Biblio

Found 5756 results

Filters: Keyword is Human Behavior  [Clear All Filters]
2023-05-12
Zhang, Chen, Wu, Zhouyang, Li, Xianghua, Liang, Jian, Jiang, Zhongyao, Luo, Ceheng, Wen, Fangjun, Wang, Guangda, Dai, Wei.  2022.  Resilience Assessment Method of Integrated Electricity and Gas System Based on Hetero-functional Graph Theory. 2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS). :34–39.
The resilience assessment of electric and gas networks gains importance due to increasing interdependencies caused by the coupling of gas-fired units. However, the gradually increasing scale of the integrated electricity and gas system (IEGS) poses a significant challenge to current assessment methods. The numerical analysis method is accurate but time-consuming, which may incur a significant computational cost in large-scale IEGS. Therefore, this paper proposes a resilience assessment method based on hetero-functional graph theory for IEGS to balance the accuracy with the computational complexity. In contrast to traditional graph theory, HFGT can effectively depict the coupled systems with inherent heterogeneity and can represent the structure of heterogeneous functional systems in a clear and unambiguous way. In addition, due to the advantages of modelling the system functionality, the effect of line-pack in the gas network on the system resilience is depicted more precisely in this paper. Simulation results on an IEGS with the IEEE 9-bus system and a 7-node gas system verify the effectiveness of the proposed method.
Song, Yanbo, Gao, Xianming, Li, Pengcheng, Yang, Chungang.  2022.  Resilience Network Controller Design for Multi-Domain SDN: A BDI-based Framework. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Network attacks are becoming more intense and characterized by complexity and persistence. Mechanisms that ensure network resilience to faults and threats should be well provided. Different approaches have been proposed to network resilience; however, most of them rely on static policies, which is unsuitable for current complex network environments and real-time requirements. To address these issues, we present a Belief-Desire-Intention (BDI) based multi-agent resilience network controller coupled with blockchain. We first clarify the theory and platform of the BDI, then discuss how the BDI evaluates the network resilience. In addition, we present the architecture, workflow, and applications of the resilience network controller. Simulation results show that the resilience network controller can effectively detect and mitigate distributed denial of service attacks.
ISSN: 2577-2465
Gao, Lin, Battistelli, Giorgio, Chisci, Luigi.  2022.  Resilience of multi-object density fusion against cyber-attacks. 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS). :7–12.
Recently, it has been proposed to deal with fusion of multi-object densities exploiting the minimum information loss (MIL) rule, which has shown its superiority over generalized covariance intersection (GCI) fusion whenever sensor nodes have low detection probability. On the contrary, GCI shows better performance than MIL when dense clutter is involved in the measurements. In this paper, we are going to study the behavior of multi-object fusion with MIL and, respectively, GCI rules in the situation wherein the sensor network is exposed to cyber-attacks. Both theoretical and numerical analyses demonstrate that MIL is more robust than GCI fusion when the multi-sensor system is subject to a packet substitution attack.
ISSN: 2475-7896
2023-02-03
Arumugam, Rajapandiyan, Subbaiyan, Thangavel.  2022.  A Review of Dynamic Pricing and Peer-to-Peer Energy Trading in Smart Cities with Emphasize on Electric Vehicles. 2022 4th International Conference on Energy, Power and Environment (ICEPE). :1–6.
There is momentous attention from researchers and practitioners all over the world towards one of the most advanced trends in the world, Smart cities. A smart city is an efficient and sustainable city that offers a superior life quality to all human beings through the optimum management of all its resources. Optimum energy management technique within the smart city is a challenging environment that needs a full focus on basic important needs and supports of the smart city. This includes Smart Grid (SG) infrastructure, Distributed Generation (DG) technology, Smart Home Energy Management System (HEMS), Smart Transportation System (STS), and Energy Storage System (ESS). Out of these five taxonomies, there have been some disputes addressed in profitability and security due to the major involvement of electromobility in the smart transportation system. It creates a big impact on the smart city environment. The disputes in profitability can be effectively handled with the use of dynamic pricing techniques and peer-to-peer (P2P) energy trading mechanisms. On the other hand, security disputes can be overwhelmed by the use of blockchain technology. This paper reviews the energy management-related work on smart cities with the consideration of these basic important needs and supports.
