Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2019-12-02
Sengupta, Anirban, Kachave, Deepak.  2018.  Integrating Compiler Driven Transformation and Simulated Annealing Based Floorplan for Optimized Transient Fault Tolerant DSP Cores. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :17–20.
Reliability of electronic devices in sub-nanometer technology scale has become a major concern. However, demand for battery operated low power, high performance devices necessitates technology scaling. To meet these contradictory design goals optimization and reliability must be performed simultaneously. This paper proposes by integrating compiler driven transformation and simulated annealing based optimization process for generating optimized low cost transient fault tolerant DSP core. The case study on FIR filter shows improved performance (in terms of reduced area and delay) of proposed approach in comparison to state-of-art transient fault tolerant approach.
2020-05-22
Kang, Hyunjoong, Hong, Sanghyun, Lee, Kookjin, Park, Noseong, Kwon, Soonhyun.  2018.  On Integrating Knowledge Graph Embedding into SPARQL Query Processing. 2018 IEEE International Conference on Web Services (ICWS). :371—374.
SPARQL is a standard query language for knowledge graphs (KGs). However, it is hard to find correct answer if KGs are incomplete or incorrect. Knowledge graph embedding (KGE) enables answering queries on such KGs by inferring unknown knowledge and removing incorrect knowledge. Hence, our long-term goal in this line of research is to propose a new framework that integrates KGE and SPARQL, which opens various research problems to be addressed. In this paper, we solve one of the most critical problems, that is, optimizing the performance of nearest neighbor (NN) search. In our evaluations, we demonstrate that the search time of state-of-the-art NN search algorithms is improved by 40% without sacrificing answer accuracy.
2019-10-15
Detken, K., Jahnke, M., Humann, M., Rollgen, B..  2018.  Integrity and Non-Repudiation of VoIP Streams with TPM2.0 over Wi-Fi Networks. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :82–87.
The complete digitization of telecommunications allows new attack scenarios, which have not been possible with legacy phone technologies before. The reason is that physical access to legacy phone technologies was necessary. Regarding internet-based communication like voice over the internet protocol (VoIP), which can be established between random nodes, eavesdropping can happen everywhere and much easier. Additionally, injection of undesirable communication like SPAM or SPIT in digital networks is simpler, too. Encryption is not sufficient because it is also necessary to know which participants are talking to each other. For that reason, the research project INTEGER has been started with the main goals of providing secure authentication and integrity of a VoIP communication by using a digital signature. The basis of this approach is the Trusted Platform Module (TPM) of the Trusted Computing Group (TCG) which works as a hardware-based trusted anchor. The TPM will be used inside of wireless IP devices with VoIP softphones. The question is if it is possible to fulfill the main goals of the project in wireless scenarios with Wi-Fi technologies. That is what this contribution aims to clarify.
2019-02-14
Beham, Michael, Gra\v canin, Denis, Podaras, Silvana, Splechtna, Rainer, Bühler, Katja, Pand\v zić, Igor S., Matković, Kre\v simir.  2018.  Interactive Mixed Brushing: Integrated Text and Visual Based Data Exploration. Proceedings of Computer Graphics International 2018. :77-86.
Linking and brushing is an essential technique for interactive data exploration and analysis that leverages coordinated multiple views to identify, select, and combine data points of interest. We propose to augment this technique by directly exploring data space using textual queries. Textual and visual queries are freely combined and modified during the data exploration process. Visual queries are used to refine the results of textual queries and vice versa. This mixed brushing integrates procedural, textual, and visual based data exploration to provide a unified approach to brushing. We also propose an interface –- the Text Query Browser View, that allows users to specify and edit data queries as well as to browse the data query history. Further, we argue why an interactive, on-demand, data aggregation and derivation is necessary, and we provide a flexible mechanism that supports it. We have implemented the proposed approach within an existing visualization tool using a client-server architecture. The approach was illustrated and evaluated using two example data sets.
2019-05-20
Atlam, Hany F., Walters, Robert J., Wills, Gary B..  2018.  Internet of Nano Things: Security Issues and Applications. Proceedings of the 2018 2Nd International Conference on Cloud and Big Data Computing. :71–77.
