Biblio
Public key cryptography plays an important role in secure communications over insecure channels. Elliptic curve cryptography, as a variant of public key cryptography, has been extensively used in the last decades for such purposes. In this paper, we present a software tool for parallel generation of cryptographic keys based on elliptic curves. Binary method for point multiplication and C++ threads were used in parallel implementation, while secp256k1 elliptic curve was used for testing. Obtained results show speedup of 30% over the sequential solution for 8 threads. The results are briefly discussed in the paper.
Nowadays, although it is much more convenient to obtain news with social media and various news platforms, the emergence of all kinds of fake news has become a headache and urgent problem that needs to be solved. Currently, the fake news recognition algorithm for fake news mainly uses GCN, including some other niche algorithms such as GRU, CNN, etc. Although all fake news verification algorithms can reach quite a high accuracy with sufficient datasets, there is still room for improvement for unsupervised learning and semi-supervised. This article finds that the accuracy of the GCN method for fake news detection is basically about 85% through comparison with other neural network models, which is satisfactory, and proposes that the current field lacks a unified training dataset, and that in the future fake news detection models should focus more on semi-supervised learning and unsupervised learning.
In recent decades, a Distributed Denial of Service (DDoS) attack is one of the most expensive attacks for business organizations. The DDoS is a form of cyber-attack that disrupts the operation of computer resources and networks. As technology advances, the styles and tools used in these attacks become more diverse. These attacks are increased in frequency, volume, and intensity, and they can quickly disrupt the victim, resulting in a significant financial loss. In this paper, it is described the significance of DDOS attacks and propose a new method for detecting and mitigating the DDOS attacks by analyzing the traffics coming to the server from the BOTNET in attacking system. The process of analyzing the requests coming from the BOTNET uses the Machine learning algorithm in the decision making. The simulation is carried out and the results analyze the DDOS attack.
Social media has beneficial and detrimental impacts on social life. The vast distribution of false information on social media has become a worldwide threat. As a result, the Fake News Detection System in Social Networks has risen in popularity and is now considered an emerging research area. A centralized training technique makes it difficult to build a generalized model by adapting numerous data sources. In this study, we develop a decentralized Deep Learning model using Federated Learning (FL) for fake news detection. We utilize an ISOT fake news dataset gathered from "Reuters.com" (N = 44,898) to train the deep learning model. The performance of decentralized and centralized models is then assessed using accuracy, precision, recall, and F1-score measures. In addition, performance was measured by varying the number of FL clients. We identify the high accuracy of our proposed decentralized FL technique (accuracy, 99.6%) utilizing fewer communication rounds than in previous studies, even without employing pre-trained word embedding. The highest effects are obtained when we compare our model to three earlier research. Instead of a centralized method for false news detection, the FL technique may be used more efficiently. The use of Blockchain-like technologies can improve the integrity and validity of news sources.
ISSN: 2577-1647
The cutting-edge biometric recognition systems extract distinctive feature vectors of biometric samples using deep neural networks to measure the amount of (dis-)similarity between two biometric samples. Studies have shown that personal information (e.g., health condition, ethnicity, etc.) can be inferred, and biometric samples can be reconstructed from those feature vectors, making their protection an urgent necessity. State-of-the-art biometrics protection solutions are based on homomorphic encryption (HE) to perform recognition over encrypted feature vectors, hiding the features and their processing while releasing the outcome only. However, this comes at the cost of those solutions' efficiency due to the inefficiency of HE-based solutions with a large number of multiplications; for (dis-)similarity measures, this number is proportional to the vector's dimension. In this paper, we tackle the HE performance bottleneck by freeing the two common (dis-)similarity measures, the cosine similarity and the squared Euclidean distance, from multiplications. Assuming normalized feature vectors, our approach pre-computes and organizes those (dis-)similarity measures into lookup tables. This transforms their computation into simple table-lookups and summation only. We study quantization parameters for the values in the lookup tables and evaluate performances on both synthetic and facial feature vectors for which we achieve a recognition performance identical to the non-tabularized baseline systems. We then assess their efficiency under HE and record runtimes between 28.95ms and 59.35ms for the three security levels, demonstrating their enhanced speed.
ISSN: 2474-9699