Biblio
The security game is a basic model for resource allocation in adversarial environments. Here there are two players, a defender and an attacker. The defender wants to allocate her limited resources to defend critical targets and the attacker seeks his most favorable target to attack. In the past decade, there has been a surge of research interest in analyzing and solving security games that are motivated by applications from various domains. Remarkably, these models and their game-theoretic solutions have led to real-world deployments in use by major security agencies like the LAX airport, the US Coast Guard and Federal Air Marshal Service, as well as non-governmental organizations. Among all these research and applications, equilibrium computation serves as a foundation. This paper examines security games from a theoretical perspective and provides a unified view of various security game models. In particular, each security game can be characterized by a set system E which consists of the defender's pure strategies; The defender's best response problem can be viewed as a combinatorial optimization problem over E. Our framework captures most of the basic security game models in the literature, including all the deployed systems; The set system E arising from various domains encodes standard combinatorial problems like bipartite matching, maximum coverage, min-cost flow, packing problems, etc. Our main result shows that equilibrium computation in security games is essentially a combinatorial problem. In particular, we prove that, for any set system \$E\$, the following problems can be reduced to each other in polynomial time: (0) combinatorial optimization over E; (1) computing the minimax equilibrium for zero-sum security games over E; (2) computing the strong Stackelberg equilibrium for security games over E; (3) computing the best or worst (for the defender) Nash equilibrium for security games over E. Therefore, the hardness [polynomial solvability] of any of these problems implies the hardness [polynomial solvability] of all the others. Here, by "games over E" we mean the class of security games with arbitrary payoff structures, but a fixed set E of defender pure strategies. This shows that the complexity of a security game is essentially determined by the set system E. We view drawing these connections as an important conceptual contribution of this paper.
We propose a multi party conversational social interface NAMIDA through a pilot study. The system consists of three robots that can converse with each other about environment throughout the road. Through this model, the directed utterances towards the driver diminishes by utilizing turn-taking process between the agents, and the mental workload of the driver can be reduced compared to the conventional one-to-one communication based approach that directly addresses the driver. We set up an experiment to compare the both approaches to explore their effects on the workload and attention behaviors of drivers. The results indicated that the multi-party conversational approach has a better effect on reducing certain workload factors. Also, the analysis of attention behaviors of drivers revealed that our method can better promote the drivers to focus on the road.
Today's applications asking for finding spatial protests nearest to a predefined area in the meantime fulfill limitation of keywords. Best answer for such questions depends on the IR2-tree, which has some inadequacies that truly affect system s efficiency. To defeat those inadequacies another access strategy is produced called the Spatial-inverted Index (SI) that extends the modified file to adapt to multidimensional information, and accompanies calculations that can answer closest neighbor queries with keywords continuously. This new technique SI is produced broadens the capacities of routine modified record makes do with multidimensional information, alongside the arrangement of using so as to move reach queries replied SI results to calculation which tackles the issue continuously.
Tree structures such as breadth-first search (BFS) trees and minimum spanning trees (MST) are among the most fundamental graph structures in distributed network algorithms. However, by definition, these structures are not robust against failures and even a single edge's removal can disrupt their functionality. A well-studied concept which attempts to circumvent this issue is Fault-Tolerant Tree Structures, where the tree gets augmented with additional edges from the network so that the functionality of the structure is maintained even when an edge fails. These structures, or other equivalent formulations, have been studied extensively from a centralized viewpoint. However, despite the fact that the main motivations come from distributed networks, their distributed construction has not been addressed before. In this paper, we present distributed algorithms for constructing fault tolerant BFS and MST structures. The time complexity of our algorithms are nearly optimal in the following strong sense: they almost match even the lower bounds of constructing (basic) BFS and MST trees.