Nanotechnology provides new solutions for numerous applications that have a significant effect on almost every aspect of our community including health monitoring, smart cities, military, agriculture, and industry. The interconnection of nanoscale devices with existing communication networks over the Internet defines a novel networking paradigm called the Internet of Nano-Things (IoNT). The IoNT involves a large number of nanosensors that used to provide more precise and detailed information about a particular object to enable a better understanding of object behaviour. In this paper, we investigate the challenges and opportunities of the IoNT system in various applications. An overview of the IoNT is first introduced. This is followed by a discussion of the network architecture of the IoNT and various applications that benefit from integrating IoT with nanotechnology. In the end, since security is considered to be one of the main issues of the IoNT system, we provide an in-depth discussion on security goals, attack vectors and security challenges of the IoNT system.
2020-05-11
Abhilash, Goyal, Divyansh, Gupta.  2018.  Intrusion Detection and Prevention in Software Defined Networking. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–4.
Software defined networking is a concept proposed to replace traditional networks by separating control plane and data plane. It makes the network more programmable and manageable. As there is a single point of control of the network, it is more vulnerable to intrusion. The idea is to train the network controller by machine learning algorithms to let it make the intelligent decisions automatically. In this paper, we have discussed our approach to make software defined networking more secure from various malicious attacks by making it capable of detecting and preventing such attacks.
2019-12-02
Wang, Dinghua, Feng, Dongqin.  2018.  Intrusion Detection Model of SCADA Using Graphical Features. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1208–1214.
Supervisory control and data acquisition system is an important part of the country's critical infrastructure, but its inherent network characteristics are vulnerable to attack by intruders. The vulnerability of supervisory control and data acquisition system was analyzed, combining common attacks such as information scanning, response injection, command injection and denial of service in industrial control systems, and proposed an intrusion detection model based on graphical features. The time series of message transmission were visualized, extracting the vertex coordinates and various graphic area features to constitute a new data set, and obtained classification model of intrusion detection through training. An intrusion detection experiment environment was built using tools such as MATLAB and power protocol testers. IEC 60870-5-104 protocol which is widely used in power systems had been taken as an example. The results of tests have good effectiveness.
2019-12-16
Fast, Ethan, Chen, Binbin, Mendelsohn, Julia, Bassen, Jonathan, Bernstein, Michael S..  2018.  Iris: A Conversational Agent for Complex Tasks. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. :473:1–473:12.
Today, most conversational agents are limited to simple tasks supported by standalone commands, such as getting directions or scheduling an appointment. To support more complex tasks, agents must be able to generalize from and combine the commands they already understand. This paper presents a new approach to designing conversational agents inspired by linguistic theory, where agents can execute complex requests interactively by combining commands through nested conversations. We demonstrate this approach in Iris, an agent that can perform open-ended data science tasks such as lexical analysis and predictive modeling. To power Iris, we have created a domain-specific language that transforms Python functions into combinable automata and regulates their combinations through a type system. Running a user study to examine the strengths and limitations of our approach, we find that data scientists completed a modeling task 2.6 times faster with Iris than with Jupyter Notebook.
2019-01-16
Wu, Jie, Li, Hongchun, Xu, Yi, Tian, Jun.  2018.  Joint Design of WiFi Mesh Network for Video Surveillance Application. Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks. :140–146.
The ability to transmit high volumes of data over a long distance makes WiFi mesh networks an ideal transmission solution for remote video surveillance. Instead of independently manipulating the node deployment, channel and interface assignment, and routing to improve the network performance, we propose a joint network design using multi-objective genetic algorithm to take into account the interplay of them. Moreover, we found a performance evaluation method based on the transmission capability of the WiFi mesh networks for the first time. The good agreement of our obtained multiple optimized solutions to the extensive simulation results by NS-3 demonstrates the effectiveness of our design.
2019-11-25
Deka, Surajit, Sarma, Kandarpa Kumar.  2018.  Joint Source Channel Coding with Bandwidth Compression. 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN). :286–290.
