Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2023-02-03
Li, Mingxuan, Li, Feng, Yin, Jun, Fei, Jiaxuan, Chen, Jia.  2022.  Research on Security Vulnerability Mining Technology for Terminals of Electric Power Internet of Things. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1638–1642.
Aiming at the specificity and complexity of the power IoT terminal, a method of power IoT terminal firmware vulnerability detection based on memory fuzzing is proposed. Use the method of bypassing the execution to simulate and run the firmware program, dynamically monitor and control the execution of the firmware program, realize the memory fuzzing test of the firmware program, design an automatic vulnerability exploitability judgment plug-in for rules and procedures, and provide power on this basis The method and specific process of the firmware vulnerability detection of the IoT terminal. The effectiveness of the method is verified by an example.
ISSN: 2693-289X
Kumar, Abhinav, Tourani, Reza, Vij, Mona, Srikanteswara, Srikathyayani.  2022.  SCLERA: A Framework for Privacy-Preserving MLaaS at the Pervasive Edge. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :175–180.
The increasing data generation rate and the proliferation of deep learning applications have led to the development of machine learning-as-a-service (MLaaS) platforms by major Cloud providers. The existing MLaaS platforms, however, fall short in protecting the clients’ private data. Recent distributed MLaaS architectures such as federated learning have also shown to be vulnerable against a range of privacy attacks. Such vulnerabilities motivated the development of privacy-preserving MLaaS techniques, which often use complex cryptographic prim-itives. Such approaches, however, demand abundant computing resources, which undermine the low-latency nature of evolving applications such as autonomous driving.To address these challenges, we propose SCLERA–an efficient MLaaS framework that utilizes trusted execution environment for secure execution of clients’ workloads. SCLERA features a set of optimization techniques to reduce the computational complexity of the offloaded services and achieve low-latency inference. We assessed SCLERA’s efficacy using image/video analytic use cases such as scene detection. Our results show that SCLERA achieves up to 23× speed-up when compared to the baseline secure model execution.
2023-02-17
Luo, Zhiyong, Wang, Bo.  2022.  A Secure and Efficient Analytical Encryption Method for Industrial Internet Identification based on SHA-256 and RSA. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). 6:1874–1878.
With the development of Industrial Internet identification analysis, various encryption methods have been widely used in identification analysis to ensure the security of identification encoding and data. However, the past encryption methods failed to consider the problem of encryption efficiency in the case of high concurrency, so it will reduce the identification resolution efficiency and increase the computational pressure of secondary nodes when applying these methods to the identification analysis. In this paper, in order to improve the efficiency of identification analysis under the premise of ensuring information security, a safe and efficient analytical encryption method for industrial Internet identification based on Secure Hash Algorithm 256 (SHA-256), and Rivest-Shamir-Adleman (RSA) is presented. Firstly, by replacing the secret key in the identification encoding encryption with the SHA-256 function, the number of secret keys is reduced, which is beneficial to improve the efficiency of identification analysis. Secondly, by replacing the large prime number of the RSA encryption algorithm with multiple small prime numbers, the generation speed of RSA key pair is improved, which is conducive to reduce the computation of secondary nodes. Finally, by assigning a unique RSA private key to the identification code during the identification registration phase, SHA-256 and RSA are associated, the number of key exchanges is reduced during the encryption process, which is conducive to improve the security of encryption. The experiment verifies that the proposed method can improve security of encryption and efficiency of identification analysis, by comparing the complexity of ciphertext cracking and the identification security analysis time between the traditional encryption method and this method.
2022-12-09
Tariq, Usman.  2022.  Security-Aware Malicious Event Detection using Multivariate Deep Regression Setup for Vehicular Ad hoc Network Aimed at Autonomous Transportation System. 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :354—358.
