.
2022. The Controller area network (CAN) is the most extensively used in-vehicle network. It is set to enable communication between a number of electronic control units (ECU) that are widely found in most modern vehicles. CAN is the de facto in-vehicle network standard due to its error avoidance techniques and similar features, but it is vulnerable to various attacks. In this research, we propose a CAN bus intrusion detection system (IDS) based on convolutional neural networks (CNN). U-CAN is a segmentation model that is trained by monitoring CAN traffic data that are preprocessed using hamming distance and saliency detection algorithm. The model is trained and tested using publicly available datasets of raw and reverse-engineered CAN frames. With an F\_1 Score of 0.997, U-CAN can detect DoS, Fuzzy, spoofing gear, and spoofing RPM attacks of the publicly available raw CAN frames. The model trained on reverse-engineered CAN signals that contain plateau attacks also results in a true positive rate and false-positive rate of 0.971 and 0.998, respectively.
ISSN: 0730-3157
Updating the paradigm: Investigating the role of swift trust in human-robot teams. 2022 IEEE 3rd International Conference on Human-Machine Systems (ICHMS). :1–1.
.
2022. With the influx of technology use and human-robot teams, it is important to understand how swift trust is developed within these teams. Given this influx, we plan to study how surface cues (i.e., observable characteristics) and imported information (i.e., knowledge from external sources or personal experiences) effect the development of swift trust. We hypothesize that human-like surface level cues and positive imported information will yield higher swift trust. These findings will help the assignment of human robot teams in the future.
The Use of Blockchain for Digital Identity Management in Healthcare. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :1—6.
.
2022. Digitalization has occurred in almost all industries, one of them is health industry. Patients” medical records are now easier to be accessed and managed as all related data are stored in data storages or repositories. However, this system is still under development as number of patients still increasing. Lack of standardization might lead to patients losing their right to control their own data. Therefore, implementing private blockchain system with Self-Sovereign Identity (SSI) concept for identity management in health industry is a viable notion. With SSI, the patients will be benefited from having control over their own medical records and stored with higher security protocol. While healthcare providers will benefit in Know You Customer (KYC) process, if they handle new patients, who move from other healthcare providers. It will eliminate and shorten the process of updating patients' medical records from previous healthcare providers. Therefore, we suggest several flows in implementing blockchain for digital identity in healthcare industry to help overcome lack of patient's data control and KYC in current system. Nevertheless, implementing blockchain on health industry requires full attention from surrounding system and stakeholders to be realized.
Vehicle Security and Road Safety System Based on Internet of Things. 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET). :1–5.
.
2022. Roads are the backbone of our country, they play an important role for human progress. Roads seem to be dangerous and harmful for human beings on hills, near rivers, lakes and small ridges. It's possible with the help of IoT (Internet of things) to incorporate all the things made efficiently and effectively. IoT in combination with roads make daily life smart and excellent. This paper shows IoT technology will be the beginning of smart cities and it will reduce road accidents and collisions. If all vehicles are IoT based and connected with the internet, then an efficient method to guide, it performs urgent action, when less time is available. Internet and antenna technology in combination with IoT perform fully automation in our day-to-day life. It will provide excellent service as well as accuracy and precision.
Video Captcha Proposition based on VQA, NLP, Deep Learning and Computer Vision. 2022 5th International Conference on Advances in Science and Technology (ICAST). :196–200.
.
2022. Visual Question Answering or VQA is a technique used in diverse domains ranging from simple visual questions and answers on short videos to security. Here in this paper, we talk about the video captcha that will be deployed for user authentication. Randomly any short video of length 10 to 20 seconds will be displayed and automated questions and answers will be generated by the system using AI and ML. Automated Programs have maliciously affected gateways such as login, registering etc. Therefore, in today's environment it is necessary to deploy such security programs that can recognize the objects in a video and generate automated MCQs real time that can be of context like the object movements, color, background etc. The features in the video highlighted will be recorded for generating MCQs based on the short videos. These videos can be random in nature. They can be taken from any official websites or even from your own local computer with prior permission from the user. The format of the video must be kept as constant every time and must be cross checked before flashing it to the user. Once our system identifies the captcha and determines the authenticity of a user, the other website in which the user wants to login, can skip the step of captcha verification as it will be done by our system. A session will be maintained for the user, eliminating the hassle of authenticating themselves again and again for no reason. Once the video will be flashed for an IP address and if the answers marked by the user for the current video captcha are correct, we will add the information like the IP address, the video and the questions in our database to avoid repeating the same captcha for the same IP address. In this paper, we proposed the methodology of execution of the aforementioned and will discuss the benefits and limitations of video captcha along with the visual questions and answering.
