Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2020-04-20
Lefebvre, Dimitri, Hadjicostis, Christoforos N..  2019.  Trajectory-observers of timed stochastic discrete event systems: Applications to privacy analysis. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). :1078–1083.
Various aspects of security and privacy in many application domains can be assessed based on proper analysis of successive measurements that are collected on a given system. This work is devoted to such issues in the context of timed stochastic Petri net models. We assume that certain events and part of the marking trajectories are observable to adversaries who aim to determine when the system is performing secret operations, such as time intervals during which the system is executing certain critical sequences of events (as captured, for instance, in language-based opacity formulations). The combined use of the k-step trajectory-observer and the Markov model of the stochastic Petri net leads to probabilistic indicators helpful for evaluating language-based opacity of the given system, related timing aspects, and possible strategies to improve them.
2019-11-18
Chowdhary, Ankur, Huang, Dijiang, Alshamrani, Adel, Kang, Myong, Kim, Anya, Velazquez, Alexander.  2019.  TRUFL: Distributed Trust Management Framework in SDN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Software Defined Networking (SDN) has emerged as a revolutionary paradigm to manage cloud infrastructure. SDN lacks scalable trust setup and verification mechanism between Data Plane-Control Plane elements, Control Plane elements, and Control Plane-Application Plane. Trust management schemes like Public Key Infrastructure (PKI) used currently in SDN are slow for trust establishment in a larger cloud environment. We propose a distributed trust mechanism - TRUFL to establish and verify trust in SDN. The distributed framework utilizes parallelism in trust management, in effect faster transfer rates and reduced latency compared to centralized trust management. The TRUFL framework scales well with the number of OpenFlow rules when compared to existing research works.
2020-04-06
Chen, Yuxiang, Dong, Guishan, Bai, Jian, Hao, Yao, Li, Feng, Peng, Haiyang.  2019.  Trust Enhancement Scheme for Cross Domain Authentication of PKI System. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :103–110.
Public Key Infrastructure (PKI) has been popularized in many scenarios such as e-government applications, enterprises, etc. Due to the construction of PKI system of various regions and departments, there formed a lot of isolated PKI management domains, cross-domain authentication has become a problem that cannot ignored, which also has some traditional solutions such as cross-authentication, trust list, etc. However, some issues still exist, which hinder the popularity of unified trust services. For example, lack of unified cross domain standard, the update period of Certificate Revocation List (CRL) is too long, which affects the security of cross-domain authentication. In this paper, we proposed a trust transferring model by using blockchain consensus instead of traditional trusted third party for e-government applications. We exploit how to solve the unified trust service problem of PKI at the national level through consensus and transfer some CA management functions to the blockchain. And we prove the scheme's feasibility from engineering perspective. Besides, the scheme has enough scalability to satisfy trust transfer requirements of multiple PKI systems. Meanwhile, the security and efficiency are also guaranteed compared with traditional solutions.
2020-02-17
Letychevskyi, Oleksandr.  2019.  Two-Level Algebraic Method for Detection of Vulnerabilities in Binary Code. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:1074–1077.
This study introduces formal methods for detection of vulnerabilities in binary code. It considers the transformation of binary code into behavior algebra expressions and formalization of vulnerabilities. The detection method has two levels: behavior matching and symbolic execution with vulnerability pattern matching. This enables more efficient performance.
Ullah, Imtiaz, Mahmoud, Qusay H..  2019.  A Two-Level Hybrid Model for Anomalous Activity Detection in IoT Networks. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.
In this paper we propose a two-level hybrid anomalous activity detection model for intrusion detection in IoT networks. The level-1 model uses flow-based anomaly detection, which is capable of classifying the network traffic as normal or anomalous. The flow-based features are extracted from the CICIDS2017 and UNSW-15 datasets. If an anomaly activity is detected then the flow is forwarded to the level-2 model to find the category of the anomaly by deeply examining the contents of the packet. The level-2 model uses Recursive Feature Elimination (RFE) to select significant features and Synthetic Minority Over-Sampling Technique (SMOTE) for oversampling and Edited Nearest Neighbors (ENN) for cleaning the CICIDS2017 and UNSW-15 datasets. Our proposed model precision, recall and F score for level-1 were measured 100% for the CICIDS2017 dataset and 99% for the UNSW-15 dataset, while the level-2 model precision, recall, and F score were measured at 100 % for the CICIDS2017 dataset and 97 % for the UNSW-15 dataset. The predictor we introduce in this paper provides a solid framework for the development of malicious activity detection in IoT networks.