Vehicular Ad-hoc Networks (VANET) are capable of offering inter and intra-vehicle wireless communication among mobility aware computing systems. Nodes are linked by applying concepts of mobile ad hoc networks. VANET uses cases empower vehicles to link to the network to aggregate and process messages in real-time. The proposed paper addresses a security vulnerability known as Sybil attack, in which numerous fake nodes broadcast false data to the neighboring nodes. In VANET, mobile nodes continuously change their network topology and exchange location sensor-generated data in real time. The basis of the presented technique is source testing that permits the scalable identification of Sybil nodes, without necessitating any pre-configuration, which was conceptualized from a comparative analysis of preceding research in the literature.
Sharan, Bhagwati, Chhabra, Megha, Sagar, Anil Kumar.  2022.  State-of-the-art: Data Dissemination Techniques in Vehicular Ad-hoc Networks. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :126—131.
Vehicular Ad-hoc Networks (VANETs) is a very fast emerging research area these days due to their contribution in designing Intelligent transportation systems (ITS). ITS is a well-organized group of wireless networks. It is a derived class of Mobile Ad-hoc Networks (MANETs). VANET is an instant-formed ad-hoc network, due to the mobility of vehicles on the road. The goal of using ITS is to enhance road safety, driving comfort, and traffic effectiveness by alerting the drivers at right time about upcoming dangerous situations, traffic jams, road diverted, weather conditions, real-time news, and entertainment. We can consider Vehicular communication as an enabler for future driverless cars. For these all above applications, it is necessary to make a threat-free environment to establish secure, fast, and efficient communication in VANETs. In this paper, we had discussed the overviews, characteristics, securities, applications, and various data dissemination techniques in VANET.
2023-02-03
Pani, Samita Rani, Samal, Rajat Kanti.  2022.  Vulnerability Assessment of Power System Under N-1 Contingency Conditions. 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T). :1–4.
Despite the fact that the power grid is typically regarded as a relatively stable system, outages and electricity shortages are common occurrences. Grid security is mainly dependent on accurate vulnerability assessment. The vulnerability can be assessed in terms of topology-based metrics and flow-based metrics. In this work, power flow analysis is used to calculate the metrics under single line contingency (N-1) conditions. The effect of load uncertainty on system vulnerability is checked. The IEEE 30 bus power network has been used for the case study. It has been found that the variation in load demand affects the system vulnerability.
2022-12-20
Gracia, Mulumba Banza, Malele, Vusumuzi, Ndlovu, Sphiwe Promise, Mathonsi, Topside Ehleketani, Maaka, Lebogang, Muchenje, Tonderai.  2022.  6G Security Challenges and Opportunities. 2022 IEEE 13th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). :339–343.
The Sixth Generation (6G) is currently under development and it is a planned successor of the Fifth Generation (5G). It is a new wireless communication technology expected to have a greater coverage area, significant fast and a higher data rate. The aim of this paper is to examine the literature on challenges and possible solutions of 6G's security, privacy and trust. It uses the systematic literature review technique by searching five research databases for search engines which are precise keywords like “6G,” “6G Wireless communication,” and “sixth generation”. The latter produced a total of 1856 papers, then the security, privacy and trust issues of the 6G wireless communication were extracted. Two security issues, the artificial intelligence and visible light communication, were apparent. In conclusion, there is a need for new paradigms that will provide a clear 6G security solutions.
2022-12-09
Pandey, Amit, Genale, Assefa Senbato, Janga, Vijaykumar, Sundaram, B. Barani, Awoke, Desalegn, Karthika, P..  2022.  Analysis of Efficient Network Security using Machine Learning in Convolutional Neural Network Methods. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :170—173.
