Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2017-08-18
Afanasyev, Alexander, Halderman, J. Alex, Ruoti, Scott, Seamons, Kent, Yu, Yingdi, Zappala, Daniel, Zhang, Lixia.  2016.  Content-based Security for the Web. Proceedings of the 2016 New Security Paradigms Workshop. :49–60.

The World Wide Web has become the most common platform for building applications and delivering content. Yet despite years of research, the web continues to face severe security challenges related to data integrity and confidentiality. Rather than continuing the exploit-and-patch cycle, we propose addressing these challenges at an architectural level, by supplementing the web's existing connection-based and server-based security models with a new approach: content-based security. With this approach, content is directly signed and encrypted at rest, enabling it to be delivered via any path and then validated by the browser. We explore how this new architectural approach can be applied to the web and analyze its security benefits. We then discuss a broad research agenda to realize this vision and the challenges that must be overcome.

2017-04-20
Lee, Joohyun, Lee, Kyunghan, Jeong, Euijin, Jo, Jaemin, Shroff, Ness B..  2016.  Context-aware Application Scheduling in Mobile Systems: What Will Users Do and Not Do Next? Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :1235–1246.

Usage patterns of mobile devices depend on a variety of factors such as time, location, and previous actions. Hence, context-awareness can be the key to make mobile systems to become personalized and situation dependent in managing their resources. We first reveal new findings from our own Android user experiment: (i) the launching probabilities of applications follow Zipf's law, and (ii) inter-running and running times of applications conform to log-normal distributions. We also find context-dependency in application usage patterns, for which we classify contexts in a personalized manner with unsupervised learning methods. Using the knowledge acquired, we develop a novel context-aware application scheduling framework, CAS that adaptively unloads and preloads background applications in a timely manner. Our trace-driven simulations with 96 user traces demonstrate the benefits of CAS over existing algorithms. We also verify the practicality of CAS by implementing it on the Android platform.

2017-03-29
Kosek, A. M..  2016.  Contextual anomaly detection for cyber-physical security in Smart Grids based on an artificial neural network model. 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG). :1–6.

This paper presents a contextual anomaly detection method and its use in the discovery of malicious voltage control actions in the low voltage distribution grid. The model-based anomaly detection uses an artificial neural network model to identify a distributed energy resource's behaviour under control. An intrusion detection system observes distributed energy resource's behaviour, control actions and the power system impact, and is tested together with an ongoing voltage control attack in a co-simulation set-up. The simulation results obtained with a real photovoltaic rooftop power plant data show that the contextual anomaly detection performs on average 55% better in the control detection and over 56% better in the malicious control detection over the point anomaly detection.

2017-05-30
Gomes, Francisco A.A., Viana, Windson, Rocha, Lincoln S., Trinta, Fernando.  2016.  A Contextual Data Offloading Service With Privacy Support. Proceedings of the 22Nd Brazilian Symposium on Multimedia and the Web. :23–30.

Mobile devices, such as smarthphones, became a common tool in our daily routine. Mobile Applications (a.k.a. apps) are demanding access to contextual information increasingly. For instance, apps require user's environment data as well as their profiles in order to adapt themselves (interfaces, services, content) according to this context data. Mobile apps with this behavior are known as context-aware applications (CAS). Several software infrastructures have been created to help the development of CAS. However, most of them do not store the contextual data, once mobile devices are resource constrained. They are not built taking into account the privacy of contextual data either, due the fact that apps may expose contextual data, without user consent. This paper addresses these topics by extending an existing middleware platform that help the development of mobile context-aware applications. Our extension aims at store and process the contextual data generated from several mobile devices, using the computational power of the cloud, and the definition of privacy policies, which avoid dissemination of unauthorized contextual data.

2017-05-17
Huang, Zhenqi, Wang, Yu, Mitra, Sayan, Dullerud, Geir.  2016.  Controller Synthesis for Linear Dynamical Systems with Adversaries. Proceedings of the Symposium and Bootcamp on the Science of Security. :53–62.