2020-04-17
Yang, Zihan, Mi, Zeyu, Xia, Yubin.  2019.  Undertow: An Intra-Kernel Isolation Mechanism for Hardware-Assisted Virtual Machines. 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). :257—2575.
The prevalence of Cloud Computing has appealed many users to put their business into low-cost and flexible cloud servers instead of bare-metal machines. Most virtual machines in the cloud run commodity operating system(e.g., linux), and the complexity of such operating systems makes them more bug-prone and easier to be compromised. To mitigate the security threats, previous works attempt to mediate and filter system calls, transform all unpopular paths into popular paths, or implement a nested kernel along with the untrusted outter kernel to enforce certain security policies. However, such solutions only enforce read-only protection or assume that popular paths in the kernel to contain almost no bug, which is not always the case in the real world. To overcome their shortcomings and combine their advantages as much as possible, we propose a hardware-assisted isolation mechanism that isolates untrusted part of the kernel. To achieve isolation, we prepare multiple restricted Extended Page Table (EPT) during boot time, each of which has certain critical data unmapped from it so that the code executing in the isolated environment could not access sensitive data. We leverage the VMFUNC instruction already available in recent Intel processors to directly switch to another pre-defined EPT inside guest virtual machine without trapping into the underlying hypervisor, which is faster than the traditional trap-and-emulate procedure. The semantic gap is minimized and real-time check is achieved by allowing EPT violations to be converted to Virtualization Exception (VE), which could be handled inside guest kernel in non-root mode. Our preliminary evaluation shows that with hardware virtualization feature, we are able to run the untrusted code in an isolated environment with negligible overhead.
2020-08-03
Parmar, Manisha, Domingo, Alberto.  2019.  On the Use of Cyber Threat Intelligence (CTI) in Support of Developing the Commander's Understanding of the Adversary. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Cyber Threat Intelligence (CTI) is a rapidly developing field which has evolved in direct response to exponential growth in cyber related crimes and attacks. CTI supports Communication and Information System (CIS)Security in order to bolster defenses and aids in the development of threat models that inform an organization's decision making process. In a military organization like NATO, CTI additionally supports Cyberspace Operations by providing the Commander with essential intelligence about the adversary, their capabilities and objectives while operating in and through cyberspace. There have been many contributions to the CTI field; a noteworthy contribution is the ATT&CK® framework by the Mitre Corporation. ATT&CK® contains a comprehensive list of adversary tactics and techniques linked to custom or publicly known Advanced Persistent Threats (APT) which aids an analyst in the characterization of Indicators of Compromise (IOCs). The ATT&CK® framework also demonstrates possibility of supporting an organization with linking observed tactics and techniques to specific APT behavior, which may assist with adversary characterization and identification, necessary steps towards attribution. The NATO Allied Command Transformation (ACT) and the NATO Communication and Information Agency (NCI Agency) have been experimenting with the use of deception techniques (including decoys) to increase the collection of adversary related data. The collected data is mapped to the tactics and techniques described in the ATT&CK® framework, in order to derive evidence to support adversary characterization; this intelligence is pivotal for the Commander to support mission planning and determine the best possible multi-domain courses of action. This paper describes the approach, methodology, outcomes and next steps for the conducted experiments.
2020-05-08
Lavrova, Daria, Zegzhda, Dmitry, Yarmak, Anastasiia.  2019.  Using GRU neural network for cyber-attack detection in automated process control systems. 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1—3.
This paper provides an approach to the detection of information security breaches in automated process control systems (APCS), which consists in forecasting multivariate time series formed from the values of the operating parameters of the end system devices. Using an experimental model of water treatment, a comparison was made of the forecasting results for the parameters characterizing the operation of the entire model, and for the parameters characterizing the flow of individual subprocesses implemented by the model. For forecasting, GRU-neural network training was performed.
2020-04-20
Huang, Zhen, Lie, David, Tan, Gang, Jaeger, Trent.  2019.  Using Safety Properties to Generate Vulnerability Patches. 2019 IEEE Symposium on Security and Privacy (SP). :539–554.
