Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2017-05-17
Goyal, Rohit, Dragoni, Nicola, Spognardi, Angelo.  2016.  Mind the Tracker You Wear: A Security Analysis of Wearable Health Trackers. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :131–136.

Wearable tracking devices have gained widespread usage and popularity because of the valuable services they offer, monitoring human's health parameters and, in general, assisting persons to take a better care of themselves. Nevertheless, the security risks associated with such devices can represent a concern among consumers, because of the sensitive information these devices deal with, like sleeping patterns, eating habits, heart rate and so on. In this paper, we analyse the key security and privacy features of two entry level health trackers from leading vendors (Jawbone and Fitbit), exploring possible attack vectors and vulnerabilities at several system levels. The results of the analysis show how these devices are vulnerable to several attacks (perpetrated with consumer-level devices equipped with just bluetooth and Wi-Fi) that can compromise users' data privacy and security, and eventually call the tracker vendors to raise the stakes against such attacks.

2017-05-30
Höschele, Matthias, Zeller, Andreas.  2016.  Mining Input Grammars from Dynamic Taints. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :720–725.

Knowing which part of a program processes which parts of an input can reveal the structure of the input as well as the structure of the program. In a URL textlesspretextgreaterhttp://www.example.com/path/textless/pretextgreater, for instance, the protocol textlesspretextgreaterhttptextless/pretextgreater, the host textlesspretextgreaterwww.example.comtextless/pretextgreater, and the path textlesspretextgreaterpathtextless/pretextgreater would be handled by different functions and stored in different variables. Given a set of sample inputs, we use dynamic tainting to trace the data flow of each input character, and aggregate those input fragments that would be handled by the same function into lexical and syntactical entities. The result is a context-free grammar that reflects valid input structure. In its evaluation, our AUTOGRAM prototype automatically produced readable and structurally accurate grammars for inputs like URLs, spreadsheets or configuration files. The resulting grammars not only allow simple reverse engineering of input formats, but can also directly serve as input for test generators.

2017-08-22
Lazarova-Molnar, Sanja, Logason, Halldór Þór, Andersen, Peter Grønb\textbackslasha ek, Kj\textbackslasha ergaard, Mikkel Baun.  2016.  Mobile Crowdsourcing of Data for Fault Detection and Diagnosis in Smart Buildings. Proceedings of the International Conference on Research in Adaptive and Convergent Systems. :12–17.

Energy use of buildings represents roughly 40% of the overall energy consumption. Most of the national agendas contain goals related to reducing the energy consumption and carbon footprint. Timely and accurate fault detection and diagnosis (FDD) in building management systems (BMS) have the potential to reduce energy consumption cost by approximately 15-30%. Most of the FDD methods are data-based, meaning that their performance is tightly linked to the quality and availability of relevant data. Based on our experience, faults and relevant events data is very sparse and inadequate, mostly because of the lack of will and incentive for those that would need to keep track of faults. In this paper we introduce the idea of using crowdsourcing to support FDD data collection processes, and illustrate our idea through a mobile application that has been implemented for this purpose. Furthermore, we propose a strategy of how to successfully deploy this building occupants' crowdsourcing application.

Shang, Wenli, Cui, Junrong, Wan, Ming, An, Panfeng, Zeng, Peng.  2016.  Modbus Communication Behavior Modeling and SVM Intrusion Detection Method. Proceedings of the 6th International Conference on Communication and Network Security. :80–85.

The security and typical attack behavior of Modbus/TCP industrial network communication protocol are analyzed. The data feature of traffic flow is extracted through the operation mode of the depth analysis abnormal behavior, and the intrusion detection method based on the support vector machine (SVM) is designed. The method analyzes the data characteristics of abnormal communication behavior, and constructs the feature input structure and detection system based on SVM algorithm by using the direct behavior feature selection and abnormal behavior pattern feature construction. The experimental results show that the method can effectively improve the detection rate of abnormal behavior, and enhance the safety protection function of industrial network.

2017-09-05
Koteshwara, Sandhya, Kim, Chris H., Parhi, Keshab K..  2016.  Mode-based Obfuscation Using Control-Flow Modifications. Proceedings of the Third Workshop on Cryptography and Security in Computing Systems. :19–24.