We present a controller synthesis algorithm for a reach-avoid problem in the presence of adversaries. Our model of the adversary abstractly captures typical malicious attacks envisioned on cyber-physical systems such as sensor spoofing, controller corruption, and actuator intrusion. After formulating the problem in a general setting, we present a sound and complete algorithm for the case with linear dynamics and an adversary with a budget on the total L2-norm of its actions. The algorithm relies on a result from linear control theory that enables us to decompose and compute the reachable states of the system in terms of a symbolic simulation of the adversary-free dynamics and the total uncertainty induced by the adversary. With this decomposition, the synthesis problem eliminates the universal quantifier on the adversary's choices and the symbolic controller actions can be effectively solved using an SMT solver. The constraints induced by the adversary are computed by solving second-order cone programmings. The algorithm is later extended to synthesize state-dependent controller and to generate attacks for the adversary. We present preliminary experimental results that show the effectiveness of this approach on several example problems.

2017-10-18
Sun, Yueming, Zhang, Yi, Chen, Yunfei, Jin, Roger.  2016.  Conversational Recommendation System with Unsupervised Learning. Proceedings of the 10th ACM Conference on Recommender Systems. :397–398.

We will demonstrate a conversational products recommendation agent. This system shows how we combine research in personalized recommendation systems with research in dialogue systems to build a virtual sales agent. Based on new deep learning technologies we developed, the virtual agent is capable of learning how to interact with users, how to answer user questions, what is the next question to ask, and what to recommend when chatting with a human user. Normally a descent conversational agent for a particular domain requires tens of thousands of hand labeled conversational data or hand written rules. This is a major barrier when launching a conversation agent for a new domain. We will explore and demonstrate the effectiveness of the learning solution even when there is no hand written rules or hand labeled training data.

2017-11-13
Böhme, Marcel, Pham, Van-Thuan, Roychoudhury, Abhik.  2016.  Coverage-based Greybox Fuzzing As Markov Chain. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1032–1043.

Coverage-based Greybox Fuzzing (CGF) is a random testing approach that requires no program analysis. A new test is generated by slightly mutating a seed input. If the test exercises a new and interesting path, it is added to the set of seeds; otherwise, it is discarded. We observe that most tests exercise the same few "high-frequency" paths and develop strategies to explore significantly more paths with the same number of tests by gravitating towards low-frequency paths. We explain the challenges and opportunities of CGF using a Markov chain model which specifies the probability that fuzzing the seed that exercises path i generates an input that exercises path j. Each state (i.e., seed) has an energy that specifies the number of inputs to be generated from that seed. We show that CGF is considerably more efficient if energy is inversely proportional to the density of the stationary distribution and increases monotonically every time that seed is chosen. Energy is controlled with a power schedule. We implemented the exponential schedule by extending AFL. In 24 hours, AFLFAST exposes 3 previously unreported CVEs that are not exposed by AFL and exposes 6 previously unreported CVEs 7x faster than AFL. AFLFAST produces at least an order of magnitude more unique crashes than AFL.

2017-05-30
Etigowni, Sriharsha, Tian, Dave(Jing), Hernandez, Grant, Zonouz, Saman, Butler, Kevin.  2016.  CPAC: Securing Critical Infrastructure with Cyber-physical Access Control. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :139–152.

Critical infrastructure such as the power grid has become increasingly complex. The addition of computing elements to traditional physical components increases complexity and hampers insight into how elements in the system interact with each other. The result is an infrastructure where operational mistakes, some of which cannot be distinguished from attacks, are more difficult to prevent and have greater potential impact, such as leaking sensitive information to the operator or attacker. In this paper, we present CPAC, a cyber-physical access control solution to manage complexity and mitigate threats in cyber-physical environments, with a focus on the electrical smart grid. CPAC uses information flow analysis based on mathematical models of the physical grid to generate policies enforced through verifiable logic. At the device side, CPAC combines symbolic execution with lightweight dynamic execution monitoring to allow non-intrusive taint analysis on programmable logic controllers in realtime. These components work together to provide a realtime view of all system elements, and allow for more robust and finer-grained protections than any previous solution to securing the grid. We implement a prototype of CPAC using Bachmann PLCs and evaluate several real-world incidents that demonstrate its scalability and effectiveness. The policy checking for a nation-wide grid is less than 150 ms, faster than existing solutions. We additionally show that CPAC can analyze potential component failures for arbitrary component failures, far beyond the capabilities of currently deployed systems. CPAC thus provides a solution to secure the modern smart grid from operator mistakes or insider attacks, maintain operational privacy, and support N - x contingencies.

