Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2020-08-10
Yohanes, Banu Wirawan, Suryadi, David Yusuf, Susilo, Deddy.  2019.  SIMON Lightweight Encryption Benchmarking on Wireless Aquascape Preservation. 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :30–35.
In pervasive computing, the human-computer interaction emphasizes on information and communication technology and user experience. Now it is possible to communicate scientific and engineering technique informally through leisure activities, for instance aquascaping. It is necessary to keep the aquascape environment fresh and healthy, and the fish have to be feed regularly. This paper proposes an autonomous aquascape preservation system based on Arduino controller connected to a remote Android smartphone. However, it is widely known that the wireless communication is not as reliable as the wired counterpart. An unauthorized party should not be able to take control of the wireless aquascape preservation system. SIMON lightweight cryptography is used to tackle security issues in constrained devices. From experiments result, the DS18B20 sensor is able to measure aquascape temperature precisely with approximately 0.5% tolerance. The Android graphical user interface application is user-friendly. Moreover, the SIMON lightweight encryption SIMON64/128 is able to secure wireless communication channel efficiently with small hardware footprints.
2020-08-28
Singh, Praveen Kumar, Kumar, Neeraj, Gupta, Bineet Kumar.  2019.  Smart Cards with Biometric Influences: An Enhanced ID Authentication. 2019 International Conference on Cutting-edge Technologies in Engineering (ICon-CuTE). :33—39.
Management of flow of all kinds of objects including human beings signifies their real time monitoring. This paper outlines the advantages accrued out of biometrics integration with Smartcards. It showcases the identity authentication employed through different biometric techniques. Biometric key considerations influencing the essence of this technology in Smartcards have been discussed briefly in this paper. With better accuracy and highly reliable support system this technology finds itself today in widespread deployment. However, there are still some concerns with human interfaces along with important factors in implementations of biometrics with smartcards which have been highlighted in this article. This paper also examines the privacy concerns of users in addressing their apprehensions to protect their confidentiality through biometric encryption and proposes DNA technology as a best possible biometric solution. However, due to inherent limitations of its processing time and an instant requirement of authentication, it has been suggested in the proposed modal to use it with combination of one or more suitable biometric technologies. An instant access has been proposed to the user with limited rights by using biometric technology other than the DNA as a primary source of authentication. DNA has been proposed as secondary source of authentication where only after due sample comparison full access rights to the user will be granted. This paper also aims in highlighting the number of advantages offered by the integration of biometrics with smartcards. It also discusses the need to tackle existing challenges due to restrictions in processing of different biometric technologies by defining certain specific future scopes for improvements in existing biometric technologies mainly against the time taken by it for sample comparisons.
2020-03-18
Wang, Johnson J. H..  2019.  Solving Cybersecurity Problem by Symmetric Dual-Space Formulation—Physical and Cybernetic. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. :601–602.
To address cybersecurity, this author proposed recently the approach of formulating it in symmetric dual-space and dual-system. This paper further explains this concept, beginning with symmetric Maxwell Equation (ME) and Fourier Transform (FT). The approach appears to be a powerful solution, with wide applications ranging from Electronic Warfare (EW) to 5G Mobile, etc.
2020-02-10
Cetin, Cagri, Goldgof, Dmitry, Ligatti, Jay.  2019.  SQL-Identifier Injection Attacks. 2019 IEEE Conference on Communications and Network Security (CNS). :151–159.
This paper defines a class of SQL-injection attacks that are based on injecting identifiers, such as table and column names, into SQL statements. An automated analysis of GitHub shows that 15.7% of 120,412 posted Java source files contain code vulnerable to SQL-Identifier Injection Attacks (SQL-IDIAs). We have manually verified that some of the 18,939 Java files identified during the automated analysis are indeed vulnerable to SQL-ID IAs, including deployed Electronic Medical Record software for which SQL-IDIAs enable discovery of confidential patient information. Although prepared statements are the standard defense against SQL injection attacks, existing prepared-statement APIs do not protect against SQL-IDIAs. This paper therefore proposes and evaluates an extended prepared-statement API to protect against SQL-IDIAs.
2020-02-18
Das, Debayan, Nath, Mayukh, Chatterjee, Baibhab, Ghosh, Santosh, Sen, Shreyas.  2019.  S℡LAR: A Generic EM Side-Channel Attack Protection through Ground-Up Root-Cause Analysis. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :11–20.