Security vulnerabilities are among the most critical software defects in existence. When identified, programmers aim to produce patches that prevent the vulnerability as quickly as possible, motivating the need for automatic program repair (APR) methods to generate patches automatically. Unfortunately, most current APR methods fall short because they approximate the properties necessary to prevent the vulnerability using examples. Approximations result in patches that either do not fix the vulnerability comprehensively, or may even introduce new bugs. Instead, we propose property-based APR, which uses human-specified, program-independent and vulnerability-specific safety properties to derive source code patches for security vulnerabilities. Unlike properties that are approximated by observing the execution of test cases, such safety properties are precise and complete. The primary challenge lies in mapping such safety properties into source code patches that can be instantiated into an existing program. To address these challenges, we propose Senx, which, given a set of safety properties and a single input that triggers the vulnerability, detects the safety property violated by the vulnerability input and generates a corresponding patch that enforces the safety property and thus, removes the vulnerability. Senx solves several challenges with property-based APR: it identifies the program expressions and variables that must be evaluated to check safety properties and identifies the program scopes where they can be evaluated, it generates new code to selectively compute the values it needs if calling existing program code would cause unwanted side effects, and it uses a novel access range analysis technique to avoid placing patches inside loops where it could incur performance overhead. Our evaluation shows that the patches generated by Senx successfully fix 32 of 42 real-world vulnerabilities from 11 applications including various tools or libraries for manipulating graphics/media files, a programming language interpreter, a relational database engine, a collection of programming tools for creating and managing binary programs, and a collection of basic file, shell, and text manipulation tools.
2020-08-03
Xiong, Chen, Chen, Hua, Cai, Ming, Gao, Jing.  2019.  A Vehicle Trajectory Adversary Model Based on VLPR Data. 2019 5th International Conference on Transportation Information and Safety (ICTIS). :903–912.
Although transport agency has employed desensitization techniques to deal with the privacy information when publicizing vehicle license plate recognition (VLPR) data, the adversaries can still eavesdrop on vehicle trajectories by certain means and further acquire the associated person and vehicle information through background knowledge. In this work, a privacy attacking method by using the desensitized VLPR data is proposed to link the vehicle trajectory. First the road average speed is evaluated by analyzing the changes of traffic flow, which is used to estimate the vehicle's travel time to the next VLPR system. Then the vehicle suspicion list is constructed through the time relevance of neighboring VLPR systems. Finally, since vehicles may have the same features like color, type, etc, the target trajectory will be located by filtering the suspected list by the rule of qualified identifier (QI) attributes and closest time method. Based on the Foshan City's VLPR data, the method is tested and results show that correct vehicle trajectory can be linked, which proves that the current VLPR data publication way has the risk of privacy disclosure. At last, the effects of related parameters on the proposed method are discussed and effective suggestions are made for publicizing VLPR date in the future.
2020-02-24
Brenner, Bernhard, Weippl, Edgar, Ekelhart, Andreas.  2019.  A Versatile Security Layer for AutomationML. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:358–364.
The XML-based data format AutomationML enables vendor-independent exchange of design data between discipline-specific design tools. It is based on Computer Aided Engineering Exchange (CAEX) and hence, compatible with the W3C standards XMLEnc (XML encryption) and XMLDsig (XML signatures). However, despite the importance of protecting engineering data, so far no concept has been presented to ensure and control on a fine-grained level the confidentiality, authenticity and accessibility of information stored in AutomationML files. In this paper, we introduce a basic access control scheme for AutomationML that enables to define user read and write access for each component. Furthermore, the scheme supports non-repudiation based on a change history and so-called "signature chains". It is also capable of supporting views and restricted access to components. The scheme is based on cryptographic measures – i.e. cryptographic hashing, symmetric encryption, signatures, and asymmetric encryption – and enforces its access control mechanisms through encryption to protect against unauthorized reading, and through signature chains to protect against unauthorized manipulation and to ensure non-repudiation. This approach has the benefit to be independent of the underlying file and operating system, storage location, etc., and it keeps full CAEX-conformity by extending AutomationML.This concept can serve as basis for software tools that support AutomationML and want to integrate access control features directly into AutomationML.
2021-01-15
Bose, A. J., Aarabi, P..  2019.  Virtual Fakes: DeepFakes for Virtual Reality. 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP). :1—1.
The proliferation of data and computational resources has led into many advancements in computer vision for facial data including easily replacing a face in one video with another one, the so called DeepFake. In this paper, we apply techniques to generate DeepFakes for virtual reality applications. We empirically validate our method by generating, for the first time, Deep Fake videos in virtual reality.
2020-07-13
Almohanna, S., Alogayyel, M. S., Ajaji, A. A., Alkhdrawi, H. A., Alleli, M. A., Tareq, Q., Mukhtar, Sani, Mohammed Khan, Z. M..  2019.  Visible-NIR Laser Based Bi-directional Indoor Optical Wireless Communication. 2019 IEEE 10th GCC Conference Exhibition (GCC). :1–4.
