Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2023-07-10
Dong, Yeting, Wang, Zhiwen, Guo, Wuyuan.  2022.  Overview of edge detection algorithms based on mathematical morphology. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). :1321—1326.
Edge detection is the key and difficult point of machine vision and image processing technology. The traditional edge detection algorithm is sensitive to noise and it is difficult to accurately extract the edge of the image, so the effect of image processing is not ideal. To solve this problem, people in the industry use the structural element features of morphological edge detection operator to extract the edge features of the image by carefully designing and combining the structural elements of different sizes and directions, so as to effectively ensure the integrity of edge information in all directions and eliminate large noise at the same time. This paper first introduces the traditional edge detection algorithms, then summarizes the edge detection algorithms based on mathematical morphology in recent years, finds that the selection of multi-scale and multi-directional structural elements is an important research direction, and finally discusses the development trend of mathematical morphology edge detection technology.
2023-07-11
Tudose, Andrei, Micu, Robert, Picioroaga, Irina, Sidea, Dorian, Mandis, Alexandru, Bulac, Constantin.  2022.  Power Systems Security Assessment Based on Artificial Neural Networks. 2022 International Conference and Exposition on Electrical And Power Engineering (EPE). :535—539.
Power system security assessment is a major issue among the fundamental functions needed for the proper power systems operation. In order to perform the security evaluation, the contingency analysis is a key component. However, the dynamic evolution of power systems during the past decades led to the necessity of novel techniques to facilitate this task. In this paper, power systems security is defined based on the N-l contingency analysis. An artificial neural network approach is proposed to ensure the fast evaluation of power systems security. In this regard, the IEEE 14 bus transmission system is used to verify the performance of the proposed model, the results showing high efficiency subject to multiple evaluation metrics.
2023-02-17
Chen, Di.  2022.  Practice on the Data Service of University Scientific Research Management Based on Cloud Computing. 2022 World Automation Congress (WAC). :424–428.
With the continuous development of computer technology, the coverage of informatization solutions covers all walks of life and all fields of society. For colleges and universities, teaching and scientific research are the basic tasks of the school. The scientific research ability of the school will affect the level of teachers and the training of students. The establishment of a good scientific research environment has become a more important link in the development of universities. SR(Scientific research) data is a prerequisite for SR activities. High-quality SR management data services are conducive to ensuring the quality and safety of SRdata, and further assisting the smooth development of SR projects. Therefore, this article mainly conducts research and practice on cloud computing-based scientific research management data services in colleges and universities. First, analyze the current situation of SR data management in colleges and universities, and the results show that the popularity of SR data management in domestic universities is much lower than that of universities in Europe and the United States, and the data storage awareness of domestic researchers is relatively weak. Only 46% of schools have developed SR data management services, which is much lower than that of European and American schools. Second, analyze the effect of CC(cloud computing )on the management of SR data in colleges and universities. The results show that 47% of SR believe that CC is beneficial to the management of SR data in colleges and universities to reduce scientific research costs and improve efficiency, the rest believe that CC can speed up data storage and improve security by acting on SR data management in colleges and universities.
ISSN: 2154-4824
2023-02-24
Goto, Ren, Matama, Kazushige, Nishiwaki, Chihiro, Naito, Katsuhiro.  2022.  Proposal of an extended CYPHONIC adapter supporting general nodes using virtual IPv6 addresses. 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE). :257—261.
The spread of the Internet of Things (IoT) and cloud services leads to a request for secure communication between devices, known as zero-trust security. The authors have been developing CYber PHysical Overlay Network over Internet Communication (CYPHONIC) to realize secure end-to-end communication among devices. A device requires installing the client program into the devices to realize secure communication over our overlay network. However, some devices refuse additional installation of external programs due to the limitation of system and hardware resources or the effect on system reliability. We proposed new technology, a CYPHONIC adapter, to support these devices. Currently, the CYPHONIC adapter supports only IPv4 virtual addresses and needs to be compatible with general devices that use IPv6. This paper proposes the dual-stack CYPHONIC adapter supporting IPv4/IPv6 virtual addresses for general devices. The prototype implementation shows that the general device can communicate over our overlay network using both IP versions through the proposed CYPHONIC adapter.