The threat of side-channels is becoming increasingly prominent for resource-constrained internet-connected devices. While numerous power side-channel countermeasures have been proposed, a promising approach to protect the non-invasive electromagnetic side-channel attacks has been relatively scarce. Today's availability of high-resolution electromagnetic (EM) probes mandates the need for a low-overhead solution to protect EM side-channel analysis (SCA) attacks. This work, for the first time, performs a white-box analysis to root-cause the origin of the EM leakage from an integrated circuit. System-level EM simulations with Intel 32 nm CMOS technology interconnect stack, as an example, reveals that the EM leakage from metals above layer 8 can be detected by an external non-invasive attacker with the commercially available state-of-the-art EM probes. Equipped with this `white-box' understanding, this work proposes S℡LAR: Signature aTtenuation Embedded CRYPTO with Low-Level metAl Routing, which is a two-stage solution to eliminate the critical signal radiation from the higher-level metal layers. Firstly, we propose routing the entire cryptographic core within the local lower-level metal layers, whose leakage cannot be picked up by an external attacker. Then, the entire crypto IP is embedded within a Signature Attenuation Hardware (SAH) which in turn suppresses the critical encryption signature before it routes the current signature to the highly radiating top-level metal layers. System-level implementation of the S℡LAR hardware with local lower-level metal routing in TSMC 65 nm CMOS technology, with an AES-128 encryption engine (as an example cryptographic block) operating at 40 MHz, shows that the system remains secure against EM SCA attack even after 1M encryptions, with 67% energy efficiency and 1.23× area overhead compared to the unprotected AES.
2020-05-26
Fu, Yulong, Li, Guoquan, Mohammed, Atiquzzaman, Yan, Zheng, Cao, Jin, Li, Hui.  2019.  A Study and Enhancement to the Security of MANET AODV Protocol Against Black Hole Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1431–1436.
Mobile AdHoc Networks (MANET) can be fast implemented, and it is very popular in many specific network requirements, such as UAV (Unmanned Aerial Unit), Disaster Recovery and IoT (Internet of Things) etc. However, MANET is also vulnerable. AODV (Ad hoc On-Demand Distance Vector Routing) protocol is one type of MANET routing protocol and many attacks can be implemented to break the connections on AODV based AdHoc networks. In this article, aim of protecting the MANET security, we modeled the AODV protocol with one type of Automata and analyzed the security vulnerabilities of it; then based on the analyzing results, we proposed an enhancement to AODV protocol to against the Black Hole Attacks. We also implemented the proposed enhancement in NS3 simulator and verified the correctness, usability and efficiency.
2020-02-17
Tunde-Onadele, Olufogorehan, He, Jingzhu, Dai, Ting, Gu, Xiaohui.  2019.  A Study on Container Vulnerability Exploit Detection. 2019 IEEE International Conference on Cloud Engineering (IC2E). :121–127.
Containers have become increasingly popular for deploying applications in cloud computing infrastructures. However, recent studies have shown that containers are prone to various security attacks. In this paper, we conduct a study on the effectiveness of various vulnerability detection schemes for containers. Specifically, we implement and evaluate a set of static and dynamic vulnerability attack detection schemes using 28 real world vulnerability exploits that widely exist in docker images. Our results show that the static vulnerability scanning scheme only detects 3 out of 28 tested vulnerabilities and dynamic anomaly detection schemes detect 22 vulnerability exploits. Combining static and dynamic schemes can further improve the detection rate to 86% (i.e., 24 out of 28 exploits). We also observe that the dynamic anomaly detection scheme can achieve more than 20 seconds lead time (i.e., a time window before attacks succeed) for a group of commonly seen attacks in containers that try to gain a shell and execute arbitrary code.
2020-10-26
Samantray, Om Prakash, Tripathy, Satya Narayan, Das, Susanta Kumar.  2019.  A study to Understand Malware Behavior through Malware Analysis. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–5.
Most of the malware detection techniques use malware signatures for detection. It is easy to detect known malicious program in a system but the problem arises when the malware is unknown. Because, unknown malware cannot be detected by using available known malware signatures. Signature based detection techniques fails to detect unknown and zero-day attacks. A novel approach is required to represent malware features effectively to detect obfuscated, unknown, and mutated malware. This paper emphasizes malware behavior, characteristics and properties extracted by different analytic techniques and to decide whether to include them to create behavioral based malware signature. We have made an attempt to understand the malware behavior using a few openly available tools for malware analysis.