We propose and demonstrate an indoor optical bi-directional communication system employing near-infrared (NIR) and visible light as carriers. Such a communication technology is attractive wherein red color could be deployed for down streaming purpose via, for instance, LiFi (light fidelity) system, and NIR color for up streaming purpose. This system concept is implemented over a simultaneous bidirectional audio signal transmission and reception over 0.6m indoor wireless channel. Besides, designing the transceiver circuits from off the shelf components, frequency scrambling encryption and decryption technique is also integrated in the system for security purpose. The communication system is optically characterized in terms of line-of-sight laser misalignment and communication distance.
2020-10-26
Astaburuaga, Ignacio, Lombardi, Amee, La Torre, Brian, Hughes, Carolyn, Sengupta, Shamik.  2019.  Vulnerability Analysis of AR.Drone 2.0, an Embedded Linux System. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0666–0672.
The goal of this work was to identify and try to solve some of the vulnerabilities present in the AR Drone 2.0 by Parrot. The approach was to identify how the system worked, find and analyze vulnerabilities and flaws in the system as a whole and in the software, and find solutions to those problems. Analyzing the results of some tests showed that the system has an open WiFi network and the communication between the controller and the drone are unencrypted. Analyzing the Linux operating system that the drone uses, we see that "Pairing Mode" is the only way the system protects itself from unauthorized control. This is a feature that can be easily bypassed. Port scans reveal that the system has all the ports for its services open and exposed. This makes it susceptible to attacks like DoS and takeover. This research also focuses on some of the software vulnerabilities, such as Busybox that the drone runs. Lastly, this paper discuses some of the possible methods that can be used to secure the drone. These methods include securing the messages via SSH Tunnel, closing unused ports, and re-implementing the software used by the drone and the controller.
2020-04-24
Pan, Huan, Lian, Honghui, Na, Chunning.  2019.  Vulnerability Analysis of Smart Grid under Community Attack Style. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:5971—5976.
The smart grid consists of two parts, one is the physical power grid, the other is the information network. In order to study the cascading failure, the vulnerability analysis of the smart grid is done under a kind of community attack style in this paper. Two types of information networks are considered, i.e. topology consistency and scale-free cyber networks, respectively. The concept of control center is presented and the controllable power nodes and observable power lines are defined. Minimum load reduction model(MLRM) is given and described as a linear programming problem. A index is introduced to assess the vulnerability. New England 39 nodes system is applied to simulate the cascading failure process to demonstrate the effectiveness of the proposed MLRM where community the attack methods include attack the power lines among and in power communities.
2021-01-15
Korshunov, P., Marcel, S..  2019.  Vulnerability assessment and detection of Deepfake videos. 2019 International Conference on Biometrics (ICB). :1—6.
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates (on high quality versions) respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found the best performing method based on visual quality metrics, which is often used in presentation attack detection domain, to lead to 8.97% equal error rate on high quality Deep-fakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.
2020-04-24
Jianfeng, Dai, Jian, Qiu, Jing, Wu, Xuesong, Wang.  2019.  A Vulnerability Assessment Method of Cyber Physical Power System Considering Power-Grid Infrastructures Failure. 2019 IEEE Sustainable Power and Energy Conference (iSPEC). :1492—1496.
In order to protect power grid network, the security assessment techniques which include both cyber side and the physical side should be considered. In this paper, we present a method for evaluating the dynamic vulnerability of cyber-physical power system (CPPS) considering the power grid infrastructures failure. First, according to the functional characteristics of different components, the impact of a single component function failure on CPPS operation is analyzed and quantified, such as information components, communication components and power components; then, the dynamic vulnerability of multiple components synchronization function failure is calculated, and the full probability evaluation formula of CPPS operational dynamic vulnerability is built; Thirdly, from an attacker's perspective to identify the most hazardous component combinations for CPPS multi-node collaborative attack; Finally, a local CPPS model is established based on the IEEE-9 bus system to quantify its operational dynamic vulnerability, and the effectiveness of proposed method is verified.
2020-09-11
Shukla, Ankur, Katt, Basel, Nweke, Livinus Obiora.  2019.  Vulnerability Discovery Modelling With Vulnerability Severity. 2019 IEEE Conference on Information and Communication Technology. :1—6.