Large scale applications in data centers are composed of computers connected with a network. Traditional network switches cannot be flexibly controlled. Then, application developer cannot optimize network elements' behavior for improving application performance. On the other hand, Deeply Programmable Network (DPN) switches can completely analyze packet payloads and be profoundly programmed. In this paper, we focus on processing a part of application functions in network elements for improving application performance based on Deep Packet Inspection (DPI), i.e. analyzing packet payload, using DPN switches. We assume some applications as targets and implement some of functions of applications in network switches. We then present the comparison of performances with and without out method, and show that our method can significantly increase application performance.
This paper establishes a new framework for electrical cyber-physical systems (ECPSs). The communication network is designed by the characteristics of a power grid. The interdependent relationship of communication networks and power grids is described by data-uploading channels and commands-downloading channels. Control strategies (such as load shedding and relay protection) are extended to this new framework for analyzing the performance of ECPSs under several attack scenarios. The fragility of ECPSs under cyber attacks (DoS attack and false data injection attack) and the effectiveness of relay protection policies are verified by experimental results.
In this paper, we propose a new risk analysis framework that enables to supervise risks in complex and distributed systems. Our contribution is twofold. First, we provide the Risk Assessment Graphs (RAGs) as a model of risk analysis. This graph-based model is adaptable to the system changes over the time. We also introduce the potentiality and the accessibility functions which, during each time slot, evaluate respectively the chance of exploiting the RAG's nodes, and the connection time between these nodes. In addition, we provide a worst-case risk evaluation approach, based on the assumption that the intruder threats usually aim at maximising their benefits by inflicting the maximum damage to the target system (i.e. choosing the most likely paths in the RAG). We then introduce three security metrics: the propagated risk, the node risk and the global risk. We illustrate the use of our framework through the simple example of an enterprise email service. Our framework achieves both flexibility and generality requirements, it can be used to assess the external threats as well as the insider ones, and it applies to a wide set of applications.
In this paper, we propose a new risk analysis framework that enables to supervise risks in complex and distributed systems. Our contribution is twofold. First, we provide the Risk Assessment Graphs (RAGs) as a model of risk analysis. This graph-based model is adaptable to the system changes over the time. We also introduce the potentiality and the accessibility functions which, during each time slot, evaluate respectively the chance of exploiting the RAG's nodes, and the connection time between these nodes. In addition, we provide a worst-case risk evaluation approach, based on the assumption that the intruder threats usually aim at maximising their benefits by inflicting the maximum damage to the target system (i.e. choosing the most likely paths in the RAG). We then introduce three security metrics: the propagated risk, the node risk and the global risk. We illustrate the use of our framework through the simple example of an enterprise email service. Our framework achieves both flexibility and generality requirements, it can be used to assess the external threats as well as the insider ones, and it applies to a wide set of applications.
The performance of clustering is a crucial challenge, especially for pattern recognition. The models aggregation has a positive impact on the efficiency of Data clustering. This technique is used to obtain more cluttered decision boundaries by aggregating the resulting clustering models. In this paper, we study an aggregation scheme to improve the stability and accuracy of clustering, which allows to find a reliable and robust clustering model. We demonstrate the advantages of our aggregation method by running Fuzzy C-Means (FCM) clustering on Reuters-21578 corpus. Experimental studies showed that our scheme optimized the bias-variance on the selected model and achieved enhanced clustering for unstructured textual resources.
As the amount of spatial data gets bigger, organizations realized that it is cheaper and more flexible to keep their data on the Cloud rather than to establish and maintain in-house huge data centers. Though this saves a lot for IT costs, organizations are still concerned about the privacy and security of their data. Encrypting the whole database before uploading it to the Cloud solves the security issue. But querying the database requires downloading and decrypting the data set, which is impractical. In this paper, we propose a new scheme for protecting the privacy and integrity of spatial data stored in the Cloud while being able to execute range queries efficiently. The proposed technique suggests a new index structure to support answering range query over encrypted data set. The proposed indexing scheme is based on the Z-curve. The paper describes a distributed algorithm for answering range queries over spatial data stored on the Cloud. We carried many simulation experiments to measure the performance of the proposed scheme. The experimental results show that the proposed scheme outperforms the most recent schemes by Kim et al. in terms of data redundancy.