2017-09-05
Deng, Xiaolong, Dou, Yingtong, Huang, Yihua.  2016.  CPS Model Based Online Opinion Governance Modeling and Evaluation of Emergency Accidents. Proceedings of the Second ACM SIGSPATIALInternational Workshop on the Use of GIS in Emergency Management. :8:1–8:6.

In the last decades, there have been much more public health crises in the world such as H1N1, H7N9 and Ebola out-break. In the same time, it has been proved that our world has come into the time when public crisis accidents number was growing fast. Sometimes, crisis response to these public emergency accidents is involved in a complex system consisting of cyber, physics and society domains (CPS Model). In order to collect and analyze these accidents with higher efficiency, we need to design and adopt some new tools and models. In this paper, we used CPS Model based Online Opinion Governance system which constructed on cellphone APP for data collection and decision making in the back end. Based on the online opinion data we collected, we also proposed the graded risk classification. By the risk classification method, we have built an efficient CPS Model based simulated emergency accident replying and handling system. It has been proved useful in some real accidents in China in recent years.

2017-05-30
Zhai, Yan, Yin, Lichao, Chase, Jeffrey, Ristenpart, Thomas, Swift, Michael.  2016.  CQSTR: Securing Cross-Tenant Applications with Cloud Containers. Proceedings of the Seventh ACM Symposium on Cloud Computing. :223–236.

Cloud providers are in a position to greatly improve the trust clients have in network services: IaaS platforms can isolate services so they cannot leak data, and can help verify that they are securely deployed. We describe a new system called CQSTR that allows clients to verify a service's security properties. CQSTR provides a new cloud container abstraction similar to Linux containers but for VM clusters within IaaS clouds. Cloud containers enforce constraints on what software can run, and control where and how much data can be communicated across service boundaries. With CQSTR, IaaS providers can make assertions about the security properties of a service running in the cloud. We investigate implementations of CQSTR on both Amazon AWS and OpenStack. With AWS, we build on virtual private clouds to limit network access and on authorization mechanisms to limit storage access. However, with AWS certain security properties can be checked only by monitoring audit logs for violations after the fact. We modified OpenStack to implement the full CQSTR model with only modest code changes. We show how to use CQSTR to build more secure deployments of the data analytics frameworks PredictionIO, PacketPig, and SpamAssassin. In experiments on CloudLab we found that the performance impact of CQSTR on applications is near zero.

2017-08-22
Xu, Jun, Mu, Dongliang, Chen, Ping, Xing, Xinyu, Wang, Pei, Liu, Peng.  2016.  CREDAL: Towards Locating a Memory Corruption Vulnerability with Your Core Dump. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :529–540.

After a program has crashed and terminated abnormally, it typically leaves behind a snapshot of its crashing state in the form of a core dump. While a core dump carries a large amount of information, which has long been used for software debugging, it barely serves as informative debugging aids in locating software faults, particularly memory corruption vulnerabilities. A memory corruption vulnerability is a special type of software faults that an attacker can exploit to manipulate the content at a certain memory. As such, a core dump may contain a certain amount of corrupted data, which increases the difficulty in identifying useful debugging information (e.g. , a crash point and stack traces). Without a proper mechanism to deal with this problem, a core dump can be practically useless for software failure diagnosis. In this work, we develop CREDAL, an automatic tool that employs the source code of a crashing program to enhance core dump analysis and turns a core dump to an informative aid in tracking down memory corruption vulnerabilities. Specifically, CREDAL systematically analyzes a core dump potentially corrupted and identifies the crash point and stack frames. For a core dump carrying corrupted data, it goes beyond the crash point and stack trace. In particular, CREDAL further pinpoints the variables holding corrupted data using the source code of the crashing program along with the stack frames. To assist software developers (or security analysts) in tracking down a memory corruption vulnerability, CREDAL also performs analysis and highlights the code fragments corresponding to data corruption. To demonstrate the utility of CREDAL, we use it to analyze 80 crashes corresponding to 73 memory corruption vulnerabilities archived in Offensive Security Exploit Database. We show that, CREDAL can accurately pinpoint the crash point and (fully or partially) restore a stack trace even though a crashing program stack carries corrupted data. In addition, we demonstrate CREDAL can potentially reduce the manual effort of finding the code fragment that is likely to contain memory corruption vulnerabilities.