Hardware security has emerged as an important topic in the wake of increasing threats on integrated circuits which include reverse engineering, intellectual property (IP) piracy and overbuilding. This paper explores obfuscation of circuits as a hardware security measure and specifically targets digital signal processing (DSP) circuits which are part of most modern systems. The idea of using desired and undesired modes to design obfuscated DSP functions is illustrated using the fast Fourier transform (FFT) as an example. The selection of a mode is dependent on a key input to the circuit. The system is said to work in its desired mode of operation only if the correct key is applied. Other undesired modes are built into the design to confuse an adversary. The approach to obfuscating the design involves control-flow modifications which alter the computations from the desired mode. We present simulation and synthesis results on a reconfigurable, 2-parallel FFT and discuss the security of this approach. It is shown that the proposed approach results in a reconfigurable and flexible design at an area overhead of 8% and a power overhead of 10%.

2017-05-22
Davidson, Alex, Fenn, Gregory, Cid, Carlos.  2016.  A Model for Secure and Mutually Beneficial Software Vulnerability Sharing. Proceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative Security. :3–14.

In this work we propose a model for conducting efficient and mutually beneficial information sharing between two competing entities, focusing specifically on software vulnerability sharing. We extend the two-stage game-theoretic model proposed by Khouzani et al. [18] for bug sharing, addressing two key features: we allow security information to be associated with different categories and severities, but also remove a large proportion of player homogeneity assumptions the previous work makes. We then analyse how these added degrees of realism affect the trading dynamics of the game. Secondly, we develop a new private set operation (PSO) protocol that enables the removal of the trusted mediation requirement. The PSO functionality allows for bilateral trading between the two entities up to a mutually agreed threshold on the value of information shared, keeping all other input information secret. The protocol scales linearly with set sizes and we give an implementation that establishes the practicality of the design for varying input parameters. The resulting model and protocol provide a framework for practical and secure information sharing between competing entities.

2017-05-17
Kang, Eunsuk, Adepu, Sridhar, Jackson, Daniel, Mathur, Aditya P..  2016.  Model-based Security Analysis of a Water Treatment System. Proceedings of the 2Nd International Workshop on Software Engineering for Smart Cyber-Physical Systems. :22–28.

An approach to analyzing the security of a cyber-physical system (CPS) is proposed, where the behavior of a physical plant and its controller are captured in approximate models, and their interaction is rigorously checked to discover potential attacks that involve a varying number of compromised sensors and actuators. As a preliminary study, this approach has been applied to a fully functional water treatment testbed constructed at the Singapore University of Technology and Design. The analysis revealed previously unknown attacks that were confirmed to pose serious threats to the safety of the testbed, and suggests a number of research challenges and opportunities for applying a similar type of formal analysis to cyber-physical security.

2017-03-20
Vazirian, Samane, Zahedi, Morteza.  2016.  A modified language modeling method for authorship attribution. :32–37.

This paper presents an approach to a closed-class authorship attribution (AA) problem. It is based on language modeling for classification and called modified language modeling. Modified language modeling aims to offer a solution for AA problem by Combinations of both bigram words weighting and Unigram words weighting. It makes the relation between unseen text and training documents clearer with giving extra reward of training documents; training document including bigram word as well as unigram words. Moreover, IDF value multiplied by related word probability has been used, instead of removing stop words which are provided by Stop words list. we evaluate Experimental results by four approaches; unigram, bigram, trigram and modified language modeling by using two Persian poem corpora as WMPR-AA2016-A Dataset and WMPR-AA2016-B Dataset. Results show that modified language modeling attributes authors better than other approaches. The result on WMPR-AA2016-B, which is bigger dataset, is much better than another dataset for all approaches. This may indicate that if adequate data is provided to train language modeling the modified language modeling can be a good solution to AA problem.

2017-09-26
Ricketts, Daniel, Malecha, Gregory, Lerner, Sorin.  2016.  Modular Deductive Verification of Sampled-data Systems. Proceedings of the 13th International Conference on Embedded Software. :17:1–17:10.

Unsafe behavior of cyber-physical systems can have disastrous consequences, motivating the need for formal verification of these kinds of systems. Deductive verification in a proof assistant such as Coq is a promising technique for this verification because it (1) justifies all verification from first principles, (2) is not limited to classes of systems for which full automation is possible, and (3) provides a platform for proving powerful, higher-order modularity theorems that are crucial for scaling verification to complex systems. In this paper, we demonstrate the practicality, utility, and scalability of this approach by developing in Coq sound and powerful rules for modular construction and verification of sampled-data cyber-physical systems. We evaluate these rules by using them to verify a number of non-trivial controllers enforcing safety properties of a quadcopter, e.g. a geo-fence. We show that our controllers are realistic by running them on a real, flying quadcopter.