With the increasing popularity of cloud storage services, many individuals and enterprises start to move their local data to the clouds. To ensure their privacy and data security, some cloud service users may want to encrypt their data before outsourcing them. However, this impedes efficient data utilities based on the plain text search. In this paper, we study how to construct a secure index that supports both efficient index updating and similarity search. Using the secure index, users are able to efficiently perform similarity searches tolerating input mistakes and update the index when new data are available. We formally prove the security of our proposal and also perform experiments on real world data to show its efficiency.
SMS (Short Messaging Service) is a text messaging service for mobile users to exchange short text messages. It is also widely used to provide SMS-powered services (e.g., mobile banking). With the rapid deployment of all-IP 4G mobile networks, the underlying technology of SMS evolves from the legacy circuit-switched network to the IMS (IP Multimedia Subsystem) system over packet-switched network. In this work, we study the insecurity of the IMS-based SMS. We uncover its security vulnerabilities and exploit them to devise four SMS attacks: silent SMS abuse, SMS spoofing, SMS client DoS, and SMS spamming. We further discover that those SMS threats can propagate towards SMS-powered services, thereby leading to three malicious attacks: social network account hijacking, unauthorized donation, and unauthorized subscription. Our analysis reveals that the problems stem from the loose security regulations among mobile phones, carrier networks, and SMS-powered services. We finally propose remedies to the identified security issues.
In this paper, we analyze the performance and cost trade-off from selecting two representations of nodes when implementing the Aho-Corasick algorithm. This algorithm can be used for pattern matching in network-based intrusion detection systems such as Snort. Our analysis uses the Snort 2.9.7 rules set, which contains almost 26k patterns. Our methodology consists of code profiling and analysis, followed by the selection of a parameter to maximize a metric that combines clock cycles count and memory usage. The parameter determines which of two types of nodes is selected for each trie node. We show that it is possible to select the parameter to optimize the metric, which results in an improvement by up to 12× compared with the single node-type case.
In threshold schemes one represents each sensitive variable by a number n of shares such that their (usually) bitwise sum equals that variable. These shares are initially generated in such a way that any subset of n-1 shares gives no information about the sensitive variable. Functions (S-boxes, mixing layers, round functions, etc.) are computed on the shares of the inputs resulting in the output as a number of shares. An essential property of a threshold implementation of a function is that each output share is computed from at most n-1 input shares. This is called incompleteness and guarantees that that computation cannot leak information about sensitive variables. The resulting output is then typically subject to some further computation, again in the form of separate, incomplete, computation on shares. For these subsequent computations to not leak information about the sensitive variables, the output of the previous stage must still be uniform. Hence, in an iterative cryptographic primitive such as a block cipher, we need a threshold implementation of the round function that yields a uniformly shared output if its input is uniformly shared. This property of the threshold implementation is called uniformity. Threshold schemes form a good protection mechanism against differential power analysis (DPA). In particular, using it allows building cryptographic hardware that is guaranteed to be unattackable with first-order DPA, assuming certain leakage models of the cryptographic hardware at hand and for a plausible definition of "first order". Constructing an incomplete threshold implementation of a non-linear function is rather straightforward. To offer resistance against first-order DPA, the number of shares equals the algebraic degree of the function plus one. However, constructing one that is at the same time incomplete and uniform may present a challenge. For instance, for the Keccak non-linear layer, incomplete 3-share threshold implementations are easy to generate but no uniform one is known. Exhaustive investigations have been performed on all small S-boxes (3 to 5 bits) and there are many S-boxes for which it is not known to build uniform threshold implementations with d+1 shares if their algebraic degree is d. Uniformity of a threshold implementation is essential in its information-theoretical proof of resistance against first-order DPA. However, given a non-uniform threshold implementation, it is not immediate how to exploit its non-uniformity in an attack. In my talk I discuss the local and global effects of non-uniformity in iterated functions and their significance on the resistance against DPA. I treat methods to quantitatively limit the amount of non-uniformity and to keep it away from where it may be harmful. These techniques are relatively cheap and can reduce non-uniformity to such a low level that it would require an astronomical amount of samples to measure it.