VR, Deepfakes and Epistemic Security. 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). :93–98.
.
2022. In recent years, technological advancements in the AI and VR fields have increasingly often been paired with considerations on ethics and safety aimed at mitigating unintentional design failures. However, cybersecurity-oriented AI and VR safety research has emphasized the need to additionally appraise instantiations of intentional malice exhibited by unethical actors at pre- and post-deployment stages. On top of that, in view of ongoing malicious deepfake developments that can represent a threat to the epistemic security of a society, security-aware AI and VR design strategies require an epistemically-sensitive stance. In this vein, this paper provides a theoretical basis for two novel AIVR safety research directions: 1) VR as immersive testbed for a VR-deepfake-aided epistemic security training and 2) AI as catalyst within a deepfake-aided so-called cyborgnetic creativity augmentation facilitating an epistemically-sensitive threat modelling. For illustration, we focus our use case on deepfake text – an underestimated deepfake modality. In the main, the two proposed transdisciplinary lines of research exemplify how AIVR safety to defend against unethical actors could naturally converge toward AIVR ethics whilst counteracting epistemic security threats.
ISSN: 2771-7453
Vulnerability Modeling and Protection Strategies via Supervisory Control Theory. 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE). :559–560.
.
2022. The paper aims to discover vulnerabilities by application of supervisory control theory and to design a defensive supervisor against vulnerability attacks. Supervisory control restricts the system behavior to satisfy the control specifications. The existence condition of the supervisor, sometimes results in undesirable plant behavior, which can be regarded as a vulnerability of the control specifications. We aim to design a more robust supervisor against this vulnerability.
ISSN: 2378-8143
Web Browser Extension Development of Structured Query Language Injection Vulnerability Detection Using Long Short-Term Memory Algorithm. 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM). :1—5.
.
2022. Structured Query Language Injection (SQLi) is a client-side application vulnerability that allows attackers to inject malicious SQL queries with harmful intents, including stealing sensitive information, bypassing authentication, and even executing illegal operations to cause more catastrophic damage to users on the web application. According to OWASP, the top 10 harmful attacks against web applications are SQL Injection attacks. Moreover, based on data reports from the UK's National Fraud Authority, SQL Injection is responsible for 97% of data exposures. Therefore, in order to prevent the SQL Injection attack, detection SQLi system is essential. The contribution of this research is securing web applications by developing a browser extension for Google Chrome using Long Short-Term Memory (LSTM), which is a unique kind of RNN algorithm capable of learning long-term dependencies like SQL Injection attacks. The results of the model will be deployed in static analysis in a browser extension, and the LSTM algorithm will learn to identify the URL that has to be injected into Damn Vulnerable Web Application (DVWA) as a sample-tested web application. Experimental results show that the proposed SQLi detection model based on the LSTM algorithm achieves an accuracy rate of 99.97%, which means that a reliable client-side can effectively detect whether the URL being accessed contains a SQLi attack or not.
Web Platform for General Robot Controlling system. 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :109–112.
.
2022. AbuSaif is a human-like social robot designed and built at the UAE University's Artificial Intelligence and Robotics Lab. AbuSaif was initially operated by a classical personal computer (PC), like most of the existing social robots. Thus, most of the robot's functionalities are limited to the capacity of that mounted PC. To overcome this, in this study, we propose a web-based platform that shall take the benefits of clustering in cloud computing. Our proposed platform will increase the operational capability and functionality of AbuSaif, especially those needed to operate artificial intelligence algorithms. We believe that the robot will become more intelligent and autonomous using our proposed web platform.
ZeeStar: Private Smart Contracts by Homomorphic Encryption and Zero-knowledge Proofs. 2022 IEEE Symposium on Security and Privacy (SP). :179—197.
.
2022. Data privacy is a key concern for smart contracts handling sensitive data. The existing work zkay addresses this concern by allowing developers without cryptographic expertise to enforce data privacy. However, while zkay avoids fundamental limitations of other private smart contract systems, it cannot express key applications that involve operations on foreign data.We present ZeeStar, a language and compiler allowing non-experts to instantiate private smart contracts and supporting operations on foreign data. The ZeeStar language allows developers to ergonomically specify privacy constraints using zkay’s privacy annotations. The ZeeStar compiler then provably realizes these constraints by combining non-interactive zero-knowledge proofs and additively homomorphic encryption.We implemented ZeeStar for the public blockchain Ethereum. We demonstrated its expressiveness by encoding 12 example contracts, including oblivious transfer and a private payment system like Zether. ZeeStar is practical: it prepares transactions for our contracts in at most 54.7s, at an average cost of 339k gas.