2017-05-22
Kurilova, Darya, Potanin, Alex, Aldrich, Jonathan.  2016.  Modules in Wyvern: Advanced Control over Security and Privacy. Proceedings of the Symposium and Bootcamp on the Science of Security. :68–68.

In today's systems, restricting the authority of untrusted code is difficult because, by default, code has the same authority as the user running it. Object capabilities are a promising way to implement the principle of least authority, but being too low-level and fine-grained, take away many conveniences provided by module systems. We present a module system design that is capability-safe, yet preserves most of the convenience of conventional module systems. We demonstrate how to ensure key security and privacy properties of a program as a mode of use of our module system. Our authority safety result formally captures the role of mutable state in capability-based systems and uses a novel non-transitive notion of authority, which allows us to reason about authority restriction: the encapsulation of a stronger capability inside a weaker one.

2017-05-30
Li, Jason, Yackoski, Justin, Evancich, Nicholas.  2016.  Moving Target Defense: A Journey from Idea to Product. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :69–79.

In today's enterprise networks, there are many ways for a determined attacker to obtain a foothold, bypass current protection technologies, and attack the intended target. Over several years we have developed the Self-shielding Dynamic Network Architecture (SDNA) technology, which prevents an attacker from targeting, entering, or spreading through an enterprise network by adding dynamics that present a changing view of the network over space and time. SDNA was developed with the support of government sponsored research and development and corporate internal resources. The SDNA technology was purchased by Cryptonite, LLC in 2015 and has been developed into a robust product offering called Cryptonite NXT. In this paper, we describe the journey and lessons learned along the course of feasibility demonstration, technology development, security testing, productization, and deployment in a production network.

2017-05-22
Wright, Mason, Venkatesan, Sridhar, Albanese, Massimiliano, Wellman, Michael P..  2016.  Moving Target Defense Against DDoS Attacks: An Empirical Game-Theoretic Analysis. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :93–104.

Distributed denial-of-service attacks are an increasing problem facing web applications, for which many defense techniques have been proposed, including several moving-target strategies. These strategies typically work by relocating targeted services over time, increasing uncertainty for the attacker, while trying not to disrupt legitimate users or incur excessive costs. Prior work has not shown, however, whether and how a rational defender would choose a moving-target method against an adaptive attacker, and under what conditions. We formulate a denial-of-service scenario as a two-player game, and solve a restricted-strategy version of the game using the methods of empirical game-theoretic analysis. Using agent-based simulation, we evaluate the performance of strategies from prior literature under a variety of attacks and environmental conditions. We find evidence for the strategic stability of various proposed strategies, such as proactive server movement, delayed attack timing, and suspected insider blocking, along with guidelines for when each is likely to be most effective.

2017-10-03
Venkatesan, Sridhar, Albanese, Massimiliano, Cybenko, George, Jajodia, Sushil.  2016.  A Moving Target Defense Approach to Disrupting Stealthy Botnets. Proceeding MTD '16 Proceedings of the 2016 ACM Workshop on Moving Target Defense Pages 37-46 .

Botnets are increasingly being used for exfiltrating sensitive data from mission-critical systems. Research has shown that botnets have become extremely sophisticated and can operate in stealth mode by minimizing their host and network footprint. In order to defeat exfiltration by modern botnets, we propose a moving target defense approach for dynamically deploying detectors across a network. Specifically, we propose several strategies based on centrality measures to periodically change the placement of detectors. Our objective is to increase the attacker's effort and likelihood of detection by creating uncertainty about the location of detectors and forcing botmasters to perform additional actions in an attempt to create detector-free paths through the network. We present metrics to evaluate the proposed strategies and an algorithm to compute a lower bound on the detection probability. We validate our approach through simulations, and results confirm that the proposed solution effectively reduces the likelihood of successful exfiltration campaigns.

2017-06-27
Venkatesan, Sridhar, Albanese, Massimiliano, Cybenko, George, Jajodia, Sushil.  2016.  A Moving Target Defense Approach to Disrupting Stealthy Botnets. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :37–46.