2023-08-17
Hariharasudan, V, Quraishi, Suhail Javed.  2022.  A Review on Blockchain Based Identity Management System. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :735—740.
The expansion of the internet has resulted in huge growth in every industry. It does, however, have a substantial impact on the downsides. Because of the internet's rapid growth, personally identifiable information (PII) should be kept secure in the coming years. Obtaining someone's personal information is rather simple nowadays. There are some established methods for keeping our personal information private. Further, it is essential because we must provide our identity cards to someone for every verification step. In this paper, we will look at some of the attempted methods for protecting our identities. We will highlight the research gaps and potential future enhancements in the research for more enhanced security based on our literature review.
2023-01-13
Saloni, Arora, Dilpreet Kaur.  2022.  A Review on The Concerns of Security Audit Using Machine Learning Techniques. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :835—839.
Successful information and communication technology (ICT) may propel administrative procedures forward quickly. In order to achieve efficient usage of TCT in their businesses, ICT strategies and plans should be examined to ensure that they align with the organization's visions and missions. Efficient software and hardware work together to provide relevant data that aids in the improvement of how we do business, learn, communicate, entertain, and work. This exposes them to a risky environment that is prone to both internal and outside threats. The term “security” refers to a level of protection or resistance to damage. Security can also be thought of as a barrier between assets and threats. Important terms must be understood in order to have a comprehensive understanding of security. This research paper discusses key terms, concerns, and challenges related to information systems and security auditing. Exploratory research is utilised in this study to find an explanation for the observed occurrences, problems, or behaviour. The study's findings include a list of various security risks that must be seriously addressed in any Information System and Security Audit.
2023-04-14
Raut, Yash, Pote, Shreyash, Boricha, Harshank, Gunjgur, Prathmesh.  2022.  A Robust Captcha Scheme for Web Security. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–6.
The internet has grown increasingly important in everyone's everyday lives due to the availability of numerous web services such as email, cloud storage, video streaming, music streaming, and search engines. On the other hand, attacks by computer programmes such as bots are a common hazard to these internet services. Captcha is a computer program that helps a server-side company determine whether or not a real user is requesting access. Captcha is a security feature that prevents unauthorised access to a user's account by protecting restricted areas from automated programmes, bots, or hackers. Many websites utilise Captcha to prevent spam and other hazardous assaults when visitors log in. However, in recent years, the complexity of Captcha solving has become difficult for humans too, making it less user friendly. To solve this, we propose creating a Captcha that is both simple and engaging for people while also robust enough to protect sensitive data from bots and hackers on the internet. The suggested captcha scheme employs animated artifacts, rotation, and variable fonts as resistance techniques. The proposed captcha technique proves successful against OCR bots with less than 15% accuracy while being easier to solve for human users with more than 98% accuracy.
ISSN: 2771-1358
2023-06-22
Elbasi, Ersin.  2022.  A Robust Information Hiding Scheme Using Third Decomposition Layer of Wavelet Against Universal Attacks. 2022 IEEE World AI IoT Congress (AIIoT). :611–616.
Watermarking is one of the most common data hiding techniques for multimedia elements. Broadcasting, copy control, copyright protection and authentication are the most frequently used application areas of the watermarking. Secret data can be embedded into the cover image with changing the values of the pixels in spatial domain watermarking. In addition to this method, cover image can be converted into one of the transformation such as Discrete Wavelet Transformation (DWT), Discrete Cousin Transformation (DCT) and Discrete Fourier Transformation (DFT). Later on watermark can be embedded high frequencies of transformation coefficients. In this work, cover image transformed one, two and three level DWT decompositions. Binary watermark is hided into the low and high frequencies in each decomposition. Experimental results show that watermarked image is robust, secure and resist against several geometric attacks especially JPEG compression, Gaussian noise and histogram equalization. Peak Signal-to-Noise Ratio (PSNR) and Similarity Ratio (SR) values show very optimal results when we compare the other frequency and spatial domain algorithms.