2020-08-28
Huang, Angus F.M., Chi-Wei, Yang, Tai, Hsiao-Chi, Chuan, Yang, Huang, Jay J.C., Liao, Yu-Han.  2019.  Suspicious Network Event Recognition Using Modified Stacking Ensemble Machine Learning. 2019 IEEE International Conference on Big Data (Big Data). :5873—5880.
This study aims to detect genuine suspicious events and false alarms within a dataset of network traffic alerts. The rapid development of cloud computing and artificial intelligence-oriented automatic services have enabled a large amount of data and information to be transmitted among network nodes. However, the amount of cyber-threats, cyberattacks, and network intrusions have increased in various domains of network environments. Based on the fields of data science and machine learning, this paper proposes a series of solutions involving data preprocessing, exploratory data analysis, new features creation, features selection, ensemble learning, models construction, and verification to identify suspicious network events. This paper proposes a modified form of stacking ensemble machine learning which includes AdaBoost, Neural Networks, Random Forest, LightGBM, and Extremely Randomised Trees (Extra Trees) to realise a high-performance classification. A suspicious network event recognition dataset for a security operations centre, which uses real network log observations from the 2019 IEEE BigData Cup Challenge, is used as an experimental dataset. This paper investigates the possibility of integrating big-data analytics, machine learning, and data science to improve intelligent cybersecurity.
2020-02-10
Iftikhar, Jawad, Hussain, Sajid, Mansoor, Khwaja, Ali, Zeeshan, Chaudhry, Shehzad Ashraf.  2019.  Symmetric-Key Multi-Factor Biometric Authentication Scheme. 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE). :288–292.
Authentication is achieved by using different techniques, like using smart-card, identity password and biometric techniques. Some of the proposed schemes use a single factor for authentication while others combine multiple ways to provide multi-factor authentication for better security. lately, a new scheme for multi-factor authentication was presented by Cao and Ge and claimed that their scheme is highly secure and can withstand against all known attacks. In this paper, it is revealed that their scheme is still vulnerable and have some loopholes in term of reflection attack. Therefore, an improved scheme is proposed to overcome the security weaknesses of Cao and Ge's scheme. The proposed scheme resists security attacks and secure. Formal testing is carried out under a broadly-accepted simulated tool ProVerif which demonstrates that the proposed scheme is well secure.
2020-01-21
Ikany, Joris, Jazri, Husin.  2019.  A Symptomatic Framework to Predict the Risk of Insider Threats. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1–5.
The constant changing of technologies have brought to critical infrastructure organisations numerous information security threats such as insider threat. Critical infrastructure organisations have difficulties to early detect and capture the possible vital signs of insider threats due sometimes to lack of effective methodologies or frameworks. It is from this viewpoint that, this paper proposes a symptomatic insider threat risk assessments framework known as Insider Threat Framework for Namibia Critical Infrastructure Organization (ITFNACIO), aimed to predict the probable signs of insider threat based on Symptomatic Analysis (SA), and develop a prototype as a proof of concept. A case study was successfully used to validate and implement the proposed framework; hence, qualitative methodology was employed throughout the whole research process where two (2) insider threats were captured. The proposed insider threat framework can be further developed in multiple cases and a more automated system able to trigger an early warning system of possible insider threat events.
2020-01-13
Lin, Liyong, Thuijsman, Sander, Zhu, Yuting, Ware, Simon, Su, Rong, Reniers, Michel.  2019.  Synthesis of Supremal Successful Normal Actuator Attackers on Normal Supervisors. 2019 American Control Conference (ACC). :5614–5619.
In this paper, we propose and develop an actuator attack model for discrete-event systems. We assume the actuator attacker partially observes the execution of the closed-loop system and eavesdrops the control commands issued by the supervisor. The attacker can modify each control command on a specified subset of attackable events. The goal of the actuator attacker is to remain covert until it can establish a successful attack and lead the attacked closed-loop system into generating certain damaging strings. We then present a characterization for the existence of a successful attacker and prove the existence of the supremal successful attacker, when both the supervisor and the attacker are normal. Finally, we present an algorithm to synthesize the supremal successful normal attackers.
2020-03-23
Hiller, Jens, Pennekamp, Jan, Dahlmanns, Markus, Henze, Martin, Panchenko, Andriy, Wehrle, Klaus.  2019.  Tailoring Onion Routing to the Internet of Things: Security and Privacy in Untrusted Environments. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–12.