Yang, Yanjiang, Lu, Haibing, Liu, Joseph K., Weng, Jian, Zhang, Youcheng, Zhou, Jianying.  2016.  Credential Wrapping: From Anonymous Password Authentication to Anonymous Biometric Authentication. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :141–151.

The anonymous password authentication scheme proposed in ACSAC'10 under an unorthodox approach of password wrapped credentials advanced anonymous password authentication to be a practically ready primitive, and it is being standardized. In this paper, we improve on that scheme by proposing a new method of "public key suppression" for achieving server-designated credential verifiability, a core technicality in materializing the concept of password wrapped credential. Besides better performance, our new method simplifies the configuration of the authentication server, rendering the resulting scheme even more practical. Further, we extend the idea of password wrapped credential to biometric wrapped credential\vphantom\\, to achieve anonymous biometric authentication. As expected, biometric wrapped credentials help break the linear server-side computation barrier intrinsic in the standard setting of biometric authentication. Experimental results validate the feasibility of realizing efficient anonymous biometric authentication.

2017-03-20
Orikogbo, Damilola, Büchler, Matthias, Egele, Manuel.  2016.  CRiOS: Toward Large-Scale iOS Application Analysis. Proceedings of the 6th Workshop on Security and Privacy in Smartphones and Mobile Devices. :33–42.

Mobile applications - or apps - are one of the main reasons for the unprecedented success smart phones and tablets have experienced over the last decade. Apps are the main interfaces that users deal with when engaging in online banking, checking travel itineraries, or browsing their social network profiles while on the go. Previous research has studied various aspects of mobile application security including data leakage and privilege escalation through confused deputy attacks. However, the vast majority of mobile application research targets Google's Android platform. Few research papers analyze iOS applications and those that focus on the Apple environment perform their analysis on comparatively small datasets (i.e., thousands in iOS vs. hundreds of thousands in Android). As these smaller datasets call into question how representative the gained results are, we propose, implement, and evaluate CRiOS, a fully-automated system that allows us to amass comprehensive datasets of iOS applications which we subject to large-scale analysis. To advance academic research into the iOS platform and its apps, we plan on releasing CRiOS as an open source project. We also use CRiOS to aggregate a dataset of 43,404 iOS applications. Equipped with this dataset we analyze the collected apps to identify third-party libraries that are common among many applications. We also investigate the network communication endpoints referenced by the applications with respect to the endpoints' correct use of TLS/SSL certificates. In summary, we find that the average iOS application consists of 60.2% library classes and only 39.8% developer-authored content. Furthermore, we find that 9.32% of referenced network connection endpoints either entirely omit to cryptographically protect network communications or present untrustworthy SSL certificates.

2017-09-05
Beaumont, Mark, McCarthy, Jim, Murray, Toby.  2016.  The Cross Domain Desktop Compositor: Using Hardware-based Video Compositing for a Multi-level Secure User Interface. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :533–545.