Web browsers are primary targets of attacks because of their extensive uses and the fact that they interact with sensitive data. Vulnerabilities present in a web browser can pose serious risk to millions of users. Thus, it is pertinent to address these vulnerabilities to provide adequate protection for personally identifiable information. Research done in the past has showed that few vulnerability discovery models (VDMs) highlight the characterization of vulnerability discovery process. In these models, severity which is one of the most crucial properties has not been considered. Vulnerabilities can be categorized into different levels based on their severity. The discovery process of each kind of vulnerabilities is different from the other. Hence, it is essential to incorporate the severity of the vulnerabilities during the modelling of the vulnerability discovery process. This paper proposes a model to assess the vulnerabilities present in the software quantitatively with consideration for the severity of the vulnerabilities. It is possible to apply the proposed model to approximate the number of vulnerabilities along with vulnerability discovery rate, future occurrence of vulnerabilities, risk analysis, etc. Vulnerability data obtained from one of the major web browsers (Google Chrome) is deployed to examine goodness-of-fit and predictive capability of the proposed model. Experimental results justify the fact that the model proposed herein can estimate the required information better than the existing VDMs.
2020-02-17
Marchang, Jims, Ibbotson, Gregg, Wheway, Paul.  2019.  Will Blockchain Technology Become a Reality in Sensor Networks? 2019 Wireless Days (WD). :1–4.
The need for sensors to deliver, communicate, collect, alert, and share information in various applications has made wireless sensor networks very popular. However, due to its limited resources in terms of computation power, battery life and memory storage of the sensor nodes, it is challenging to add security features to provide the confidentiality, integrity, and availability. Blockchain technology ensures security and avoids the need of any trusted third party. However, applying Blockchain in a resource-constrained wireless sensor network is a challenging task because Blockchain is power, computation, and memory hungry in nature and demands heavy bandwidth due to control overheads. In this paper, a new routing and a private communication Blockchain framework is designed and tested with Constant Bit rate (CBR). The proposed Load Balancing Multi-Hop (LBMH) routing shares and enhances the battery life of the Cluster Heads and reduce control overhead during Block updates, but due to limited storage and energy of the sensor nodes, Blockchain in sensor networks may never become a reality unless computation, storage and battery life are readily available at low cost.
Alfaleh, Faleh, Alfehaid, Haitham, Alanzy, Mohammed, Elkhediri, Salim.  2019.  Wireless Sensor Networks Security: Case study. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Wireless Sensor Networks (WSNs) are important and becoming more important as we integrate wireless sensor networks and the internet with different things, which has changed our life, and it is affected everywhere in our life like shopping, storage, live monitoring, smart home etc., called Internet of Things (IoT), as any use of the network physical devices that included in electronics, software, sensors, actuators, and connectivity which makes available these things to connect, collect and exchange data, and the most importantly thing is the accuracy of the data that has been collected in the Internet of Things, detecting sensor data with faulty readings is an important issue of secure communication and power consumption. So, requirement of energy-efficiency and integrity of information is mandatory.
2020-10-29
Gayathri, S, Seetharaman, R., Subramanian, L.Harihara, Premkumar, S., Viswanathan, S., Chandru, S..  2019.  Wormhole Attack Detection using Energy Model in MANETs. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :264—268.
The mobile ad-hoc networks comprised of nodes that are communicated through dynamic request and also by static table driven technique. The dynamic route discovery in AODV routing creates an unsecure transmission as well as reception. The reason for insecurity is the route request is given to all the nodes in the network communication. The possibility of the intruder nodes are more in the case of dynamic route request. Wormhole attacks in MANETs are creating challenges in the field of network analysis. In this paper the wormhole scenario is realized using high power transmission. This is implemented using energy model of ns2 simulator. The Apptool simulator identifies the energy level of each node and track the node of high transmission power. The performance curves for throughput, node energy for different encrypted values, packet drop ratio, and end to end delay are plotted.
2020-01-27
Zhang, Yiming, Fan, Yujie, Song, Wei, Hou, Shifu, Ye, Yanfang, Li, Xin, Zhao, Liang, Shi, Chuan, Wang, Jiabin, Xiong, Qi.  2019.  Your Style Your Identity: Leveraging Writing and Photography Styles for Drug Trafficker Identification in Darknet Markets over Attributed Heterogeneous Information Network. The World Wide Web Conference. :3448–3454.