In this paper, we have considered the broadcasting of a memoryless bivariate Gaussian source over a Gaussian broadcast channel with respect to bandwidth compression. We have analysed the performance of a hybrid digital-analog (HDA) coding system in combination with joint source channel coding (JSCC) to measure the distortion regions. The transmission advantages due to the combination of both the analog and digital techniques, a class of HDA schemes that yields better performance in distortion is discussed. The performance of source and channel coding for the possible better outcome of the system is measured by employing Wyner-Ziv and Costa coding. In our model, we have considered the upper layer to be a combination of a hybrid layer in the sense of both the analog and digital processing is done. This is executed in presence of quantization error and performance of the system is measured with two conditions: 1) HDA scheme with quantization scaling factor α = 0, i.e. the input of the channel have only the analog information which is considered as the scaled quantization error βS 2) The analog information from the first layer S is suppressed by setting error scaling factor β = 0 and 3) Inclusion of recursive mode with JSCC in each of the three layers for the possible better outcome is considered here.
2019-12-30
Chen, Hao, Huang, Zhicong, Laine, Kim, Rindal, Peter.  2018.  Labeled PSI from Fully Homomorphic Encryption with Malicious Security. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1223–1237.
Private Set Intersection (PSI) allows two parties, the sender and the receiver, to compute the intersection of their private sets without revealing extra information to each other. We are interested in the unbalanced PSI setting, where (1) the receiver's set is significantly smaller than the sender's, and (2) the receiver (with the smaller set) has a low-power device. Also, in a Labeled PSI setting, the sender holds a label per each item in its set, and the receiver obtains the labels from the items in the intersection. We build upon the unbalanced PSI protocol of Chen, Laine, and Rindal (CCS\textbackslashtextasciitilde2017) in several ways: we add efficient support for arbitrary length items, we construct and implement an unbalanced Labeled PSI protocol with small communication complexity, and also strengthen the security model using Oblivious Pseudo-Random Function (OPRF) in a pre-processing phase. Our protocols outperform previous ones: for an intersection of 220 and \$512\$ size sets of arbitrary length items our protocol has a total online running time of just \$1\$\textbackslashtextasciitildesecond (single thread), and a total communication cost of 4 MB. For a larger example, an intersection of 228 and 1024 size sets of arbitrary length items has an online running time of \$12\$ seconds (multi-threaded), with less than 18 MB of total communication.
2019-11-25
Abdessalem, Marwa Ben, Zribi, Amin, Matsumoto, Tadashi, Bouallègue, Ammar.  2018.  LDPC-based Joint Source-Channel-Network Coding for the Multiple Access Relay Channel. 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–6.
In this work, we investigate the MARC (Multiple Access Relay Channel) setup, in which two Markov sources communicate to a single destination, aided by one relay, based on Joint Source Channel Network (JSCN) LDPC codes. In addition, the two source nodes compress the information sequences with an LDPC source code. The compressed symbols are directly transmitted to both a relay and a destination nodes in two transportation phases. Indeed, the relay performs the concatenation of the received compressed sequences to obtain a recovered sequence, which is encoded with an LDPC channel code, before being forwarded to the destination. At the receiver, we propose an iterative joint decoding algorithm that exploits the correlation between the two sources-relay data and takes into account the errors occurring in the sources-relay links to estimate the source data. We show based on simulation results that the JSCN coding and decoding scheme into a MARC setup achieves a good performance with a gain of about 5 dB compared to a conventional LDPC code.
2020-04-20
Lim, Yeon-sup, Srivatsa, Mudhakar, Chakraborty, Supriyo, Taylor, Ian.  2018.  Learning Light-Weight Edge-Deployable Privacy Models. 2018 IEEE International Conference on Big Data (Big Data). :1290–1295.
Privacy becomes one of the important issues in data-driven applications. The advent of non-PC devices such as Internet-of-Things (IoT) devices for data-driven applications leads to needs for light-weight data anonymization. In this paper, we develop an anonymization framework that expedites model learning in parallel and generates deployable models for devices with low computing capability. We evaluate our framework with various settings such as different data schema and characteristics. Our results exhibit that our framework learns anonymization models up to 16 times faster than a sequential anonymization approach and that it preserves enough information in anonymized data for data-driven applications.