Modern malware is designed with mutation characteristics, namely polymorphism and metamorphism, which causes an enormous growth in the number of variants of malware samples. Categorization of malware samples on the basis of their behaviors is essential for the computer security community, because they receive huge number of malware everyday, and the signature extraction process is usually based on malicious parts characterizing malware families. Microsoft released a malware classification challenge in 2015 with a huge dataset of near 0.5 terabytes of data, containing more than 20K malware samples. The analysis of this dataset inspired the development of a novel paradigm that is effective in categorizing malware variants into their actual family groups. This paradigm is presented and discussed in the present paper, where emphasis has been given to the phases related to the extraction, and selection of a set of novel features for the effective representation of malware samples. Features can be grouped according to different characteristics of malware behavior, and their fusion is performed according to a per-class weighting paradigm. The proposed method achieved a very high accuracy (\$\textbackslashapprox\$ 0.998) on the Microsoft Malware Challenge dataset.
Extortion using digital platforms is an increasing form of crime. A commonly seen problem is extortion in the form of an infection of a Crypto Ransomware that encrypts the files of the target and demands a ransom to recover the locked data. By analyzing the four most common Crypto Ransomwares, at writing, a clear vulnerability is identified; all infections rely on tools available on the target system to be able to prevent a simple recovery after the attack has been detected. By renaming the system tool that handles shadow copies it is possible to recover from infections from all four of the most common Crypto Ransomwares. The solution is packaged in a single, easy to use script.
The infrastructures of Supervisory Control and Data Acquisition (SCADA) systems have evolved through time in order to provide more efficient supervision services. Despite the changes made on SCADA architectures, several enhancements are still required to address the need for: a) large scale supervision using a high number of sensors, b) reduction of the reaction time when a malicious activity is detected; and c) the assurance of a high interoperability between SCADA systems in order to prevent the propagation of incidents. In this context, we propose a novel sensor cloud based SCADA infrastructure to monitor large scale and inter-dependant critical infrastructures, making an effective use of sensor clouds to increase the supervision coverage and the processing time. It ensures also the interoperability between interdependent SCADAs by offering a set of services to SCADA, which are created through the use of templates and are associated to set of virtual sensors. A simulation is conducted to demonstrate the effectiveness of the proposed architecture.
To match the signatures of malicious traffic across packet boundaries, network-intrusion detection (and prevention) systems (NIDS) typically perform pattern matching after flow reassembly or packet reordering. However, this may lead to the need for large packet buffers, making detection vulnerable to denial-of-service (DoS) attacks, whereby attackers exhaust the buffer capacity by sending long sequences of out-of-order packets. While researchers have proposed solutions for exact-match patterns, regular-expression matching on out-of-order packets is still an open problem. Specifically, a key challenge is the matching of complex sub-patterns (such as repetitions of wildcards matched at the boundary between packets). Our proposed approach leverages the insight that various segments matching the same repetitive sub-pattern are logically equivalent to the regular-expression matching engine, and thus, inter-changing them would not affect the final result. In this paper, we present O3FA, a new finite automata-based, deep packet-inspection engine to perform regular-expression matching on out-of-order packets without requiring flow reassembly. O3FA consists of a deterministic finite automaton (FA) coupled with a set of prefix-/suffix-FA, which allows processing out-of-order packets on the fly. We present our design, optimization, and evaluation for the O3FA engine. Our experiments show that our design requires 20x-4000x less buffer space than conventional buffering-and-reassembling schemes on various datasets and that it can process packets in real-time, i.e., without reassembly.