2023-09-18
Cao, Michael, Ahmed, Khaled, Rubin, Julia.  2022.  Rotten Apples Spoil the Bunch: An Anatomy of Google Play Malware. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1919—1931.
This paper provides an in-depth analysis of Android malware that bypassed the strictest defenses of the Google Play application store and penetrated the official Android market between January 2016 and July 2021. We systematically identified 1,238 such malicious applications, grouped them into 134 families, and manually analyzed one application from 105 distinct families. During our manual analysis, we identified malicious payloads the applications execute, conditions guarding execution of the payloads, hiding techniques applications employ to evade detection by the user, and other implementation-level properties relevant for automated malware detection. As most applications in our dataset contain multiple payloads, each triggered via its own complex activation logic, we also contribute a graph-based representation showing activation paths for all application payloads in form of a control- and data-flow graph. Furthermore, we discuss the capabilities of existing malware detection tools, put them in context of the properties observed in the analyzed malware, and identify gaps and future research directions. We believe that our detailed analysis of the recent, evasive malware will be of interest to researchers and practitioners and will help further improve malware detection tools.
2023-06-09
Wang, Jinwen, Li, Ao, Li, Haoran, Lu, Chenyang, Zhang, Ning.  2022.  RT-TEE: Real-time System Availability for Cyber-physical Systems using ARM TrustZone. 2022 IEEE Symposium on Security and Privacy (SP). :352—369.
Embedded devices are becoming increasingly pervasive in safety-critical systems of the emerging cyber-physical world. While trusted execution environments (TEEs), such as ARM TrustZone, have been widely deployed in mobile platforms, little attention has been given to deployment on real-time cyber-physical systems, which present a different set of challenges compared to mobile applications. For safety-critical cyber-physical systems, such as autonomous drones or automobiles, the current TEE deployment paradigm, which focuses only on confidentiality and integrity, is insufficient. Computation in these systems also needs to be completed in a timely manner (e.g., before the car hits a pedestrian), putting a much stronger emphasis on availability.To bridge this gap, we present RT-TEE, a real-time trusted execution environment. There are three key research challenges. First, RT-TEE bootstraps the ability to ensure availability using a minimal set of hardware primitives on commodity embedded platforms. Second, to balance real-time performance and scheduler complexity, we designed a policy-based event-driven hierarchical scheduler. Third, to mitigate the risks of having device drivers in the secure environment, we designed an I/O reference monitor that leverages software sandboxing and driver debloating to provide fine-grained access control on peripherals while minimizing the trusted computing base (TCB).We implemented prototypes on both ARMv8-A and ARMv8-M platforms. The system is tested on both synthetic tasks and real-life CPS applications. We evaluated rover and plane in simulation and quadcopter both in simulation and with a real drone.
2023-07-12
Hadi, Ahmed Hassan, Abdulshaheed, Sameer Hameed, Wadi, Salim Muhsen.  2022.  Safeguard Algorithm by Conventional Security with DNA Cryptography Method. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST). :195—201.
Encryption defined as change information process (which called plaintext) into an unreadable secret format (which called ciphertext). This ciphertext could not be easily understood by somebody except authorized parson. Decryption is the process to converting ciphertext back into plaintext. Deoxyribonucleic Acid (DNA) based information ciphering techniques recently used in large number of encryption algorithms. DNA used as data carrier and the modern biological technology is used as implementation tool. New encryption algorithm based on DNA is proposed in this paper. The suggested approach consists of three steps (conventional, stream cipher and DNA) to get high security levels. The character was replaced by shifting depend character location in conventional step, convert to ASCII and AddRoundKey was used in stream cipher step. The result from second step converted to DNA then applying AddRoundKey with DNA key. The evaluation performance results proved that the proposed algorithm cipher the important data with high security levels.