Several excellent devices can communicate without the need for human intervention. It is one of the fastest-growing sectors in the history of computing, with an estimated 50 billion devices sold by the end of 2020. On the one hand, IoT developments play a crucial role in upgrading a few simple, intelligent applications that can increase living quality. On the other hand, the security concerns have been noted to the cross-cutting idea of frameworks and the multidisciplinary components connected with their organization. As a result, encryption, validation, access control, network security, and application security initiatives for gadgets and their inherent flaws cannot be implemented. It should upgrade existing security measures to ensure that the ML environment is sufficiently protected. Machine learning (ML) has advanced tremendously in the last few years. Machine insight has evolved from a research center curiosity to a sensible instrument in a few critical applications.
2023-03-03
Hong, Geng, Yang, Zhemin, Yang, Sen, Liaoy, Xiaojing, Du, Xiaolin, Yang, Min, Duan, Haixin.  2022.  Analyzing Ground-Truth Data of Mobile Gambling Scams. 2022 IEEE Symposium on Security and Privacy (SP). :2176–2193.
With the growth of mobile computing techniques, mobile gambling scams have seen a rampant increase in the recent past. In mobile gambling scams, miscreants deliver scamming messages via mobile instant messaging, host scam gambling platforms on mobile apps, and adopt mobile payment channels. To date, there is little quantitative knowledge about how this trending cybercrime operates, despite causing daily fraud losses estimated at more than \$\$\$522,262 USD. This paper presents the first empirical study based on ground-truth data of mobile gambling scams, associated with 1,461 scam incident reports and 1,487 gambling scam apps, spanning from January 1, 2020 to December 31, 2020. The qualitative and quantitative analysis of this ground-truth data allows us to characterize the operational pipeline and full fraud kill chain of mobile gambling scams. In particular, we study the social engineering tricks used by scammers and reveal their effectiveness. Our work provides a systematic analysis of 1,068 confirmed Android and 419 iOS scam apps, including their development frameworks, declared permissions, compatibility, and backend network infrastructure. Perhaps surprisingly, our study unveils that public online app generators have been abused to develop gambling scam apps. Our analysis reveals several payment channels (ab)used by gambling scam app and uncovers a new type of money mule-based payment channel with the average daily gambling deposit of \$\$\$400,000 USD. Our findings enable a better understanding of the mobile gambling scam ecosystem, and suggest potential avenues to disrupt these scam activities.
ISSN: 2375-1207
2022-12-20
Liu, Xiaolei, Li, Xiaoyu, Zheng, Desheng, Bai, Jiayu, Peng, Yu, Zhang, Shibin.  2022.  Automatic Selection Attacks Framework for Hard Label Black-Box Models. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–7.

The current adversarial attacks against machine learning models can be divided into white-box attacks and black-box attacks. Further the black-box can be subdivided into soft label and hard label black-box, but the latter has the deficiency of only returning the class with the highest prediction probability, which leads to the difficulty in gradient estimation. However, due to its wide application, it is of great research significance and application value to explore hard label blackbox attacks. This paper proposes an Automatic Selection Attacks Framework (ASAF) for hard label black-box models, which can be explained in two aspects based on the existing attack methods. Firstly, ASAF applies model equivalence to select substitute models automatically so as to generate adversarial examples and then completes black-box attacks based on their transferability. Secondly, specified feature selection and parallel attack method are proposed to shorten the attack time and improve the attack success rate. The experimental results show that ASAF can achieve more than 90% success rate of nontargeted attack on the common models of traditional dataset ResNet-101 (CIFAR10) and InceptionV4 (ImageNet). Meanwhile, compared with FGSM and other attack algorithms, the attack time is reduced by at least 89.7% and 87.8% respectively in two traditional datasets. Besides, it can achieve 90% success rate of attack on the online model, BaiduAI digital recognition. In conclusion, ASAF is the first automatic selection attacks framework for hard label blackbox models, in which specified feature selection and parallel attack methods speed up automatic attacks.

2023-05-12
Ponce-de-Leon, Hernán, Kinder, Johannes.  2022.  Cats vs. Spectre: An Axiomatic Approach to Modeling Speculative Execution Attacks. 2022 IEEE Symposium on Security and Privacy (SP). :235–248.