An increasing number of IoT scenarios involve mobile, resource-constrained IoT devices that rely on untrusted networks for Internet connectivity. In such environments, attackers can derive sensitive private information of IoT device owners, e.g., daily routines or secret supply chain procedures, when sniffing on IoT communication and linking IoT devices and owner. Furthermore, untrusted networks do not provide IoT devices with any protection against attacks from the Internet. Anonymous communication using onion routing provides a well-proven mechanism to keep the relationship between communication partners secret and (optionally) protect against network attacks. However, the application of onion routing is challenged by protocol incompatibilities and demanding cryptographic processing on constrained IoT devices, rendering its use infeasible. To close this gap, we tailor onion routing to the IoT by bridging protocol incompatibilities and offloading expensive cryptographic processing to a router or web server of the IoT device owner. Thus, we realize resource-conserving access control and end-to-end security for IoT devices. To prove applicability, we deploy onion routing for the IoT within the well-established Tor network enabling IoT devices to leverage its resources to achieve the same grade of anonymity as readily available to traditional devices.
2020-09-04
Taori, Rohan, Kamsetty, Amog, Chu, Brenton, Vemuri, Nikita.  2019.  Targeted Adversarial Examples for Black Box Audio Systems. 2019 IEEE Security and Privacy Workshops (SPW). :15—20.
The application of deep recurrent networks to audio transcription has led to impressive gains in automatic speech recognition (ASR) systems. Many have demonstrated that small adversarial perturbations can fool deep neural networks into incorrectly predicting a specified target with high confidence. Current work on fooling ASR systems have focused on white-box attacks, in which the model architecture and parameters are known. In this paper, we adopt a black-box approach to adversarial generation, combining the approaches of both genetic algorithms and gradient estimation to solve the task. We achieve a 89.25% targeted attack similarity, with 35% targeted attack success rate, after 3000 generations while maintaining 94.6% audio file similarity.
2020-05-15
Krishnamoorthy, Raja, Kalaivaani, P.T., Jackson, Beulah.  2019.  Test methodology for detecting short-channel faults in network on- chip networks using IOT. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1406—1417.
The NOC Network on chip provides better performance and scalability communication structures point-to-point signal node, shared through bus architecture. Information analysis of method using the IOT termination, as the energy consumed in this regard reduces and reduces the network load but it also displays safety concerns because the valuation data is stored or transmitted to the network in various stages of the node. Using encryption to protect data on the area of network-on-chip Analysis Machine is a way to solve data security issues. We propose a Network on chip based on a combined multicore cluster with special packages for computing-intensive data processing and encryption functionality and support for software, in a tight power envelope for analyzing and coordinating integrated encryption. Programming for regular computing tasks is the challenge of efficient and secure data analysis for IOT end-end applications while providing full-functionality with high efficiency and low power to satisfy the needs of multiple processing applications. Applications provide a substantial parallel, so they can also use NOC's ability. Applications must compose in. This system controls the movement of the packets through the network. As network on chip (NOC) systems become more prevalent in the processing unit. Routers and interconnection networks are the main components of NOC. This system controls the movement of packets over the network. Chip (NOC) networks are very backward for the network processing unit. Guides and Link Networks are critical elements of the NOC. Therefore, these areas require less access and power consumption, so we can better understand environmental and energy transactions. In this manner, a low-area and efficient NOC framework were proposed by removing virtual channels.
2020-01-27
Teodorescu, Horia-Nicolai, Bolea, Speranta Cecilia.  2019.  Text Sectioning Based on Stylometric Distances. 2019 International Conference on Speech Technology and Human-Computer Dialogue (SpeD). :1–6.
This article continues the stylometric study started in a previous one; we focus on stylometric distances between text segments and the use of these distances in text sectioning based on maximizing the distances between text parts. We refine the method previously introduced and improve on the results. Applications include the automation of stylistic analysis of texts, with implication on text summarization, historical analysis, and authorship analysis.
2020-08-07
Chandel, Sonali, Yan, Mengdi, Chen, Shaojun, Jiang, Huan, Ni, Tian-Yi.  2019.  Threat Intelligence Sharing Community: A Countermeasure Against Advanced Persistent Threat. 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). :353—359.