Lim, Yeon-sup, Srivatsa, Mudhakar, Chakraborty, Supriyo, Taylor, Ian.  2018.  Learning Light-Weight Edge-Deployable Privacy Models. 2018 IEEE International Conference on Big Data (Big Data). :1290–1295.
Privacy becomes one of the important issues in data-driven applications. The advent of non-PC devices such as Internet-of-Things (IoT) devices for data-driven applications leads to needs for light-weight data anonymization. In this paper, we develop an anonymization framework that expedites model learning in parallel and generates deployable models for devices with low computing capability. We evaluate our framework with various settings such as different data schema and characteristics. Our results exhibit that our framework learns anonymization models up to 16 times faster than a sequential anonymization approach and that it preserves enough information in anonymized data for data-driven applications.
2019-02-18
Dam, Khanh Huu The, Touili, Tayssir.  2018.  Learning Malware Using Generalized Graph Kernels. Proceedings of the 13th International Conference on Availability, Reliability and Security. :28:1–28:6.
Machine learning techniques were extensively applied to learn and detect malware. However, these techniques use often rough abstractions of programs. We propose in this work to use a more precise model for programs, namely extended API call graphs, where nodes correspond to API function calls, edges specify the execution order between the API functions, and edge labels indicate the dependence relation between API functions parameters. To learn such graphs, we propose to use Generalized Random Walk Graph Kernels (combined with Support Vector Machines). We implemented our techniques and obtained encouraging results for malware detection: 96.73% of detection rate with 0.73% of false alarms.
2019-05-01
Lu, X., Wan, X., Xiao, L., Tang, Y., Zhuang, W..  2018.  Learning-Based Rogue Edge Detection in VANETs with Ambient Radio Signals. 2018 IEEE International Conference on Communications (ICC). :1-6.
Edge computing for mobile devices in vehicular ad hoc networks (VANETs) has to address rogue edge attacks, in which a rogue edge node claims to be the serving edge in the vehicle to steal user secrets and help launch other attacks such as man-in-the-middle attacks. Rogue edge detection in VANETs is more challenging than the spoofing detection in indoor wireless networks due to the high mobility of onboard units (OBUs) and the large-scale network infrastructure with roadside units (RSUs). In this paper, we propose a physical (PHY)- layer rogue edge detection scheme for VANETs according to the shared ambient radio signals observed during the same moving trace of the mobile device and the serving edge in the same vehicle. In this scheme, the edge node under test has to send the physical properties of the ambient radio signals, including the received signal strength indicator (RSSI) of the ambient signals with the corresponding source media access control (MAC) address during a given time slot. The mobile device can choose to compare the received ambient signal properties and its own record or apply the RSSI of the received signals to detect rogue edge attacks, and determines test threshold in the detection. We adopt a reinforcement learning technique to enable the mobile device to achieve the optimal detection policy in the dynamic VANET without being aware of the VANET model and the attack model. Simulation results show that the Q-learning based detection scheme can significantly reduce the detection error rate and increase the utility compared with existing schemes.
2019-03-25
von Maltitz, Marcel, Carle, Georg.  2018.  Leveraging Secure Multiparty Computation in the Internet of Things. Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. :508–510.
Centralized systems in the Internet of Things—be it local middleware or cloud-based services—fail to fundamentally address privacy of the collected data. We propose an architecture featuring secure multiparty computation at its core in order to realize data processing systems which already incorporate support for privacy protection in the architecture.
2019-10-15
Aublin, Pierre-Louis, Kelbert, Florian, O'Keeffe, Dan, Muthukumaran, Divya, Priebe, Christian, Lind, Joshua, Krahn, Robert, Fetzer, Christof, Eyers, David, Pietzuch, Peter.  2018.  LibSEAL: Revealing Service Integrity Violations Using Trusted Execution. Proceedings of the Thirteenth EuroSys Conference. :24:1–24:15.