Botnets are increasingly being used for exfiltrating sensitive data from mission-critical systems. Research has shown that botnets have become extremely sophisticated and can operate in stealth mode by minimizing their host and network footprint. In order to defeat exfiltration by modern botnets, we propose a moving target defense approach for dynamically deploying detectors across a network. Specifically, we propose several strategies based on centrality measures to periodically change the placement of detectors. Our objective is to increase the attacker's effort and likelihood of detection by creating uncertainty about the location of detectors and forcing botmasters to perform additional actions in an attempt to create detector-free paths through the network. We present metrics to evaluate the proposed strategies and an algorithm to compute a lower bound on the detection probability. We validate our approach through simulations, and results confirm that the proposed solution effectively reduces the likelihood of successful exfiltration campaigns.

2017-08-18
Ramirez, Anthony, Fernandez, Alfredo.  2016.  MP4 Steganography: Analyzing and Detecting TCSteg. Proceedings of the 5th Annual Conference on Research in Information Technology. :2–6.

The MP4 files has become to most used video media file available, and will mostly likely remain at the top for some time to come. This makes MP4 files an interesting candidate for steganography. With its size and structure, it offers a challenge to steganography developers. While some attempts have been made to create a truly covert file, few are as successful as Martin Fiedler's TCSteg. TCSteg allows users to hide a TrueCrypt hidden volume in an MP4 file. The structure of the file makes it difficult to identify that a volume exists. In our analysis of TCSteg, we will show how Fielder's code works and how we may be able to detect the existence of steganography. We will then implement these methods in hope that other steganography analysis can use them to determine if an MP4 file is a carrier file. Finally, we will address the future of MP4 steganography.

2017-03-20
Amullen, Esther, Lin, Hui, Kalbarczyk, Zbigniew, Keel, Lee.  2016.  Multi-agent System for Detecting False Data Injection Attacks Against the Power Grid. Proceedings of the 2Nd Annual Industrial Control System Security Workshop. :38–44.

A class of cyber-attacks called False Data Injection attacks that target measurement data used for state estimation in the power grid are currently under study by the research community. These attacks modify sensor readings obtained from meters with the aim of misleading the control center into taking ill-advised response action. It has been shown that an attacker with knowledge of the network topology can craft an attack that bypasses existing bad data detection schemes (largely based on residual generation) employed in the power grid. We propose a multi-agent system for detecting false data injection attacks against state estimation. The multi-agent system is composed of software implemented agents created for each substation. The agents facilitate the exchange of information including measurement data and state variables among substations. We demonstrate that the information exchanged among substations, even untrusted, enables agents cooperatively detect disparities between local state variables at the substation and global state variables computed by the state estimator. We show that a false data injection attack that passes bad data detection for the entire system does not pass bad data detection for each agent.

2017-06-27
Yang, Lei, Humayed, Abdulmalik, Li, Fengjun.  2016.  A Multi-cloud Based Privacy-preserving Data Publishing Scheme for the Internet of Things. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :30–39.

With the increased popularity of ubiquitous computing and connectivity, the Internet of Things (IoT) also introduces new vulnerabilities and attack vectors. While secure data collection (i.e. the upward link) has been well studied in the literature, secure data dissemination (i.e. the downward link) remains an open problem. Attribute-based encryption (ABE) and outsourced-ABE has been used for secure message distribution in IoT, however, existing mechanisms suffer from extensive computation and/or privacy issues. In this paper, we explore the problem of privacy-preserving targeted broadcast in IoT. We propose two multi-cloud-based outsourced-ABE schemes, namely the parallel-cloud ABE and the chain-cloud ABE, which enable the receivers to partially outsource the computationally expensive decryption operations to the clouds, while preventing user attributes from being disclosed. In particular, the proposed solution protects three types of privacy (i.e., data, attribute and access policy privacy) by enforcing collaborations among multiple clouds. Our schemes also provide delegation verifiability that allows the receivers to verify whether the clouds have faithfully performed the outsourced operations. We extensively analyze the security guarantees of the proposed mechanisms and demonstrate the effectiveness and efficiency of our schemes with simulated resource-constrained IoT devices, which outsource operations to Amazon EC2 and Microsoft Azure.

2017-09-19
Yan, Jingwei, Zheng, Wenming, Cui, Zhen, Tang, Chuangao, Zhang, Tong, Zong, Yuan, Sun, Ning.  2016.  Multi-clue Fusion for Emotion Recognition in the Wild. Proceedings of the 18th ACM International Conference on Multimodal Interaction. :458–463.