2023-02-28
Kim, Byoungkoo, Yoon, Seungyong, Kang, Yousung.  2022.  Reinforcement of IoT Open Platform Security using PUF -based Device Authentication. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1969—1971.
Recently, as the use of Internet of Things (IoT) devices has expanded, security issues have emerged. As a solution to the IoT security problem, PUF (Physical Unclonable Function) technology has been proposed, and research on key generation or device authentication using it has been actively conducted. In this paper, we propose a method to apply PUF-based device authentication technology to the Open Connectivity Foundation (OCF) open platform. The proposed method can greatly improve the security level of IoT open platform by utilizing PUF technology.
2023-07-10
Gao, Xuefei, Yao, Chaoyu, Hu, Liqi, Zeng, Wei, Yin, Shengyang, Xiao, Junqiu.  2022.  Research and Implementation of Artificial Intelligence Real-Time Recognition Method for Crack Edge Based on ZYNQ. 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI). :460—465.
At present, pavement crack detection mainly depends on manual survey and semi-automatic detection. In the process of damage detection, it will inevitably be subject to the subjective influence of inspectors and require a lot of identification time. Therefore, this paper proposes the research and implementation of artificial intelligence real-time recognition method of crack edge based on zynq, which combines edge calculation technology with deep learning, The improved ipd-yolo target detection network is deployed on the zynq zu2cg edge computing development platform. The mobilenetv3 feature extraction network is used to replace the cspdarknet53 feature extraction network in yolov4, and the deep separable convolution is used to replace the conventional convolution. Combined with the advantages of the deep neural network in the cloud and edge computing, the rock fracture detection oriented to the edge computing scene is realized. The experimental results show that the accuracy of the network on the PID data set The recall rate and F1 score have been improved to better meet the requirements of real-time identification of rock fractures.
2023-01-20
Feng, Guocong, Huang, Qingshui, Deng, Zijie, Zou, Hong, Zhang, Jiafa.  2022.  Research on cloud security construction of power grid in smart era. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :976—980.
With the gradual construction and implementation of cloud computing, the information security problem of the smart grid has surfaced. Therefore, in the construction of the smart grid cloud computing platform, information security needs to be considered in planning, infrastructure, and management at the same time, and it is imminent to build an information network that is secure from terminal to the platform to data. This paper introduces the concept of cloud security technology and the latest development of cloud security technology and discusses the main strategies of cloud security construction in electric power enterprises.
2023-04-28
Deng, Zijie, Feng, Guocong, Huang, Qingshui, Zou, Hong, Zhang, Jiafa.  2022.  Research on Enterprise Information Security Risk Assessment System Based on Bayesian Neural Network. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :938–941.
Information security construction is a social issue, and the most urgent task is to do an excellent job in information risk assessment. The bayesian neural network currently plays a vital role in enterprise information security risk assessment, which overcomes the subjective defects of traditional assessment results and operates efficiently. The risk quantification method based on fuzzy theory and Bayesian regularization BP neural network mainly uses fuzzy theory to process the original data and uses the processed data as the input value of the neural network, which can effectively reduce the ambiguity of language description. At the same time, special neural network training is carried out for the confusion that the neural network is easy to fall into the optimal local problem. Finally, the risk is verified and quantified through experimental simulation. This paper mainly discusses the problem of enterprise information security risk assessment based on a Bayesian neural network, hoping to provide strong technical support for enterprises and organizations to carry out risk rectification plans. Therefore, the above method provides a new information security risk assessment idea.
2023-06-23
Ke, Zehui, Huang, Hailiang, Liang, Yingwei, Ding, Yi, Cheng, Xin, Wu, Qingyao.  2022.  Robust Video watermarking based on deep neural network and curriculum learning. 2022 IEEE International Conference on e-Business Engineering (ICEBE). :80–85.

With the rapid development of multimedia and short video, there is a growing concern for video copyright protection. Some work has been proposed to add some copyright or fingerprint information to the video to trace the source of the video when it is stolen and protect video copyright. This paper proposes a video watermarking method based on a deep neural network and curriculum learning for watermarking of sliced videos. The first frame of the segmented video is perturbed by an encoder network, which is invisible and can be distinguished by the decoder network. Our model is trained and tested on an online educational video dataset consisting of 2000 different video clips. Experimental results show that our method can successfully discriminate most watermarked and non-watermarked videos with low visual disturbance, which can be achieved even under a relatively high video compression rate(H.264 video compress with CRF 32).