Users of online services such as messaging, code hosting and collaborative document editing expect the services to uphold the integrity of their data. Despite providers' best efforts, data corruption still occurs, but at present service integrity violations are excluded from SLAs. For providers to include such violations as part of SLAs, the competing requirements of clients and providers must be satisfied. Clients need the ability to independently identify and prove service integrity violations to claim compensation. At the same time, providers must be able to refute spurious claims. We describe LibSEAL, a SEcure Audit Library for Internet services that creates a non-repudiable audit log of service operations and checks invariants to discover violations of service integrity. LibSEAL is a drop-in replacement for TLS libraries used by services, and thus observes and logs all service requests and responses. It runs inside a trusted execution environment, such as Intel SGX, to protect the integrity of the audit log. Logs are stored using an embedded relational database, permitting service invariant violations to be discovered using simple SQL queries. We evaluate LibSEAL with three popular online services (Git, ownCloud and Dropbox) and demonstrate that it is effective in discovering integrity violations, while reducing throughput by at most 14%.
2019-12-02
Chi, Po-Wen, Wang, Ming-Hung.  2018.  A Lightweight Compound Defense Framework Against Injection Attacks in IIoT. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Industrial Internet of Things (IIoT) is a trend of the smart industry. By collecting field data from sensors, the industry can make decisions dynamically in time for better performance. In most cases, IIoT is built on private networks and cannot be reached from the Internet. Currently, data transmission in most of IIoT network protocols is in plaintext without encryption protection. Once an attacker breaks into the field, the attacker can intercept data and injects malicious commands to field agents. In this paper, we propose a compound approach for defending command injection attacks in IIOT. First, we leverage the power of Software Defined Networking (SDN) to detect the injection attack. When the injection attack event is detected, the system owner is alarmed that someone tries to pretend a controller or a field agent to deceive the other entity. Second, we develop a lightweight authentication scheme to ensure the identity of the command sender. Command receiver can verify commands first before processing commands.
2019-01-21
Tsuda, Y., Nakazato, J., Takagi, Y., Inoue, D., Nakao, K., Terada, K..  2018.  A Lightweight Host-Based Intrusion Detection Based on Process Generation Patterns. 2018 13th Asia Joint Conference on Information Security (AsiaJCIS). :102–108.
Advanced persistent threat (APT) has been considered globally as a serious social problem since the 2010s. Adversaries of this threat, at first, try to penetrate into targeting organizations by using a backdoor which is opened with drive-by-download attacks, malicious e-mail attachments, etc. After adversaries' intruding, they usually execute benign applications (e.g, OS built-in commands, management tools published by OS vendors, etc.) for investigating networks of targeting organizations. Therefore, if they penetrate into networks once, it is difficult to rapidly detect these malicious activities only by using anti-virus software or network-based intrusion systems. Meanwhile, enterprise networks are managed well in general. That means network administrators have a good grasp of installed applications and routinely used applications for employees' daily works. Thereby, in order to find anomaly behaviors on well-managed networks, it is effective to observe changes executing their applications. In this paper, we propose a lightweight host-based intrusion detection system by using process generation patterns. Our system periodically collects lists of active processes from each host, then the system constructs process trees from the lists. In addition, the system detects anomaly processes from the process trees considering parent-child relationships, execution sequences and lifetime of processes. Moreover, we evaluated the system in our organization. The system collected 2, 403, 230 process paths in total from 498 hosts for two months, then the system could extract 38 anomaly processes. Among them, one PowerShell process was also detected by using an anti-virus software running on our organization. Furthermore, our system could filter out the other 18 PowerShell processes, which were used for maintenance of our network.
2020-10-26
Bai, Leqiang, Li, Guoku.  2018.  Location Privacy Protection of WSN Based on Network Partition and Angle. 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1254–1260.