2023-01-06
Guri, Mordechai.  2022.  SATAn: Air-Gap Exfiltration Attack via Radio Signals From SATA Cables. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
This paper introduces a new type of attack on isolated, air-gapped workstations. Although air-gap computers have no wireless connectivity, we show that attackers can use the SATA cable as a wireless antenna to transfer radio signals at the 6 GHz frequency band. The Serial ATA (SATA) is a bus interface widely used in modern computers and connects the host bus to mass storage devices such as hard disk drives, optical drives, and solid-state drives. The prevalence of the SATA interface makes this attack highly available to attackers in a wide range of computer systems and IT environments. We discuss related work on this topic and provide technical background. We show the design of the transmitter and receiver and present the implementation of these components. We also demonstrate the attack on different computers and provide the evaluation. The results show that attackers can use the SATA cable to transfer a brief amount of sensitive information from highly secured, air-gap computers wirelessly to a nearby receiver. Furthermore, we show that the attack can operate from user mode, is effective even from inside a Virtual Machine (VM), and can successfully work with other running workloads in the background. Finally, we discuss defense and mitigation techniques for this new air-gap attack.
2023-02-28
Hroub, Ayman, Elrabaa, Muhammad E. S..  2022.  SecSoC: A Secure System on Chip Architecture for IoT Devices. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :41—44.
IoT technology is finding new applications every day and everywhere in our daily lives. With that, come new use cases with new challenges in terms of device and data security. One of such challenges arises from the fact that many IoT devices/nodes are no longer being deployed on owners' premises, but rather on public or private property other than the owner's. With potential physical access to the IoT node, adversaries can launch many attacks that circumvent conventional protection methods. In this paper, we propose Secure SoC (SecSoC), a secure system-on-chip architecture that mitigates such attacks. This include logical memory dump attacks, bus snooping attacks, and compromised operating systems. SecSoC relies on two main mechanisms, (1) providing security extensions to the compute engine that runs the user application without changing its instruction set, (2) adding a security management unit (SMU) that provide HW security primitives for encryption, hashing, random number generators, and secrets store (keys, certificates, etc.). SecSoC ensures that no secret or sensitive data can leave the SoC IC in plaintext. SecSoC is being implemented in Bluespec System V erilog. The experimental results will reveal the area, power, and cycle time overhead of these security extensions. Overall performance (total execution time) will also be evaluated using IoT benchmarks.
2023-07-20
Moni, Shafika Showkat, Gupta, Deepti.  2022.  Secure and Efficient Privacy-preserving Authentication Scheme using Cuckoo Filter in Remote Patient Monitoring Network. 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA). :208—216.
With the ubiquitous advancement in smart medical devices and systems, the potential of Remote Patient Monitoring (RPM) network is evolving in modern healthcare systems. The medical professionals (doctors, nurses, or medical experts) can access vitals and sensitive physiological information about the patients and provide proper treatment to improve the quality of life through the RPM network. However, the wireless nature of communication in the RPM network makes it challenging to design an efficient mechanism for secure communication. Many authentication schemes have been proposed in recent years to ensure the security of the RPM network. Pseudonym, digital signature, and Authenticated Key Exchange (AKE) protocols are used for the Internet of Medical Things (IoMT) to develop secure authorization and privacy-preserving communication. However, traditional authentication protocols face overhead challenges due to maintaining a large set of key-pairs or pseudonyms results on the hospital cloud server. In this research work, we identify this research gap and propose a novel secure and efficient privacy-preserving authentication scheme using cuckoo filters for the RPM network. The use of cuckoo filters in our proposed scheme provides an efficient way for mutual anonymous authentication and a secret shared key establishment process between medical professionals and patients. Moreover, we identify the misbehaving sensor nodes using a correlation-based anomaly detection model to establish secure communication. The security analysis and formal security validation using SPAN and AVISPA tools show the robustness of our proposed scheme against message modification attacks, replay attacks, and man-in-the-middle attacks.
2023-02-03
Zhu, Feng, Shen, Peisong, Chen, Kaini, Ma, Yucheng, Chen, Chi.  2022.  A Secure and Practical Sample-then-lock Scheme for Iris Recognition. 2022 26th International Conference on Pattern Recognition (ICPR). :833–839.