In the past three years, Emotion Recognition in the Wild (EmotiW) Grand Challenge has drawn more and more attention due to its huge potential applications. In the fourth challenge, aimed at the task of video based emotion recognition, we propose a multi-clue emotion fusion (MCEF) framework by modeling human emotion from three mutually complementary sources, facial appearance texture, facial action, and audio. To extract high-level emotion features from sequential face images, we employ a CNN-RNN architecture, where face image from each frame is first fed into the fine-tuned VGG-Face network to extract face feature, and then the features of all frames are sequentially traversed in a bidirectional RNN so as to capture dynamic changes of facial textures. To attain more accurate facial actions, a facial landmark trajectory model is proposed to explicitly learn emotion variations of facial components. Further, audio signals are also modeled in a CNN framework by extracting low-level energy features from segmented audio clips and then stacking them as an image-like map. Finally, we fuse the results generated from three clues to boost the performance of emotion recognition. Our proposed MCEF achieves an overall accuracy of 56.66% with a large improvement of 16.19% with respect to the baseline.

2017-05-19
Hoque, Enamul, Carenini, Giuseppe.  2016.  MultiConVis: A Visual Text Analytics System for Exploring a Collection of Online Conversations. Proceedings of the 21st International Conference on Intelligent User Interfaces. :96–107.

Online conversations, such as blogs, provide rich amount of information and opinions about popular queries. Given a query, traditional blog sites return a set of conversations often consisting of thousands of comments with complex thread structure. Since the interfaces of these blog sites do not provide any overview of the data, it becomes very difficult for the user to explore and analyze such a large amount of conversational data. In this paper, we present MultiConVis, a visual text analytics system designed to support the exploration of a collection of online conversations. Our system tightly integrates NLP techniques for topic modeling and sentiment analysis with information visualizations, by considering the unique characteristics of online conversations. The resulting interface supports the user exploration, starting from a possibly large set of conversations, then narrowing down to the subset of conversations, and eventually drilling-down to the set of comments of one conversation. Our evaluations through case studies with domain experts and a formal user study with regular blog readers illustrate the potential benefits of our approach, when compared to a traditional blog reading interface.

2017-08-02
Jagadiswary, D., Saraswady, D..  2016.  Multimodal Biometric Fusion Using Image Encryption Algorithm. Proceedings of the International Conference on Informatics and Analytics. :46:1–46:5.

India being digitized through digital India, the most basic unique identity for each individual is biometrics. Since India is the second most populous nation, the database that has to be maintained is surplus. Shielding those information by using the present techniques has been questioned. This contravene problem can be overcome by using cryptographic algorithms in accumulation to biometrics. Hence proposed system is developed by combining multimodal biometric (Fingerprint, Retina, Finger vein) with cryptographic algorithm with Genuine Acceptance Rate of 94%, False Acceptance Rate of 1.46%, and False Rejection Rate of 1.07%.

2017-05-19
Peng, Qiuyu, Walid, Anwar, Hwang, Jaehyun, Low, Steven H..  2016.  Multipath TCP: Analysis, Design, and Implementation. IEEE/ACM Trans. Netw.. 24:596–609.

Multipath TCP (MP-TCP) has the potential to greatly improve application performance by using multiple paths transparently. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate our algorithm Balia (balanced linked adaptation), which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new algorithm to existing MP-TCP algorithms.

2017-06-05
Love, Fred, McMillin, Bruce, Tulasidas, Sivanesan, Balachandran, W..  2016.  Multiple Security Domain Nondeducibility for Point-of-care Diagnostic Technology: WiP Abstract. Proceedings of the 7th International Conference on Cyber-Physical Systems. :42:1–42:1.