The SPECTRE family of speculative execution attacks has required a rethinking of formal methods for security. Approaches based on operational speculative semantics have made initial inroads towards finding vulnerable code and validating defenses. However, with each new attack grows the amount of microarchitectural detail that has to be integrated into the underlying semantics. We propose an alternative, lightweight and axiomatic approach to specifying speculative semantics that relies on insights from memory models for concurrency. We use the CAT modeling language for memory consistency to specify execution models that capture speculative control flow, store-to-load forwarding, predictive store forwarding, and memory ordering machine clears. We present a bounded model checking framework parameterized by our speculative CAT models and evaluate its implementation against the state of the art. Due to the axiomatic approach, our models can be rapidly extended to allow our framework to detect new types of attacks and validate defenses against them.

ISSN: 2375-1207

2023-02-17
Vélez, Tatiana Castro, Khatchadourian, Raffi, Bagherzadeh, Mehdi, Raja, Anita.  2022.  Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :469–481.
Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development tends to produce DL code that is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, less error-prone imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. While hybrid approaches aim for the “best of both worlds,” the challenges in applying them in the real world are largely unknown. We conduct a data-driven analysis of challenges-and resultant bugs-involved in writing reliable yet performant imperative DL code by studying 250 open-source projects, consisting of 19.7 MLOC, along with 470 and 446 manually examined code patches and bug reports, respectively. The results indicate that hybridization: (i) is prone to API misuse, (ii) can result in performance degradation-the opposite of its intention, and (iii) has limited application due to execution mode incompatibility. We put forth several recommendations, best practices, and anti-patterns for effectively hybridizing imperative DL code, potentially benefiting DL practitioners, API designers, tool developers, and educators.
ISSN: 2574-3864
2023-01-13
Wermke, Dominik, Wöhler, Noah, Klemmer, Jan H., Fourné, Marcel, Acar, Yasemin, Fahl, Sascha.  2022.  Committed to Trust: A Qualitative Study on Security & Trust in Open Source Software Projects. 2022 IEEE Symposium on Security and Privacy (SP). :1880–1896.
Open Source Software plays an important role in many software ecosystems. Whether in operating systems, network stacks, or as low-level system drivers, software we encounter daily is permeated with code contributions from open source projects. Decentralized development and open collaboration in open source projects introduce unique challenges: code submissions from unknown entities, limited personpower for commit or dependency reviews, and bringing new contributors up-to-date in projects’ best practices & processes.In 27 in-depth, semi-structured interviews with owners, maintainers, and contributors from a diverse set of open source projects, we investigate their security and trust practices. For this, we explore projects’ behind-the-scene processes, provided guidance & policies, as well as incident handling & encountered challenges. We find that our participants’ projects are highly diverse both in deployed security measures and trust processes, as well as their underlying motivations. Based on our findings, we discuss implications for the open source software ecosystem and how the research community can better support open source projects in trust and security considerations. Overall, we argue for supporting open source projects in ways that consider their individual strengths and limitations, especially in the case of smaller projects with low contributor numbers and limited access to resources.
Stefanova-Stoyanova, Varbinka, Danov, Petko.  2022.  Comparative Analysis of Specialized Standards and Methods on Increasing the Effectiveness and Role of PDCA for Risk Control in Management Systems. 2022 10th International Scientific Conference on Computer Science (COMSCI). :1–4.
This article analyzes Risk management (RM) activities against different ISO standards. The aim is to improve the coordination and interoperability of risk management activities in IT, IT services management, quality management, project management, and information security management. The ISO 31000: 2018 standard was chosen as a structured input for ISO 20000-1: 2018, ISO 21500: 2021, ISO 27000: 2018, ISO 9001: 2015 and ISO Annex SL standards relative to RM. The PDCA cycle has been chosen as one of the main methods for planning, implementing, and improving quality management systems and their processes. For a management system to be more effective, more reliable, and capable of preventing negative results, it must deal with the possible resulting risks.