Sample-then-lock construction is a reusable fuzzy extractor for low-entropy sources. When applied on iris recognition scenarios, many subsets of an iris-code are used to lock the cryptographic key. The security of this construction relies on the entropy of subsets of iris codes. Simhadri et al. reported a security level of 32 bits on iris sources. In this paper, we propose two kinds of attacks to crack existing sample-then-lock schemes. Exploiting the low-entropy subsets, our attacks can break the locked key and the enrollment iris-code respectively in less than 220 brute force attempts. To protect from these proposed attacks, we design an improved sample-then-lock scheme. More precisely, our scheme employs stability and discriminability to select high-entropy subsets to lock the genuine secret, and conceals genuine locker by a large amount of chaff lockers. Our experiment verifies that existing schemes are vulnerable to the proposed attacks with a security level of less than 20 bits, while our scheme can resist these attacks with a security level of more than 100 bits when number of genuine subsets is 106.
ISSN: 2831-7475
2023-03-03
Ayati, Seyed Aref, Naji, Hamid Reza.  2022.  A Secure mechanism to protect UAV communications. 2022 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). :1–6.
This paper presents a novel authentication method based on a distributed version of Kerberos for UAVs. One of the major problems of UAVs in recent years has been cyber-attacks which allow attackers to control the UAV or access its information. The growing use of UAVs has encouraged us to investigate the methods of their protection especially authentication of their users. In the past, the Kerberos system was rarely used for authentication in UAV systems. In our proposed method, based on a distributed version of Kerberos, we can authenticate multiple ground stations, users, and controllers for one or more UAVs. This method considers most of the security aspects to protect UAV systems mainly in the authentication phase and improves the security of UAVs and ground control stations and their communications considerably.
ISSN: 2771-1374
2023-03-17
Pham, Hong Thai, Nguyen, Khanh Nam, Phun, Vy Hoa, Dang, Tran Khanh.  2022.  Secure Recommender System based on Neural Collaborative Filtering and Federated Learning. 2022 International Conference on Advanced Computing and Analytics (ACOMPA). :1–11.
A recommender system aims to suggest the most relevant items to users based on their personal data. However, data privacy is a growing concern for anyone. Secure recommender system is a research direction to preserve user privacy while maintaining as high performance as possible. The most recent strategy is to use Federated Learning, a machine learning technique for privacy-preserving distributed training. In Federated Learning, a subset of users will be selected for training model using data at local systems, the server will securely aggregate the computing result from local models to generate a global model, finally that model will give recommendations to users. In this paper, we present a novel algorithm to train Collaborative Filtering recommender system specialized for the ranking task in Federated Learning setting, where the goal is to protect user interaction information (i.e., implicit feedback). Specifically, with the help of the algorithm, the recommender system will be trained by Neural Collaborative Filtering, one of the state-of-the-art matrix factorization methods and Bayesian Personalized Ranking, the most common pairwise approach. In contrast to existing approaches which protect user privacy by requiring users to download/upload the information associated with all interactions that they can possibly interact with in order to perform training, the algorithm can protect user privacy at low communication cost, where users only need to obtain/transfer the information related to a small number of interactions per training iteration. Above all, through extensive experiments, the algorithm has demonstrated to utilize user data more efficient than the most recent research called FedeRank, while ensuring that user privacy is still preserved.
2023-08-04
AnishFathima, B., Mahaboob, M., Kumar, S.Gokul, Jabakumar, A.Kingsly.  2022.  Secure Wireless Sensor Network Energy Optimization Model with Game Theory and Deep Learning Algorithm. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1746–1751.
Rational and smart decision making by means of strategic interaction and mathematical modelling is the key aspect of Game theory. Security games based on game theory are used extensively in cyberspace for various levels of security. The contemporary security issues can be modelled and analyzed using game theory as a robust mathematical framework. The attackers, defenders and the adversarial as well as defensive interactions can be captured using game theory. The security games equilibrium evaluation can help understand the attackers' strategies and potential threats at a deeper level for efficient defense. Wireless sensor network (WSN) designs are greatly benefitted by game theory. A deep learning adversarial network algorithm is used in combination with game theory enabling energy efficiency, optimal data delivery and security in a WSN. The trade-off between energy resource utilization and security is balanced using this technique.
ISSN: 2575-7288
2023-07-12
Bari, N., Wajid, M., Ali Shah, M., Ejaz, G., Stanikzai, A. Q..  2022.  Securing digital economies byimplementing DNA cryptography with amino acid and one-time pad. Competitive Advantage in the Digital Economy (CADE 2022). 2022:99—104.