Microfluidics is an interdisciplinary science focusing on the development of devices and systems that process low volumes of fluid for applications such as high throughput DNA sequencing, immunoassays, and entire Labs-on-Chip platforms. Microfluidic diagnostic technology enables these advances by facilitating the miniaturization and integration of complex biochemical processing through a microfluidic biochip [1]. This approach tightly couples the biochemical operations, sensing system, control algorithm, and droplet-based biochip. During the process the status of a droplet is monitored in real-time to detect operational errors. If an error has occurred, the control algorithm dynamically reconfigures to allow recovery and rescheduling of on-chip operations. During this recovery procedure the droplet that is the source of the error is discarded to prevent the propagation of the error and the operation is repeated. Threats to the operation of the microfluidics biochip include (1) integrity: an attack can modify control electrodes to corrupt the diagnosis, and (2) privacy: what can a user/operator deduce about the diagnosis? It is challenging to describe both these aspects using existing models; as Figure 1 depicts there are multiple security domains, Unidirectional information flows shown in black indicate undesirable flows, the bidirectional black arrows indicate desirable, but possibly corrupted, information flows, and the unidirectional red arrows indicate undesirable information flows. As with Stuxnet, a bidirectional, deducible information flow is needed between the monitoring security domain and internal security domain (biochip) [2]. Simultaneously, the attacker and the operators should receive a nondeducible information flow. Likewise, the red attack arrows should be deducible to the internal domain. Our current security research direction uses the novel approach of Multiple Security Domain Nondeducibility [2] to explore the vulnerabilities of exploiting this error recovery process through information flow leakages and leads to protection of the system through desirable information flows.

2017-09-27
Han, Xiao, Yin, Jingwei, Yu, Ge.  2016.  Multiple-input Multiple-output Under-ice Acoustic Communication in Shallow Water. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :7:1–7:2.

Multiple-input multiple-output (MIMO) techniques have been the subject of increased attention for underwater acoustic communication for its ability to significantly improve the channel capabilities. Recently, an under-ice MIMO acoustic communication experiment was conducted in shallow water which differs from previous works in that the water column was covered by about 40 centimeters thick sea ice. In this experiment, high frequency MIMO signals centered at 10 kHz were transmitted from a two-element source array to a four-element vertical receive array at 1km range. The unique under-ice acoustic propagation environment in shallow water seems naturally separate data streams from different transducers, but there is still co-channel interference. Time reversal followed by a single channel decision feedback equalizer is used in this paper to compensate for the inter-symbol interference and co-channel interference. It is demonstrated that this simple receiver scheme is good enough to realize robust performance using fewer hydrophones (i.e. 2) without the explicit use of complex co-channel interference cancelation algorithms such as parallel interference cancelation or serial interference cancelation. Two channel estimation algorithms based on least square and least mean square are also studied for MIMO communications in this paper and their performance are compared using experimental data.

2017-09-19
Jahan, Thanveer, Narsimha, G., Rao, C. V. Guru.  2016.  Multiplicative Data Perturbation Using Fuzzy Logic in Preserving Privacy. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :38:1–38:5.

In Data mining is the method of extracting the knowledge from huge amount of data and interesting patterns. With the rapid increase of data storage, cloud and service-based computing, the risk of misuse of data has become a major concern. Protecting sensitive information present in the data is crucial and critical. Data perturbation plays an important role in privacy preserving data mining. The major challenge of privacy preserving is to concentrate on factors to achieve privacy guarantee and data utility. We propose a data perturbation method that perturbs the data using fuzzy logic and random rotation. It also describes aspects of comparable level of quality over perturbed data and original data. The comparisons are illustrated on different multivariate datasets. Experimental study has proved the model is better in achieving privacy guarantee of data, as well as data utility.

Song, Chen, Lin, Feng, Ba, Zhongjie, Ren, Kui, Zhou, Chi, Xu, Wenyao.  2016.  My Smartphone Knows What You Print: Exploring Smartphone-based Side-channel Attacks Against 3D Printers. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :895–907.

Additive manufacturing, also known as 3D printing, has been increasingly applied to fabricate highly intellectual property (IP) sensitive products. However, the related IP protection issues in 3D printers are still largely underexplored. On the other hand, smartphones are equipped with rich onboard sensors and have been applied to pervasive mobile surveillance in many applications. These facts raise one critical question: is it possible that smartphones access the side-channel signals of 3D printer and then hack the IP information? To answer this, we perform an end-to-end study on exploring smartphone-based side-channel attacks against 3D printers. Specifically, we formulate the problem of the IP side-channel attack in 3D printing. Then, we investigate the possible acoustic and magnetic side-channel attacks using the smartphone built-in sensors. Moreover, we explore a magnetic-enhanced side-channel attack model to accurately deduce the vital directional operations of 3D printer. Experimental results show that by exploiting the side-channel signals collected by smartphones, we can successfully reconstruct the physical prints and their G-code with Mean Tendency Error of 5.87% on regular designs and 9.67% on complex designs, respectively. Our study demonstrates this new and practical smartphone-based side channel attack on compromising IP information during 3D printing.