We explore the use of a new way to log into a web service, such as email or social media. Using on-demand biometrics, users sign in from a browser on a computer using just their name, which sends a request to their phone for approval. Users approve this request by authenticating on their phone using their fingerprint, which completes the login in the browser. On-demand biometrics thus replace passwords or temporary access codes found in two-step verification with the ease of use of biometrics. We present the results of an interview study on the use of on-demand biometrics with a live login backend. Participants perceived our system as convenient and fast to use and also expressed their trust in fingerprint authentication to keep their accounts safe. We motivate the design of on-demand biometrics, present an analysis of participants' use and responses around general account security and authentication, and conclude with implications for designing fast and easy cross-device authentication.
Connection setup in software-defined networks (SDN) requires considerable amounts of processing, communication, and memory resources. Attackers can target SDN controllers with simple attacks to cause denial of service. We proposed a defense mechanism based on a proof-of-work protocol. The key characteristics of this protocol, namely its one-way operation, its requirement for freshness in proofs of work, its adjustable difficulty, its ability to work with multiple network providers, and its use of existing TCP/IP header fields, ensure that this approach can be used in practice.
While compilers offer a fair trade-off between productivity and executable performance in single-threaded execution, their optimizations remain fragile when addressing compute-intensive code for parallel architectures with deep memory hierarchies. Moreover, these optimizations operate as black boxes, impenetrable for the user, leaving them with no alternative to time-consuming and error-prone manual optimization in cases where an imprecise cost model or a weak analysis resulted in a bad optimization decision. To address this issue, we propose a technique allowing to automatically translate an arbitrary polyhedral optimization, used internally by loop-level optimization frameworks of several modern compilers, into a sequence of comprehensible syntactic transformations as long as this optimization focuses on scheduling loop iterations. This approach opens the black box of the polyhedral frameworks enabling users to examine, refine, replay and even design complex optimizations semi-automatically in partnership with the compiler.
The Smart Grid control systems need to be protected from internal attacks within the perimeter. In Smart Grid, the Intelligent Electronic Devices (IEDs) are resource-constrained devices that do not have the ability to provide security analysis and protection by themselves. And the commonly used industrial control system protocols offer little security guarantee. To guarantee security inside the system, analysis and inspection of both internal network traffic and device status need to be placed close to IEDs to provide timely information to power grid operators. For that, we have designed a unique, extensible and efficient operation-level traffic analyzer framework. The timing evaluation of the analyzer overhead confirms efficiency under Smart Grid operational traffic.
Securing visible light communication (VLC) systems on the physical layer promises to prevent against a variety of attacks. Recent work shows that the adaption of existing legacy radio wave physical layer security (PLS) mechanisms is possible with minor changes. Yet, many adaptations open new vulnerabilities due to distinct propagation characteristics of visible light. A common understanding of threats arising from various attacker capabilities is missing. We specify a new attacker model for visible light physical layer attacks and evaluate the applicability of existing PLS approaches. Our results show that many attacks are not considered in current solutions.
This paper formulates a power system related optimal control problem, motivated by potential cyber-attacks on grid control systems, and ensuing defensive response to such attacks. The problem is formulated as a standard nonlinear program in the GAMS optimization environment, with system dynamics discretized over a short time horizon providing constraint equations, which are then treated via waveform relaxation. Selection of objective function and additional decision variables is explored first for identifying grid vulnerability to cyber-attacks that act by modifying feedback control system parameters. The resulting decisions for the attacker are then fixed, and the optimization problem is modified with a new objective function and decision variables, to explore a defender's possible response to such attacks.
In classical runtime analysis it has been observed that certain working principles of an evolutionary algorithm cannot be understood by only looking at the asymptotic order of the runtime, but that more precise estimates are needed. In this work we demonstrate that the same observation applies to black-box complexity analysis. We prove that the unary unbiased black-box complexity of the classic OneMax function class is n ln(n) – cn ± o(n) for a constant c between 0.2539 and 0.2665. Our analysis yields a simple (1+1)-type algorithm achieving this runtime bound via a fitness-dependent mutation strength. When translated into a fixed-budget perspective, our algorithm with the same budget computes a solution that asymptotically is 13% closer to the optimum (given that the budget is at least 0.2675n).