2023-01-20
Li, Guang-ye, Zhang, Jia-xin, Wen, Xin, Xu, Lang-Ming, Yuan, Ying.  2022.  Construction of Power Forecasting and Environmental Protection Data Platform Based on Smart Grid Big Data. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :801—804.
In today's era, the smart grid is the carrier of the new energy technology revolution and a very critical development stage for grid intelligence. In the process of smart grid operation, maintenance and maintenance, many heterogeneous and polymorphic data can be formed, that is to say big data. This paper analyzes the power big data prediction technology for smart grid applications, and proposes practical application strategies In this paper, an in-depth analysis of the relationship between cloud computing and big data key technologies and smart grid is carried out, and an overview of the key technologies of electric power big data is carried out.
2023-02-03
Dong, Siyuan, Fan, Zhong.  2022.  Cybersecurity Threats Analysis and Management for Peer-to-Peer Energy Trading. 2022 IEEE 7th International Energy Conference (ENERGYCON). :1–6.
The distributed energy resources (DERs) have significantly stimulated the development of decentralized energy system and changed the way how the energy system works. In recent years, peer-to-peer (P2P) trading has drawn attention as a promising alternative for prosumers to engage with the energy market more actively, particular by using the emerging blockchain technology. Blockchain can securely hold critical information and store data in blocks linking with chain, providing a desired platform for the P2P energy trading. This paper provides a detailed description of blockchain-enabled P2P energy trading, its essential components, and how it can be implemented within the local energy market An analysis of potential threats during blockchain-enabled P2P energy trading is also performed, which subsequently results in a list of operation and privacy requirements suggested to be implemented in the local energy market.
2023-03-03
Saxena, Anish, Panda, Biswabandan.  2022.  DABANGG: A Case for Noise Resilient Flush-Based Cache Attacks. 2022 IEEE Security and Privacy Workshops (SPW). :323–334.
Flush-based cache attacks like Flush+Reload and Flush+Flush are highly precise and effective. Most of the flush-based attacks provide high accuracy in controlled and isolated environments where attacker and victim share OS pages. However, we observe that these attacks are prone to low accuracy on a noisy multi-core system with co-running applications. Two root causes for the varying accuracy of flush-based attacks are: (i) the dynamic nature of core frequencies that fluctuate depending on the system load, and (ii) the relative placement of victim and attacker threads in the processor, like same or different physical cores. These dynamic factors critically affect the execution latency of key instructions like clflush and mov, rendering the pre-attack calibration step ineffective.We propose DABANGG, a set of novel refinements to make flush-based attacks resilient to system noise by making them aware of frequency and thread placement. First, we introduce pre-attack calibration that is aware of instruction latency variation. Second, we use low-cost attack-time optimizations like fine-grained busy waiting and periodic feedback about the latency thresholds to improve the effectiveness of the attack. Finally, we provide victim-specific parameters that significantly improve the attack accuracy. We evaluate DABANGG-enabled Flush+Reload and Flush+Flush attacks against the standard attacks in side-channel and covert-channel experiments with varying levels of compute, memory, and IO-intensive system noise. In all scenarios, DABANGG+Flush+Reload and DABANGG+Flush+Flush outperform the standard attacks in stealth and accuracy.
ISSN: 2770-8411
2023-06-22
Rajan, Dhanya M, Sathya Priya, S.  2022.  DDoS mitigation techniques in IoT: A Survey. 2022 International Conference on IoT and Blockchain Technology (ICIBT). :1–7.