Advanced Persistent Threat (APT) having focused target along with advanced and persistent attacking skills under great concealment is a new trend followed for cyber-attacks. Threat intelligence helps in detecting and preventing APT by collecting a host of data and analyzing malicious behavior through efficient data sharing and guaranteeing the safety and quality of information exchange. For better protection, controlled access to intelligence information and a grading standard to revise the criteria in diagnosis for a security breach is needed. This paper analyses a threat intelligence sharing community model and proposes an improvement to increase the efficiency of sharing by rethinking the size and composition of a sharing community. Based on various external environment variables, it filters the low-quality shared intelligence by grading the trust level of a community member and the quality of a piece of intelligence. We hope that this research can fill in some security gaps to help organizations make a better decision in handling the ever-increasing and continually changing cyber-attacks.
2019-11-25
Sanjaroon, Vahideh, Motahari, Abolfazl S., Farhadi, Alireza, Khalaj, Babak. H..  2019.  Tight Bound on the Stability of Control Systems over Parallel Gaussian Channels Using a New Joint Source Channel Coding. 2019 Iran Workshop on Communication and Information Theory (IWCIT). :1–6.
In this paper, we address the stability problem of a noiseless linear time invariant control system over parallel Gaussian channels with feedback. It is shown that the eigenvalues-rate condition which has been proved as a necessary condition, is also sufficient for stability over parallel Gaussian channels. In fact, it is proved that for stabilizing a control system over the parallel Gaussian channels, it suffices that the Shannon channel capacity obtained by the water filling technique is greater than the sum of the logarithm of the unstable eigenvalues magnitude. In order to prove this sufficient condition, we propose a new nonlinear joint source channel coding for parallel Gaussian channels by which the initial state is transmitted through communication steps. This coding scheme with a linear control policy results in the stability of the system under the eigenvalues-rate condition. Hence, the proposed encoder, decoder and controller are efficient for this problem.
2020-07-06
Epishkina, Anna, Finoshin, Mikhail, Kogos, Konstantin, Yazykova, Aleksandra.  2019.  Timing Covert Channels Detection Cases via Machine Learning. 2019 European Intelligence and Security Informatics Conference (EISIC). :139–139.
Currently, packet data networks are widespread. Their architectural features allow constructing covert channels that are able to transmit covert data under the conditions of using standard protection measures. However, encryption or packets length normalization, leave the possibility for an intruder to transfer covert data via timing covert channels (TCCs). In turn, inter-packet delay (IPD) normalization leads to reducing communication channel capacity. Detection is an alternative countermeasure. At the present time, detection methods based on machine learning are widely studied. The complexity of TCCs detection based on machine learning depends on the availability of traffic samples, and on the possibility of an intruder to change covert channels parameters. In the current work, we explore the cases of TCCs detection via
2020-09-11
Spradling, Matthew, Allison, Mark, Tsogbadrakh, Tsenguun, Strong, Jay.  2019.  Toward Limiting Social Botnet Effectiveness while Detection Is Performed: A Probabilistic Approach. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :1388—1391.
The prevalence of social botnets has increased public distrust of social media networks. Current methods exist for detecting bot activity on Twitter, Reddit, Facebook, and other social media platforms. Most of these detection methods rely upon observing user behavior for a period of time. Unfortunately, the behavior observation period allows time for a botnet to successfully propagate one or many posts before removal. In this paper, we model the post propagation patterns of normal users and social botnets. We prove that a botnet may exploit deterministic propagation actions to elevate a post even with a small botnet population. We propose a probabilistic model which can limit the impact of social media botnets until they can be detected and removed. While our approach maintains expected results for non-coordinated activity, coordinated botnets will be detected before propagation with high probability.
2020-03-02
Bhat, Sriharsha, Stenius, Ivan, Bore, Nils, Severholt, Josefine, Ljung, Carl, Torroba Balmori, Ignacio.  2019.  Towards a Cyber-Physical System for Hydrobatic AUVs. OCEANS 2019 - Marseille. :1–7.
Cyber-physical systems (CPSs) encompass a network of sensors and actuators that are monitored, controlled and integrated by a computing and communication core. As autonomous underwater vehicles (AUVs) become more intelligent and connected, new use cases in ocean production, security and environmental monitoring become feasible. Swarms of small, affordable and hydrobatic AUVs can be beneficial in substance cloud tracking and algae farming, and a CPS linking the AUVs with multi-fidelity simulations can improve performance while reducing risks and costs. In this paper, we present a CPS concept tightly linking the AUV network in ROS to virtual validation using Simulink and Gazebo. A robust hardware-software interface using the open-source UAVCAN-ROS bridge is described for enabling hardware-in-the-loop validation. Hardware features of the hydrobatic SAM AUV are described, with a focus on subsystem integration. Results presented include pre-tuning of controllers, validation of mission plans in simulation and real time subsystem performance in tank tests. These first results demonstrate the interconnection between different system elements and offer a proof of concept.