2023-02-17
Alyas, Tahir, Ateeq, Karamath, Alqahtani, Mohammed, Kukunuru, Saigeeta, Tabassum, Nadia, Kamran, Rukshanda.  2022.  Security Analysis for Virtual Machine Allocation in Cloud Computing. 2022 International Conference on Cyber Resilience (ICCR). :1–9.
A huge number of cloud users and cloud providers are threatened of security issues by cloud computing adoption. Cloud computing is a hub of virtualization that provides virtualization-based infrastructure over physically connected systems. With the rapid advancement of cloud computing technology, data protection is becoming increasingly necessary. It's important to weigh the advantages and disadvantages of moving to cloud computing when deciding whether to do so. As a result of security and other problems in the cloud, cloud clients need more time to consider transitioning to cloud environments. Cloud computing, like any other technology, faces numerous challenges, especially in terms of cloud security. Many future customers are wary of cloud adoption because of this. Virtualization Technologies facilitates the sharing of recourses among multiple users. Cloud services are protected using various models such as type-I and type-II hypervisors, OS-level, and unikernel virtualization but also offer a variety of security issues. Unfortunately, several attacks have been built in recent years to compromise the hypervisor and take control of all virtual machines running above it. It is extremely difficult to reduce the size of a hypervisor due to the functions it offers. It is not acceptable for a safe device design to include a large hypervisor in the Trusted Computing Base (TCB). Virtualization is used by cloud computing service providers to provide services. However, using these methods entails handing over complete ownership of data to a third party. This paper covers a variety of topics related to virtualization protection, including a summary of various solutions and risk mitigation in VMM (virtual machine monitor). In this paper, we will discuss issues possible with a malicious virtual machine. We will also discuss security precautions that are required to handle malicious behaviors. We notice the issues of investigating malicious behaviors in cloud computing, give the scientific categorization and demonstrate the future headings. We've identified: i) security specifications for virtualization in Cloud computing, which can be used as a starting point for securing Cloud virtual infrastructure, ii) attacks that can be conducted against Cloud virtual infrastructure, and iii) security solutions to protect the virtualization environment from DDOS attacks.
2023-04-28
Dutta, Ashutosh, Hammad, Eman, Enright, Michael, Behmann, Fawzi, Chorti, Arsenia, Cheema, Ahmad, Kadio, Kassi, Urbina-Pineda, Julia, Alam, Khaled, Limam, Ahmed et al..  2022.  Security and Privacy. 2022 IEEE Future Networks World Forum (FNWF). :1–71.
The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security requirements (compared to previous generations) such as SDN controller security, hypervisor security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability. The working group scope fundamentally addresses the following: •5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape. •5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g., related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability. •The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.
ISSN: 2770-7679
2023-01-20
Frantti, Tapio, Korkiakoski, Markku.  2022.  Security Controls for Smart Buildings with Shared Space. 2022 6th International Conference on Smart Grid and Smart Cities (ICSGSC). :156—165.
In this paper we consider cyber security requirements of the smart buildings. We identify cyber risks, threats, attack scenarios, security objectives and related security controls. The work was done as a part of a smart building design and construction work. From the controls identified w e concluded security practices for engineering-in smart buildings security. The paper provides an idea toward which system security engineers can strive in the basic design and implementation of the most critical components of the smart buildings. The intent of the concept is to help practitioners to avoid ad hoc approaches in the development of security mechanisms for smart buildings with shared space.
2023-07-11
Wang, Rongzhen, Zhang, Bing, Wen, Shixi, Zhao, Yuan.  2022.  Security Platoon Control of Connected Vehicle Systems under DoS Attacks and Dynamic Uncertainty. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—5.
In this paper, the distributed security control problem of connected vehicle systems (CVSs) is investigated under denial of service (DoS) attacks and uncertain dynamics. DoS attacks usually block communication channels, resulting in the vehicle inability to receive data from the neighbors. In severe cases, it will affect the control performance of CVSs and even cause vehicle collision and life threats. In order to keep the vehicle platoon stable when the DoS attacks happen, we introduce a random characteristic to describe the impact of the packet loss behavior caused by them. Dependent on the length of the lost packets, we propose a security platoon control protocol to deal with it. Furthermore, the security platoon control problem of CVSs is transformed into a stable problem of Markov jump systems (MJSs) with uncertain parameters. Next, the Lyapunov function method and linear matrix inequations (LMI) are used to analyze the internal stability and design controller. Finally, several simulation results are presented to illustrate the effectiveness of the proposed method.