We have developed the Cross Domain Desktop Compositor, a hardware-based multi-level secure user interface, suitable for deployment in high-assurance environments. Through composition of digital display data from multiple physically-isolated single-level secure domains, and judicious switching of keyboard and mouse input, we provide an integrated multi-domain desktop solution. The system developed enforces a strict information flow policy and requires no trusted software. To fulfil high-assurance requirements and achieve a low cost of accreditation, the architecture favours simplicity, using mainly commercial-off-the-shelf components complemented by small trustworthy hardware elements. The resulting user interface is intuitive and responsive and we show how it can be further leveraged to create integrated multi-level applications and support managed information flows for secure cross domain solutions. This is a new approach to the construction of multi-level secure user interfaces and multi-level applications which minimises the required trusted computing base, whilst maintaining much of the desired functionality.

2017-09-19
Durdi, Vinod B., Kulkarni, P. T., Sudha, K. L..  2016.  Cross Layer Approach Energy Efficient Transmission of Multimedia Data over Wireless Sensor Networks. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :85:1–85:6.

Multimedia transmission in wireless multimedia sensor networks is often energy constraints. In practice the bit rate resulting from all the multimedia digitization formats are substantially larger than the bit rates of transmission channels that are available with the networks associated with these applications. For the purpose of efficient of storage and transmission of the content, the popular compression technique MPEG4/H.264 has been made used. To achieve better coding efficiency video streaming protocols MPEG4/H.264 uses several techniques which is increasing the complexity involved in computation at the encoder prominently for wireless sensor network devices having lesser power abilities. In this paper we propose energy consumption reduction framework for transmission in wireless networks so that well-balanced quality of service (QoS) in multimedia network can be maintained. The experiment result demonstrate that the effectiveness of the proposed approach in energy efficiency in wireless sensor network where the energy is the critical parameter.

2017-08-22
Strasburg, Chris, Basu, Samik, Wong, Johnny.  2016.  A Cross-Domain Comparable Measurement Framework to Quantify Intrusion Detection Effectiveness. Proceedings of the 11th Annual Cyber and Information Security Research Conference. :11:1–11:8.

As the frequency, severity, and sophistication of cyber attacks increase, along with our dependence on reliable computing infrastructure, the role of Intrusion Detection Systems (IDS) gaining importance. One of the challenges in deploying an IDS stems from selecting a combination of detectors that are relevant and accurate for the environment where security is being considered. In this work, we propose a new measurement approach to address two key obstacles: the base-rate fallacy, and the unit of analysis problem. Our key contribution is to utilize the notion of a `signal', an indicator of an event that is observable to an IDS, as the measurement target, and apply the multiple instance paradigm (from machine learning) to enable cross-comparable measures regardless of the unit of analysis. To support our approach, we present a detailed case study and provide empirical examples of the effectiveness of both the model and measure by demonstrating the automated construction, optimization, and correlation of signals from different domains of observation (e.g. network based, host based, application based) and using different IDS techniques (signature based, anomaly based).

2017-04-20
Chen, Aokun, Brahma, Pratik, Wu, Dapeng Oliver, Ebner, Natalie, Matthews, Brandon, Crandall, Jedidiah, Wei, Xuetao, Faloutsos, Michalis, Oliveira, Daniela.  2016.  Cross-layer Personalization As a First-class Citizen for Situation Awareness and Computer Infrastructure Security. Proceedings of the 2016 New Security Paradigms Workshop. :23–35.

We propose a new security paradigm that makes cross-layer personalization a premier component in the design of security solutions for computer infrastructure and situational awareness. This paradigm is based on the observation that computer systems have a personalized usage profile that depends on the user and his activities. Further, it spans the various layers of abstraction that make up a computer system, as if the user embedded his own DNA into the computer system. To realize such a paradigm, we discuss the design of a comprehensive and cross-layer profiling approach, which can be adopted to boost the effectiveness of various security solutions, e.g., malware detection, insider attacker prevention and continuous authentication. The current state-of-the-art in computer infrastructure defense solutions focuses on one layer of operation with deployments coming in a "one size fits all" format, without taking into account the unique way people use their computers. The key novelty of our proposal is the cross-layer personalization, where we derive the distinguishable behaviors from the intelligence of three layers of abstraction. First, we combine intelligence from: a) the user layer, (e.g., mouse click patterns); b) the operating system layer; c) the network layer. Second, we develop cross-layer personalized profiles for system usage. We will limit our scope to companies and organizations, where computers are used in a more routine and one-on-one style, before we expand our research to personally owned computers. Our preliminary results show that just the time accesses in user web logs are already sufficient to distinguish users from each other,with users of the same demographics showing similarities in their profiles. Our goal is to challenge today's paradigm for anomaly detection that seems to follow a monoculture and treat each layer in isolation. We also discuss deployment, performance overhead, and privacy issues raised by our paradigm.