Technology is transforming rapidly. Security during data transmission is an increasingly critical and essential factor for the integrity and confidentiality of data in the financial domain, such as e-commerce transactions and bank transactions, etc. We cannot overestimate the importance of encryption/decryption of information in the digital economy. The need to strengthen and secure the digital economy is urgent. Cryptography maintains the security and integrity of data kept on computers and data communicated over the internet using encryption/decryption. A new concept in cryptography named DNA cryptography has attracted the interest of information security professionals. The DNA cryptography method hides data using a DNA sequence, with DNA encryption converting binary data into the DNA sequence. Deoxy Ribonucleic Acid (DNA) is a long polymer strand having nitrogen bases adenine (A), thymine (T), cytosine (C), and guanine (G), which play an important role in plain text encoding and decoding. DNA has high storage capacity, fast processing, and high computation capacity, and is more secure than other cryptography algorithms. DNA cryptography supports both symmetric and asymmetric cryptography. DNA cryptography can encrypt numeric values, English language and unicast. The main aim of this paper is to explain different aspects of DNA cryptography and how it works. We also compare different DNA algorithms/methods proposed in a previous paper, and implement DNA cryptography using one-time pad (OTP) and amino acid sequence using java language. OTP is used for symmetric key generation and the DNA sequence is converted to an amino acid sequence to create confusion.
2023-03-31
Fan, Wenjun, Wuthier, Simeon, Hong, Hsiang-Jen, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.  2022.  The Security Investigation of Ban Score and Misbehavior Tracking in Bitcoin Network. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :191–201.
Bitcoin P2P networking is especially vulnerable to networking threats because it is permissionless and does not have the security protections based on the trust in identities, which enables the attackers to manipulate the identities for Sybil and spoofing attacks. The Bitcoin node keeps track of its peer’s networking misbehaviors through ban scores. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS (BM-DoS) attacks but also vulnerable to the Defamation attack as the network adversary can exploit the ban score to defame innocent peers. To defend against these threats, we design an anomaly detection approach that is effective, lightweight, and tailored to the networking threats exploiting Bitcoin’s ban-score mechanism. We prototype our threat discoveries against a real-world Bitcoin node connected to the Bitcoin Mainnet and conduct experiments based on the prototype implementation. The experimental results show that the attacks have devastating impacts on the targeted victim while being cost-effective on the attacker side. For example, an attacker can ban a peer in two milliseconds and reduce the victim’s mining rate by hundreds of thousands of hash computations per second. Furthermore, to counter the threats, we empirically validate our detection countermeasure’s effectiveness and performances against the BM-DoS and Defamation attacks.
ISSN: 2575-8411
2023-09-01
Gu, Yujie, Akao, Sonata, Esfahani, Navid Nasr, Miao, Ying, Sakurai, Kouichi.  2022.  On the Security Properties of Combinatorial All-or-nothing Transforms. 2022 IEEE International Symposium on Information Theory (ISIT). :1447—1452.
All-or-nothing transforms (AONT) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have many applications in cryptography and information security. Later the unconditionally secure AONT and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs s-tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs s-tuples are equiprobable, and has weak security provided that all the inputs s-tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial (t, s, v)-AONTs. Concretely, we consider the typical scenario that all the s inputs take values independently (but not necessarily identically) and quantify the amount of information H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) about any t inputs \textbackslashmathcalX that is not revealed by any s−t outputs \textbackslashmathcalY. In particular, we establish the general lower and upper bounds on H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases.
2023-05-12
Yang, Yekai, Chen, Bei, Xu, Kun, Niu, Yugang.  2022.  Security Sliding Mode Control for Interval Type-2 Fuzzy Systems Under Hybrid Cyber-Attacks. 2022 13th Asian Control Conference (ASCC). :1033–1038.