2023-03-03
Brant, Christopher D., Yavuz, Tuba.  2022.  A Study on the Testing of Android Security Patches. 2022 IEEE Conference on Communications and Network Security (CNS). :217–225.
Android controls the majority of the global OS market. Android Open Source Project (AOSP) is a very complex system with many layers including the apps, the Application Framework, the middle-ware, the customized Linux kernel, and the trusted components. Although security is implemented in every layer, the Application Framework forms an important of the attack surface due to managing the user interface and permissions. Android security has evolved over the years. The security flaws that have been found in the Application Framework led to a redesign of Android permissions. Part of this evolution includes fixes to the vulnerabilities that are publicly released in the monthly Android security bulletins. In this study, we analyze the CVEs listed in the Android security bulletin within the last 6 years. We focus on the Android application framework and investigate several research questions relating to 1) the security relevant components, 2) the type and amount of testing information for the security patches, and 3) the adequacy of the tests designed to test these patches. Our findings indicate that Android security testing practices can be further improved by designing security bulletin update specific tests, and by improving code coverage of patched files.
2023-02-24
Nie, Leyao, He, Lin, Song, Guanglei, Gao, Hao, Li, Chenglong, Wang, Zhiliang, Yang, Jiahai.  2022.  Towards a Behavioral and Privacy Analysis of ECS for IPv6 DNS Resolvers. 2022 18th International Conference on Network and Service Management (CNSM). :303—309.
The Domain Name System (DNS) is critical to Internet communications. EDNS Client Subnet (ECS), a DNS extension, allows recursive resolvers to include client subnet information in DNS queries to improve CDN end-user mapping, extending the visibility of client information to a broader range. Major content delivery network (CDN) vendors, content providers (CP), and public DNS service providers (PDNS) are accelerating their IPv6 infrastructure development. With the increasing deployment of IPv6-enabled services and DNS being the most foundational system of the Internet, it becomes important to analyze the behavioral and privacy status of IPv6 resolvers. However, there is a lack of research on ECS for IPv6 DNS resolvers.In this paper, we study the ECS deployment and compliance status of IPv6 resolvers. Our measurement shows that 11.12% IPv6 open resolvers implement ECS. We discuss abnormal noncompliant scenarios that exist in both IPv6 and IPv4 that raise privacy and performance issues. Additionally, we measured if the sacrifice of clients’ privacy can enhance IPv6 CDN performance. We find that in some cases ECS helps end-user mapping but with an unnecessary privacy loss. And even worse, the exposure of client address information can sometimes backfire, which deserves attention from both Internet users and PDNSes.
2023-03-03
Islam, Ashhadul, Belhaouari, Samir Brahim.  2022.  Analysing keystroke dynamics using wavelet transforms. 2022 IEEE International Carnahan Conference on Security Technology (ICCST). :1–5.
Many smartphones are lost every year, with a meager percentage recovered. In many cases, users with malicious intent access these phones and use them to acquire sensitive data. There is a need for continuous monitoring and surveillance in smartphones, and keystroke dynamics play an essential role in identifying whether a phone is being used by its owner or an impersonator. Also, there is a growing need to replace expensive 2-tier authentication methods like One-time passwords (OTP) with cheaper and more robust methods. The methods proposed in this paper are applied to existing data and are proven to train more robust classifiers. A novel feature extraction method by wavelet transformation is demonstrated to convert keystroke data into features. The comparative study of classifiers trained on the extracted features vs. features extracted by existing methods shows that the processes proposed perform better than the state-of-art feature extraction methods.
ISSN: 2153-0742
2023-09-08
Yu, Gang, Li, Zhenyu.  2022.  Analysis of Current situation and Countermeasures of Performance Evaluation of Volunteers in Large-scale Games Based on Mobile Internet. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :88–91.