2017-05-22
Saab, Farah, Elhajj, Imad, Kayssi, Ayman, Chehab, Ali.  2016.  A Crowdsourcing Game-theoretic Intrusion Detection and Rating System. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :622–625.

One of the main concerns for smartphone users is the quality of apps they download. Before installing any app from the market, users first check its rating and reviews. However, these ratings are not computed by experts and most times are not associated with malicious behavior. In this work, we present an IDS/rating system based on a game theoretic model with crowdsourcing. Our results show that, with minor control over the error in categorizing users and the fraction of experts in the crowd, our system provides proper ratings while flagging all malicious apps.

2017-11-20
Karati, Arijit, Biswas, G. P..  2016.  Cryptanalysis and Improvement of a Certificateless Short Signature Scheme Using Bilinear Pairing. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :19:1–19:6.

Recently, various certificate-less signature (CLS) schemes have been developed using bilinear pairing to provide authenticity of message. In 2015, Jia-Lun Tsai proposed a certificate-less pairing based short signature scheme using elliptic curve cryptography (ECC) and prove its security under random oracle. However, it is shown that the scheme is inappropriate for its practical use as there is no message-signature dependency present during signature generation and verification. Thus, the scheme is vulnerable. To overcome these attacks, this paper aims to present a variant of Jia-Lun Tsai's short signature scheme. Our scheme is secured under the hardness of collusion attack algorithm with k traitors (k–-CAA). The performance analysis demonstrates that proposed scheme is efficient than other related signature schemes.

2017-05-22
Liu, Jiayang, Bi, Jingguo.  2016.  Cryptanalysis of a Fast Private Information Retrieval Protocol. Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography. :56–60.

A private information retrieval (abbreviated as PIR) protocol deals with the schemes that allow a user to retrieve privately an element of a non-replicated database. The security of PIR protocol is that the user wants to retrieve information in a database without the database knowing which information has being retrieved. This is widely applied in medical files, video or songs databases or even stock exchanges share prices. At ISIT 2008, Carlos Aguilar Melchor and Philippe Gaborit presented a lattice-based PIR protocol, whose security based on problems close to coding theory problems known to be NP-complete. In this paper, we present a practical attack on this PIR protocol when the number of elements in the database is not big. More specifically, we can firstly uncover the hidden linear relationship between the public matrices and noisy matrices, and then propose an efficient dimension-reduced attack to locate the index of the element which the user retrieved.

2017-11-03
Scaife, N., Carter, H., Traynor, P., Butler, K. R. B..  2016.  CryptoLock (and Drop It): Stopping Ransomware Attacks on User Data. 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS). :303–312.

Ransomware is a growing threat that encrypts auser's files and holds the decryption key until a ransom ispaid by the victim. This type of malware is responsible fortens of millions of dollars in extortion annually. Worse still, developing new variants is trivial, facilitating the evasion of manyantivirus and intrusion detection systems. In this work, we presentCryptoDrop, an early-warning detection system that alerts a userduring suspicious file activity. Using a set of behavior indicators, CryptoDrop can halt a process that appears to be tampering witha large amount of the user's data. Furthermore, by combininga set of indicators common to ransomware, the system can beparameterized for rapid detection with low false positives. Ourexperimental analysis of CryptoDrop stops ransomware fromexecuting with a median loss of only 10 files (out of nearly5,100 available files). Our results show that careful analysis ofransomware behavior can produce an effective detection systemthat significantly mitigates the amount of victim data loss.