Cities are becoming increasingly smart as the Internet of Things (IoT) proliferates. With IoT devices interconnected, smart cities can offer novel and ubiquitous services as well as automate many of our daily lives (e.g., smart health, smart home). The abundance in the number of IoT devices leads to divergent types of security threats as well. One of such important attacks is the Distributed Denial of Service attack(DDoS). DDoS attacks have become increasingly common in the internet of things because of the rapid growth of insecure devices. These attacks slow down legitimate network requests. Although DDoS attacks were first reported in 1996, the sophistication of these attacks has increased significantly. In mid-August 2020, a 2 Terabytes per second(TBps) attack targeting critical infrastructure, such as finance, was reported. In the next two years, it is predicted that this number will double to 15 million attacks. Blockchain technology, whose development dates back to the advent of the internet, has become one of the most important advancements to come along since that time. Several applications can use this technology to secure exchanges. Using blockchain to mitigate DDoS attacks is discussed in this survey paper in diverse domains to date. Its purpose is to expose the strengths, weaknesses, and limitations of the different approaches to DDoS mitigation. As a research and development platform for DDoS mitigation, this paper will act as a central hub for a more comprehensive understanding of these approaches.
2023-02-17
Dreyer, Julian, Tönjes, Ralf, Aschenbruck, Nils.  2022.  Decentralizing loT Public- Key Storage using Distributed Ledger Technology. 2022 International Wireless Communications and Mobile Computing (IWCMC). :172–177.
The secure Internet of Things (loT) increasingly relies on digital cryptographic signatures which require a private signature and public verification key. By their intrinsic nature, public keys are meant to be accessible to any interested party willing to verify a given signature. Thus, the storing of such keys is of great concern, since an adversary shall not be able to tamper with the public keys, e.g., on a local filesystem. Commonly used public-key infrastructures (PKIs), which handle the key distribution and storage, are not feasible in most use-cases, due to their resource intensity and high complexity. Thus, the general storing of the public verification keys is of notable interest for low-resource loT networks. By using the Distributed Ledger Technology (DLT), this paper proposes a decentralized concept for storing public signature verification keys in a tamper-resistant, secure, and resilient manner. By combining lightweight public-key exchange protocols with the proposed approach, the storing of verification keys becomes scalable and especially suitable for low-resource loT devices. This paper provides a Proof-of-Concept implementation of the DLT public-key store by extending our previously proposed NFC-Key Exchange (NFC-KE) protocol with a decentralized Hyperledger Fabric public-key store. The provided performance analysis shows that by using the decentralized keystore, the NFC- KE protocol gains an increased tamper resistance and overall system resilience while also showing expected performance degradations with a low real-world impact.
ISSN: 2376-6506
2023-05-19
Wu, Jingyi, Guo, Jinkang, Lv, Zhihan.  2022.  Deep Learning Driven Security in Digital Twins of Drone Network. ICC 2022 - IEEE International Conference on Communications. :1—6.
This study aims to explore the security issues and computational intelligence of drone information system based on deep learning. Targeting at the security issues of the drone system when it is attacked, this study adopts the improved long short-term memory (LSTM) network to analyze the cyber physical system (CPS) data for prediction from the perspective of predicting the control signal data of the system before the attack occurs. At the same time, the differential privacy frequent subgraph (DPFS) is introduced to keep data privacy confidential, and the digital twins technology is used to map the operating environment of the drone in the physical space, and an attack prediction model for drone digital twins CPS is constructed based on differential privacy-improved LSTM. Finally, the tennessee eastman (TE) process is undertaken as a simulation platform to simulate the constructed model so as to verify its performance. In addition, the proposed model is compared with the Bidirectional LSTM (BiLSTM) and Attention-BiLSTM models proposed by other scholars. It was found that the root mean square error (RMSE) of the proposed model is the smallest (0.20) when the number of hidden layer nodes is 26. Comparison with the actual flow value shows that the proposed algorithm is more accurate with better fitting. Therefore, the constructed drone attack prediction model can achieve higher prediction accuracy and obvious better robustness under the premise of ensuring errors, which can provide experimental basis for the later security and intelligent development of drone system.