Using the methods of literature and interview, this paper analyzes the current situation of performance evaluation of volunteers in large-scale games based on mobile Internet, By analyzing the popularity of mobile Internet, the convenience of performance evaluation, the security and privacy of performance evaluation, this paper demonstrates the necessity of performance evaluation of volunteers in large-scale games based on mobile Internet, This paper puts forward the Countermeasures of performance evaluation of volunteers in large-scale games based on mobile Internet.
2023-03-31
Ming, Lan.  2022.  The Application of Dynamic Random Network Structure in the Modeling of the Combination of Core Values and Network Education in the Propagation Algorithm. 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA). :455–458.
The topological structure of the network relationship is described by the network diagram, and the formation and evolution process of the network is analyzed by using the cost-benefit method. Assuming that the self-interested network member nodes can connect or break the connection, the network topology model is established based on the dynamic random pairing evolution network model. The static structure of the network is studied. Respecting the psychological cognition law of college students and innovating the core value cultivation model can reverse the youth's identification dilemma with the core values, and then create a good political environment for the normal, healthy, civilized and orderly network participation of the youth. In recognition of the atmosphere, an automatic learning algorithm of Bayesian network structure that effectively integrates expert knowledge and data-driven methods is realized.
2023-02-03
Cheng, Jiujun, Hou, Mengnan, Zhou, MengChu, Yuan, Guiyuan, Mao, Qichao.  2022.  An Autonomous Vehicle Group Formation Method based on Risk Assessment Scoring. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1–6.
Forming a secure autonomous vehicle group is extremely challenging since we have to consider threats and vulnerability of autonomous vehicles. Existing studies focus on communications among risk-free autonomous vehicles, which lack metrics to measure passenger security and cargo values. This work proposes a novel autonomous vehicle group formation method. We introduce risk assessment scoring to assess passenger security and cargo values, and propose an autonomous vehicle group formation method based on it. Our vehicle group is composed of a master node, and a number of core and border ones. Finally, the extensive simulation results show that our method is better than a Connectivity Prediction-based Dynamic Clustering model and a Low-InDependently clustering architecture in terms of node survival time, average change count of master nodes, and average risk assessment scoring.
2023-02-17
Kumar, U Vinod, Pachauri, Sanjay.  2022.  The Computational and Symbolic Security Analysis Connections. 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA). :617–620.
A considerable portion of computing power is always required to perform symbolic calculations. The reliability and effectiveness of algorithms are two of the most significant challenges observed in the field of scientific computing. The terms “feasible calculations” and “feasible computations” refer to the same idea: the algorithms that are reliable and effective despite practical constraints. This research study intends to investigate different types of computing and modelling challenges, as well as the development of efficient integration methods by considering the challenges before generating the accurate results. Further, this study investigates various forms of errors that occur in the process of data integration. The proposed framework is based on automata, which provides the ability to investigate a wide-variety of distinct distance-bounding protocols. The proposed framework is not only possible to produce computational (in)security proofs, but also includes an extensive investigation on different issues such as optimal space complexity trade-offs. The proposed framework in embedded with the already established symbolic framework in order to get a deeper understanding of distance-bound security. It is now possible to guarantee a certain level of physical proximity without having to continually mimic either time or distance.
2023-06-22
Sun, Yanchao, Han, Yuanfeng, Zhang, Yue, Chen, Mingsong, Yu, Shui, Xu, Yimin.  2022.  DDoS Attack Detection Combining Time Series-based Multi-dimensional Sketch and Machine Learning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :01–06.
Machine learning-based DDoS attack detection methods are mostly implemented at the packet level with expensive computational time costs, and the space cost of those sketch-based detection methods is uncertain. This paper proposes a two-stage DDoS attack detection algorithm combining time series-based multi-dimensional sketch and machine learning technologies. Besides packet numbers, total lengths, and protocols, we construct the time series-based multi-dimensional sketch with limited space cost by storing elephant flow information with the Boyer-Moore voting algorithm and hash index. For the first stage of detection, we adopt CNN to generate sketch-level DDoS attack detection results from the time series-based multi-dimensional sketch. For the sketch with potential DDoS attacks, we use RNN with flow information extracted from the sketch to implement flow-level DDoS attack detection in the second stage. Experimental results show that not only is the detection accuracy of our proposed method much close to that of packet-level DDoS attack detection methods based on machine learning, but also the computational time cost of our method is much smaller with regard to the number of machine learning operations.