In this work, the security sliding mode control issue is studied for interval type-2 (IT2) fuzzy systems under the unreliable network. The deception attacks and the denial-of-service (DoS) attacks may occur in the sensor-controller channels to affect the transmission of the system state, and these attacks are described via two independent Bernoulli stochastic variables. By adopting the compensation strategy and utilizing the available state, the new membership functions are constructed to design the fuzzy controller with the different fuzzy rules from the fuzzy model. Then, under the mismatched membership function, the designed security controller can render the closed-loop IT2 fuzzy system to be stochastically stable and the sliding surface to be reachable. Finally, the simulation results verify the security control scheme.
ISSN: 2770-8373
2023-02-03
Triyanto, Aripin, Sunardi, Ariyawan, Nurtiyanto, Woro Agus, Koiru Ihksanudin, Moch, Mardiansyah.  2022.  Security System In The Safe With The Personal Identification Method Of Number Identification With Modulo Arthmatic Patterns. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). :1–6.
The burglary of a safe in the city of Jombang, East Java, lost valuables belonging to the Cemerlang Multipurpose Trading Cooperative. Therefore, a security system tool was created in the safe that serves as a place to store valuables and important assets. Change the security system using the security system with a private unique method with modulo arithmetic pattern. The security system of the safe is designed in layers which are attached with the RFID tag by registering and then verifying it on the card. Entering the password on the card cannot be read or is not performed, then the system will refuse to open it. arduino mega type 256 components, RFID tag is attached to the RFID reader, only one validated passive tag can open access to the security system, namely number B9 20 E3 0F. Meanwhile, of the ten passwords entered, only three match the modulo arithmetic format and can open the security system, namely password numbers 22540, 51324 and 91032. The circuit system on the transistor in the solenoid driver circuit works after the safety system opens. The servo motor can rotate according to the input of the open 900 servo angle rotation program.
ISSN: 2767-7826
2023-02-17
Yerima, Suleiman Y., Bashar, Abul.  2022.  Semi-supervised novelty detection with one class SVM for SMS spam detection. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1–4.
The volume of SMS messages sent on a daily basis globally has continued to grow significantly over the past years. Hence, mobile phones are becoming increasingly vulnerable to SMS spam messages, thereby exposing users to the risk of fraud and theft of personal data. Filtering of messages to detect and eliminate SMS spam is now a critical functionality for which different types of machine learning approaches are still being explored. In this paper, we propose a system for detecting SMS spam using a semi-supervised novelty detection approach based on one class SVM classifier. The system is built as an anomaly detector that learns only from normal SMS messages thus enabling detection models to be implemented in the absence of labelled SMS spam training examples. We evaluated our proposed system using a benchmark dataset consisting of 747 SMS spam and 4827 non-spam messages. The results show that our proposed method out-performed the traditional supervised machine learning approaches based on binary, frequency or TF-IDF bag-of-words. The overall accuracy was 98% with 100% SMS spam detection rate and only around 3% false positive rate.
ISSN: 2157-8702
2023-03-17
Zhao, Ran, Qin, Qi, Xu, Ningya, Nan, Guoshun, Cui, Qimei, Tao, Xiaofeng.  2022.  SemKey: Boosting Secret Key Generation for RIS-assisted Semantic Communication Systems. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–5.
Deep learning-based semantic communications (DLSC) significantly improve communication efficiency by only transmitting the meaning of the data rather than a raw message. Such a novel paradigm can brace the high-demand applications with massive data transmission and connectivities, such as automatic driving and internet-of-things. However, DLSC are also highly vulnerable to various attacks, such as eavesdropping, surveillance, and spoofing, due to the openness of wireless channels and the fragility of neural models. To tackle this problem, we present SemKey, a novel physical layer key generation (PKG) scheme that aims to secure the DLSC by exploring the underlying randomness of deep learning-based semantic communication systems. To boost the generation rate of the secret key, we introduce a reconfigurable intelligent surface (RIS) and tune its elements with the randomness of semantic drifts between a transmitter and a receiver. Precisely, we first extract the random features of the semantic communication system to form the randomly varying switch sequence of the RIS-assisted channel and then employ the parallel factor-based channel detection method to perform the channel detection under RIS assistance. Experimental results show that our proposed SemKey significantly improves the secret key generation rate, potentially paving the way for physical layer security for DLSC.
ISSN: 2577-2465