2020-01-13
Ivkic, Igor, Mauthe, Andreas, Tauber, Markus.  2019.  Towards a Security Cost Model for Cyber-Physical Systems. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–7.
In times of Industry 4.0 and cyber-physical systems (CPS) providing security is one of the biggest challenges. A cyber attack launched at a CPS poses a huge threat, since a security incident may affect both the cyber and the physical world. Since CPS are very flexible systems, which are capable of adapting to environmental changes, it is important to keep an overview of the resulting costs of providing security. However, research regarding CPS currently focuses more on engineering secure systems and does not satisfactorily provide approaches for evaluating the resulting costs. This paper presents an interaction-based model for evaluating security costs in a CPS. Furthermore, the paper demonstrates in a use case driven study, how this approach could be used to model the resulting costs for guaranteeing security.
2020-01-27
Kreindl, Jacob, Bonetta, Daniele, Mössenböck, Hanspeter.  2019.  Towards efficient, multi-language dynamic taint analysis. Proceedings of the 16th ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes. :85–94.
Dynamic taint analysis is a program analysis technique in which data is marked and its propagation is tracked while the program is executing. It is applied to solve problems in many fields, especially in software security. Current taint analysis platforms are limited to a single programming language, and therefore cannot support programs which, as is common today, are implemented in multiple programming languages. Current implementations of dynamic taint analysis also incur a significant performance overhead. In this paper we address both these limitations (1) by presenting our vision of a multi-language dynamic taint analysis platform, which is built around a language-agnostic core framework that is extended by language-specific front-ends and (2) by discussing the use of speculative optimization and dynamic compilation to reduce the execution overhead of dynamic taint analysis applications. An implementation of such a platform would enable dynamic taint analyses that can target multiple languages in one analysis implementation and can track tainted data across language boundaries. We describe this approach in the context of the GraalVM runtime and its included JIT compiler, Graal, which allows us to target both dynamic and static languages.
2020-08-13
Junjie, Jia, Haitao, Qin, Wanghu, Chen, Huifang, Ma.  2019.  Trajectory Anonymity Based on Quadratic Anonymity. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :485—492.
Due to the leakage of privacy information in the sensitive region of trajectory anonymity publishing, which is resulted by the attack, this paper aims at the trajectory anonymity algorithm of division of region. According to the start stop time of the trajectory, the current sensitive region is found with the k-anonymity set on the synchronous trajectory. If the distance between the divided sub-region and the adjacent anonymous area is not greater than the threshold d, the area will be combined. Otherwise, with the guidance of location mapping, the forged location is added to the sub-region according to the original location so that the divided sub-region can meet the principle of k-anonymity. While the forged location retains the relative position of each point in the sensitive region, making that the divided sub-region and the original Regional anonymity are consistent. Experiments show that compared with the existing trajectory anonymous algorithm and the synchronous trajectory data set with the same privacy, the algorithm is highly effective in both privacy protection and validity of data quality.
Zhou, Kexin, Wang, Jian.  2019.  Trajectory Protection Scheme Based on Fog Computing and K-anonymity in IoT. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1—6.
With the development of cloud computing technology in the Internet of Things (IoT), the trajectory privacy in location-based services (LBSs) has attracted much attention. Most of the existing work adopts point-to-point and centralized models, which will bring a heavy burden to the user and cause performance bottlenecks. Moreover, previous schemes did not consider both online and offline trajectory protection and ignored some hidden background information. Therefore, in this paper, we design a trajectory protection scheme based on fog computing and k-anonymity for real-time trajectory privacy protection in continuous queries and offline trajectory data protection in trajectory publication. Fog computing provides the user with local storage and mobility to ensure physical control, and k-anonymity constructs the cloaking region for each snapshot in terms of time-dependent query probability and transition probability. In this way, two k-anonymity-based dummy generation algorithms are proposed, which achieve the maximum entropy of online and offline trajectory protection. Security analysis and simulation results indicate that our scheme can realize trajectory protection effectively and efficiently.