For the phantom routing algorithm, phantom source nodes are concentrated near the real source node, and for the angle based phantom routing algorithm, phantom source nodes focus on some areas, and the existing source location privacy protection algorithm has low security cycle, a source location privacy protection algorithm of wireless sensor networks based on angle and network partition is proposed. The algorithm selects the next hop node on forwarding path according to the angle relationship between neighbors, and ensures that phantom source nodes are far away from the real source node and have the diversity of geographic location through network partition. Simulation results show that, compared with the existing source location privacy protection algorithm, this algorithm can induce attackers to deviate from the real path, and increase security cycle.
2019-02-08
Yi, F., Cai, H. Y., Xin, F. Z..  2018.  A Logic-Based Attack Graph for Analyzing Network Security Risk Against Potential Attack. 2018 IEEE International Conference on Networking, Architecture and Storage (NAS). :1-4.
In this paper, we present LAPA, a framework for automatically analyzing network security risk and generating attack graph for potential attack. The key novelty in our work is that we represent the properties of networks and zero day vulnerabilities, and use logical reasoning algorithm to generate potential attack path to determine if the attacker can exploit these vulnerabilities. In order to demonstrate the efficacy, we have implemented the LAPA framework and compared with three previous network vulnerability analysis methods. Our analysis results have a low rate of false negatives and less cost of processing time due to the worst case assumption and logical property specification and reasoning. We have also conducted a detailed study of the efficiency for generation attack graph with different value of attack path number, attack path depth and network size, which affect the processing time mostly. We estimate that LAPA can produce high quality results for a large portion of networks.
2020-05-11
Althubiti, Sara A., Jones, Eric Marcell, Roy, Kaushik.  2018.  LSTM for Anomaly-Based Network Intrusion Detection. 2018 28th International Telecommunication Networks and Applications Conference (ITNAC). :1–3.
Due to the massive amount of the network traffic, attackers have a great chance to cause a huge damage to the network system or its users. Intrusion detection plays an important role in ensuring security for the system by detecting the attacks and the malicious activities. In this paper, we utilize CIDDS dataset and apply a deep learning approach, Long-Short-Term Memory (LSTM), to implement intrusion detection system. This research achieves a reasonable accuracy of 0.85.
2019-08-05
Sorokine, Alex, Thakur, Gautam, Palumbo, Rachel.  2018.  Machine Learning to Improve Retrieval by Category in Big Volunteered Geodata. Proceedings of the 12th Workshop on Geographic Information Retrieval. :4:1–4:2.
Nowadays, Volunteered Geographic Information (VGI) is commonly used in research and practical applications. However, the quality assurance of such a geographic data remains a problem. In this study we use machine learning and natural language processing to improve record retrieval by category (e.g. restaurant, museum, etc.) from Wikimapia Points of Interest data. We use textual information contained in VGI records to evaluate its ability to determine the category label. The performance of the trained classifier is evaluated on the complete dataset and then is compared with its performance on regional subsets. Preliminary analysis shows significant difference in the classifier performance across the regions. Such geographic differences will have a significant effect on data enrichment efforts such as labeling entities with missing categories.
2019-10-07
Cusack, Greg, Michel, Oliver, Keller, Eric.  2018.  Machine Learning-Based Detection of Ransomware Using SDN. Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :1–6.
The growth of malware poses a major threat to internet users, governments, and businesses around the world. One of the major types of malware, ransomware, encrypts a user's sensitive information and only returns the original files to the user after a ransom is paid. As malware developers shift the delivery of their product from HTTP to HTTPS to protect themselves from payload inspection, we can no longer rely on deep packet inspection to extract features for malware identification. Toward this goal, we propose a solution leveraging a recent trend in networking hardware, that is programmable forwarding engines (PFEs). PFEs allow collection of per-packet, network monitoring data at high rates. We use this data to monitor the network traffic between an infected computer and the command and control (C&C) server. We extract high-level flow features from this traffic and use this data for ransomware classification. We write a stream processor and use a random forest, binary classifier to utilizes these rich flow records in fingerprinting malicious, network activity without the requirement of deep packet inspection. Our classification model achieves a detection rate in excess of 0.86, while maintaining a false negative rate under 0.11. Our results suggest that a flow-based fingerprinting method is feasible and accurate enough to catch ransomware before encryption.