2017-08-02
Xue, Wanli, Luo, Chengwen, Rana, Rajib, Hu, Wen, Seneviratne, Aruna.  2016.  CScrypt: A Compressive-Sensing-Based Encryption Engine for the Internet of Things: Demo Abstract. Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM. :286–287.

Internet of Things (IoT) have been connecting the physical world seamlessly and provides tremendous opportunities to a wide range of applications. However, potential risks exist when IoT system collects local sensor data and uploads to the Cloud. The private data leakage can be severe with curious database administrator or malicious hackers who compromise the Cloud. In this demo, we solve this problem of guaranteeing the user data privacy and security using compressive sensing based cryptographic method. We present CScrypt, a compressive-sensing-based encryption engine for the Cloud-enabled IoT systems to secure the interaction between the IoT devices and the Cloud. Our system exploits the fact that each individual's biometric data can be trained to a unique dictionary which can be used as an encryption key meanwhile to compress the original data. We will demonstrate a functioning prototype of our system using live data stream when attending the conference.

2017-09-05
Xue, Wanli, Luo, Chengwen, Rana, Rajib, Hu, Wen, Seneviratne, Aruna.  2016.  CScrypt: A Compressive-Sensing-Based Encryption Engine for the Internet of Things: Demo Abstract. Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM. :286–287.

Internet of Things (IoT) have been connecting the physical world seamlessly and provides tremendous opportunities to a wide range of applications. However, potential risks exist when IoT system collects local sensor data and uploads to the Cloud. The private data leakage can be severe with curious database administrator or malicious hackers who compromise the Cloud. In this demo, we solve this problem of guaranteeing the user data privacy and security using compressive sensing based cryptographic method. We present CScrypt, a compressive-sensing-based encryption engine for the Cloud-enabled IoT systems to secure the interaction between the IoT devices and the Cloud. Our system exploits the fact that each individual's biometric data can be trained to a unique dictionary which can be used as an encryption key meanwhile to compress the original data. We will demonstrate a functioning prototype of our system using live data stream when attending the conference.

2017-05-30
Shalev, Noam, Harpaz, Eran, Porat, Hagar, Keidar, Idit, Weinsberg, Yaron.  2016.  CSR: Core Surprise Removal in Commodity Operating Systems. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :773–787.

One of the adverse effects of shrinking transistor sizes is that processors have become increasingly prone to hardware faults. At the same time, the number of cores per die rises. Consequently, core failures can no longer be ruled out, and future operating systems for many-core machines will have to incorporate fault tolerance mechanisms. We present CSR, a strategy for recovery from unexpected permanent processor faults in commodity operating systems. Our approach overcomes surprise removal of faulty cores, and also tolerates cascading core failures. When a core fails in user mode, CSR terminates the process executing on that core and migrates the remaining processes in its run-queue to other cores. We further show how hardware transactional memory may be used to overcome failures in critical kernel code. Our solution is scalable, incurs low overhead, and is designed to integrate into modern operating systems. We have implemented it in the Linux kernel, using Haswell's Transactional Synchronization Extension, and tested it on a real system.

2017-11-20
Halevi, Tzipora, Memon, Nasir, Lewis, James, Kumaraguru, Ponnurangam, Arora, Sumit, Dagar, Nikita, Aloul, Fadi, Chen, Jay.  2016.  Cultural and Psychological Factors in Cyber-security. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :318–324.

Increasing cyber-security presents an ongoing challenge to security professionals. Research continuously suggests that online users are a weak link in information security. This research explores the relationship between cyber-security and cultural, personality and demographic variables. This study was conducted in four different countries and presents a multi-cultural view of cyber-security. In particular, it looks at how behavior, self-efficacy and privacy attitude are affected by culture compared to other psychological and demographics variables (such as gender and computer expertise). It also examines what kind of data people tend to share online and how culture affects these choices. This work supports the idea of developing personality based UI design to increase users' cyber-security. Its results show that certain personality traits affect the user cyber-security related behavior across different cultures, which further reinforces their contribution compared to cultural effects.