Due to its anonymity, there has been a dramatic growth of underground drug markets hosted in the darknet (e.g., Dream Market and Valhalla). To combat drug trafficking (a.k.a. illicit drug trading) in the cyberspace, there is an urgent need for automatic analysis of participants in darknet markets. However, one of the key challenges is that drug traffickers (i.e., vendors) may maintain multiple accounts across different markets or within the same market. To address this issue, in this paper, we propose and develop an intelligent system named uStyle-uID leveraging both writing and photography styles for drug trafficker identification at the first attempt. At the core of uStyle-uID is an attributed heterogeneous information network (AHIN) which elegantly integrates both writing and photography styles along with the text and photo contents, as well as other supporting attributes (i.e., trafficker and drug information) and various kinds of relations. Built on the constructed AHIN, to efficiently measure the relatedness over nodes (i.e., traffickers) in the constructed AHIN, we propose a new network embedding model Vendor2Vec to learn the low-dimensional representations for the nodes in AHIN, which leverages complementary attribute information attached in the nodes to guide the meta-path based random walk for path instances sampling. After that, we devise a learning model named vIdentifier to classify if a given pair of traffickers are the same individual. Comprehensive experiments on the data collections from four different darknet markets are conducted to validate the effectiveness of uStyle-uID which integrates our proposed method in drug trafficker identification by comparisons with alternative approaches.
2020-06-19
Ly, Son Thai, Do, Nhu-Tai, Lee, Guee-Sang, Kim, Soo-Hyung, Yang, Hyung-Jeong.  2019.  A 3d Face Modeling Approach for in-The-Wild Facial Expression Recognition on Image Datasets. 2019 IEEE International Conference on Image Processing (ICIP). :3492—3496.

This paper explores the benefits of 3D face modeling for in-the-wild facial expression recognition (FER). Since there is limited in-the-wild 3D FER dataset, we first construct 3D facial data from available 2D dataset using recent advances in 3D face reconstruction. The 3D facial geometry representation is then extracted by deep learning technique. In addition, we also take advantage of manipulating the 3D face, such as using 2D projected images of 3D face as additional input for FER. These features are then fused with that of 2D FER typical network. By doing so, despite using common approaches, we achieve a competent recognition accuracy on Real-World Affective Faces (RAF) database and Static Facial Expressions in the Wild (SFEW 2.0) compared with the state-of-the-art reports. To the best of our knowledge, this is the first time such a deep learning combination of 3D and 2D facial modalities is presented in the context of in-the-wild FER.

2019-10-10
Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-Rodriguez, Serge Egelman.  2019.  50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the Android Permissions System. 28th USENIX Security Symposium (USENIX Security 19). :603–620.

Modern smartphone platforms implement permission-based models to protect access to sensitive data and system resources. However, apps can circumvent the permission model and gain access to protected data without user consent by using both covert and side channels. Side channels present in the implementation of the permission system allow apps to access protected data and system resources without permission; whereas covert channels enable communication between two colluding apps so that one app can share its permission-protected data with another app lacking those permissions. Both pose threats to user privacy.

In this work, we make use of our infrastructure that runs hundreds of thousands of apps in an instrumented environment. This testing environment includes mechanisms to monitor apps' runtime behaviour and network traffic. We look for evidence of side and covert channels being used in practice by searching for sensitive data being sent over the network for which the sending app did not have permissions to access it. We then reverse engineer the apps and third-party libraries responsible for this behaviour to determine how the unauthorized access occurred. We also use software fingerprinting methods to measure the static prevalence of the technique that we discover among other apps in our corpus.

Using this testing environment and method, we uncovered a number of side and covert channels in active use by hundreds of popular apps and third-party SDKs to obtain unauthorized access to both unique identifiers as well as geolocation data. We have responsibly disclosed our findings to Google and have received a bug bounty for our work.

2020-05-08
Bolla, R., Carrega, A., Repetto, M..  2019.  An abstraction layer for cybersecurity context. 2019 International Conference on Computing, Networking and Communications (ICNC). :214—218.

The growing complexity and diversification of cyber-attacks are largely reflected in the increasing sophistication of security appliances, which are often too cumbersome to be run in virtual services and IoT devices. Hence, the design of cyber-security frameworks is today looking at more cooperative models, which collect security-related data from a large set of heterogeneous sources for centralized analysis and correlation.In this paper, we outline a flexible abstraction layer for access to security context. It is conceived to program and gather data from lightweight inspection and enforcement hooks deployed in cloud applications and IoT devices. We also provide a preliminary description of its implementation, by reviewing the main software components and their role.