2023-01-06
Sharma, Himanshu, Kumar, Neeraj, Tekchandani, Raj Kumar, Mohammad, Nazeeruddin.  2022.  Deep Learning enabled Channel Secrecy Codes for Physical Layer Security of UAVs in 5G and beyond Networks. ICC 2022 - IEEE International Conference on Communications. :1—6.

Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.

2022-12-20
Rakin, Adnan Siraj, Chowdhuryy, Md Hafizul Islam, Yao, Fan, Fan, Deliang.  2022.  DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories. 2022 IEEE Symposium on Security and Privacy (SP). :1157–1174.
Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., 1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades).
ISSN: 2375-1207
2023-04-14
Lee, Bowhyung, Han, Donghwa, Lee, Namyoon.  2022.  Demo: Real-Time Implementation of Block Orthogonal Sparse Superposition Codes. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :1–2.
Short-packet communication is a key enabler of various Internet of Things applications that require higher-level security. This proposal briefly reviews block orthogonal sparse superposition (BOSS) codes, which are applicable for secure short-packet transmissions. In addition, following the IEEE 802.11a Wi-Fi standards, we demonstrate the real-time performance of secure short packet transmission using a software-defined radio testbed to verify the feasibility of BOSS codes in a multi-path fading channel environment.
ISSN: 2694-2941
2022-12-09
Urien, Pascal.  2022.  Demonstrating Virtual IO For Internet Of Things Devices Secured By TLS Server In Secure Element. 2022 IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI). :111—112.
This demonstration presents an internet of things device (thermostat), whose security is enforced by a secure element (smartcard) running TLS server, and using Virtual Input/Ouput technology. The board comprises a Wi-Fi system on chip (SoC), a micro-controller managing sensor (temperature probe) and actuator (relay), and a javacard. All device messages are sent/received over TLS, and processed by the secure element. Some of them are exported to micro-controller in clear form, which returns a response, sent over TLS by the smartcard.
2023-06-09
Liu, Chengwei, Chen, Sen, Fan, Lingling, Chen, Bihuan, Liu, Yang, Peng, Xin.  2022.  Demystifying the Vulnerability Propagation and Its Evolution via Dependency Trees in the NPM Ecosystem. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :672—684.
Third-party libraries with rich functionalities facilitate the fast development of JavaScript software, leading to the explosive growth of the NPM ecosystem. However, it also brings new security threats that vulnerabilities could be introduced through dependencies from third-party libraries. In particular, the threats could be excessively amplified by transitive dependencies. Existing research only considers direct dependencies or reasoning transitive dependencies based on reachability analysis, which neglects the NPM-specific dependency resolution rules as adapted during real installation, resulting in wrongly resolved dependencies. Consequently, further fine-grained analysis, such as precise vulnerability propagation and their evolution over time in dependencies, cannot be carried out precisely at a large scale, as well as deriving ecosystem-wide solutions for vulnerabilities in dependencies. To fill this gap, we propose a knowledge graph-based dependency resolution, which resolves the inner dependency relations of dependencies as trees (i.e., dependency trees), and investigates the security threats from vulnerabilities in dependency trees at a large scale. Specifically, we first construct a complete dependency-vulnerability knowledge graph (DVGraph) that captures the whole NPM ecosystem (over 10 million library versions and 60 million well-resolved dependency relations). Based on it, we propose a novel algorithm (DTResolver) to statically and precisely resolve dependency trees, as well as transitive vulnerability propagation paths, for each package by taking the official dependency resolution rules into account. Based on that, we carry out an ecosystem-wide empirical study on vulnerability propagation and its evolution in dependency trees. Our study unveils lots of useful findings, and we further discuss the lessons learned and solutions for different stakeholders to mitigate the vulnerability impact in NPM based on our findings. For example, we implement a dependency tree based vulnerability remediation method (DTReme) for NPM packages, and receive much better performance than the official tool (npm audit fix).