ISSN: 2576-8565
2023-03-03
Korecko, Stefan, Haluska, Matus, Pleva, Matus, Skudal, Markus Hoff, Bours, Patrick.  2022.  EMG Data Collection for Multimodal Keystroke Analysis. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :351–355.
User authentication based on muscle tension manifested during password typing seems to be an interesting additional layer of security. It represents another way of verifying a person’s identity, for example in the context of continuous verification. In order to explore the possibilities of such authentication method, it was necessary to create a capturing software that records and stores data from EMG (electromyography) sensors, enabling a subsequent analysis of the recorded data to verify the relevance of the method. The work presented here is devoted to the design, implementation and evaluation of such a solution. The solution consists of a protocol and a software application for collecting multimodal data when typing on a keyboard. Myo armbands on both forearms are used to capture EMG and inertial data while additional modalities are collected from a keyboard and a camera. The user experience evaluation of the solution is presented, too.
ISSN: 2770-5226
2023-03-31
You, Jinliang, Zhang, Di, Gong, Qingwu, Zhu, Jiran, Tang, Haiguo, Deng, Wei, Kang, Tong.  2022.  Fault phase selection method of distribution network based on wavelet singular entropy and DBN. 2022 China International Conference on Electricity Distribution (CICED). :1742–1747.
The selection of distribution network faults is of great significance to accurately identify the fault location, quickly restore power and improve the reliability of power supply. This paper mainly studies the fault phase selection method of distribution network based on wavelet singular entropy and deep belief network (DBN). Firstly, the basic principles of wavelet singular entropy and DBN are analyzed, and on this basis, the DBN model of distribution network fault phase selection is proposed. Firstly, the transient fault current data of the distribution network is processed to obtain the wavelet singular entropy of the three phases, which is used as the input of the fault phase selection model; then the DBN network is improved, and an artificial neural network (ANN) is introduced to make it a fault Select the phase classifier, and specify the output label; finally, use Simulink to build a simulation model of the IEEE33 node distribution network system, obtain a large amount of data of various fault types, generate a training sample library and a test sample library, and analyze the neural network. The adjustment of the structure and the training of the parameters complete the construction of the DBN model for the fault phase selection of the distribution network.
ISSN: 2161-749X
2023-01-05
Khodaskar, Manish, Medhane, Darshan, Ingle, Rajesh, Buchade, Amar, Khodaskar, Anuja.  2022.  Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
2023-03-17
Kharitonov, Valerij A., Krivogina, Darya N., Salamatina, Anna S., Guselnikova, Elina D., Spirina, Varvara S., Markvirer, Vladlena D..  2022.  Intelligent Technologies for Projective Thinking and Research Management in the Knowledge Representation System. 2022 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :292–295.
It is proposed to address existing methodological issues in the educational process with the development of intellectual technologies and knowledge representation systems to improve the efficiency of higher education institutions. For this purpose, the structure of relational database is proposed, it will store the information about defended dissertations in the form of a set of attributes (heuristics), representing the mandatory qualification attributes of theses. An inference algorithm is proposed to process the information. This algorithm represents an artificial intelligence, its work is aimed at generating queries based on the applicant preferences. The result of the algorithm's work will be a set of choices, presented in ranked order. Given technologies will allow applicants to quickly become familiar with known scientific results and serve as a starting point for new research. The demand for co-researcher practice in solving the problem of updating the projective thinking methodology and managing the scientific research process has been justified. This article pays attention to the existing parallels between the concepts of technical and human sciences in the framework of their convergence. The concepts of being (economic good and economic utility) and the concepts of consciousness (humanitarian economic good and humanitarian economic utility) are used to form projective thinking. They form direct and inverse correspondences of technology and humanitarian practice in the techno-humanitarian mathematical space. It is proposed to place processed information from the language of context-free formal grammar dissertation abstracts in this space. The principle of data manipulation based on formal languages with context-free grammar allows to create new structures of subject areas in terms of applicants' preferences.It is believed that the success of applicants’ work depends directly on the cognitive training of applicants, which needs to be practiced psychologically. This practice is based on deepening the objectivity and adequacy qualities of obtaining information on the basis of heuristic methods. It requires increased attention and development of intelligence. The paper studies the use of heuristic methods by applicants to find new research directions leads to several promising results. These results can be perceived as potential options in future research. This contributes to an increase in the level of retention of higher education professionals.