Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2023-02-24
Zhang, Guangya, Xu, Xiang.  2022.  Design and Practice of Campus Network Based on IPv6 Convergence Access in Guangdong Ocean University. 2022 International Conference on Computation, Big-Data and Engineering (ICCBE). :1—4.
For the smart campus of Guangdong Ocean University, we analyze the current situation of the university's network construction, as well as the problems in infrastructure, equipment, operation management, and network security. We focus on the construction objectives and design scheme of the smart campus, including the design of network structure and basic network services. The followings are considered in this study: optimization of network structure simplification, business integration, multi-operator access environment, operation and maintenance guarantee system, organic integration of production, and teaching and research after network leveling transformation.
2023-06-09
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
2023-02-03
Sicari, Christian, Catalfamo, Alessio, Galletta, Antonino, Villari, Massimo.  2022.  A Distributed Peer to Peer Identity and Access Management for the Osmotic Computing. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :775–781.
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
Feng, Jinliu, Wang, Yaofei, Chen, Kejiang, Zhang, Weiming, Yu, Nenghai.  2022.  An Effective Steganalysis for Robust Steganography with Repetitive JPEG Compression. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3084–3088.
With the development of social networks, traditional covert communication requires more consideration of lossy processes of Social Network Platforms (SNPs), which is called robust steganography. Since JPEG compression is a universal processing of SNPs, a method using repeated JPEG compression to fit transport channel matching is recently proposed and shows strong compression-resist performance. However, the repeated JPEG compression will inevitably introduce other artifacts into the stego image. Using only traditional steganalysis methods does not work well towards such robust steganography under low payload. In this paper, we propose a simple and effective method to detect the mentioned steganography by chasing both steganographic perturbations as well as continuous compression artifacts. We introduce compression-forensic features as a complement to steganalysis features, and then use the ensemble classifier for detection. Experiments demonstrate that this method owns a similar and better performance with respect to both traditional and neural-network-based steganalysis.
ISSN: 2379-190X
2023-07-14
Genç, Yasin, Habek, Muhammed, Aytaş, Nilay, Akkoç, Ahmet, Afacan, Erkan, Yazgan, Erdem.  2022.  Elliptic Curve Cryptography for Security in Connected Vehicles. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
The concept of a connected vehicle refers to the linking of vehicles to each other and to other things. Today, developments in the Internet of Things (IoT) and 5G have made a significant contribution to connected vehicle technology. In addition to many positive contributions, connected vehicle technology also brings with it many security-related problems. In this study, a digital signature algorithm based on elliptic curve cryptography is proposed to verify the message and identity sent to the vehicles. In the proposed model, with the anonymous identification given to the vehicle by the central unit, the vehicle is prevented from being detected by other vehicles and third parties. Thus, even if the personal data produced in the vehicles is shared, it cannot be found which vehicle it belongs to.
ISSN: 2165-0608
2023-06-09
Plambeck, Swantje, Fey, Görschwin, Schyga, Jakob, Hinckeldeyn, Johannes, Kreutzfeldt, Jochen.  2022.  Explaining Cyber-Physical Systems Using Decision Trees. 2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS). :3—8.
Cyber-Physical Systems (CPS) are systems that contain digital embedded devices while depending on environmental influences or external configurations. Identifying relevant influences of a CPS as well as modeling dependencies on external influences is difficult. We propose to learn these dependencies with decision trees in combination with clustering. The approach allows to automatically identify relevant influences and receive a data-related explanation of system behavior involving the system's use-case. Our paper presents a case study of our method for a Real-Time Localization System (RTLS) proving the usefulness of our approach, and discusses further applications of a learned decision tree.
2022-12-20
Sweigert, Devin, Chowdhury, Md Minhaz, Rifat, Nafiz.  2022.  Exploit Security Vulnerabilities by Penetration Testing. 2022 IEEE International Conference on Electro Information Technology (eIT). :527–532.
When we setup a computer network, we need to know if an attacker can get into the system. We need to do a series of test that shows the vulnerabilities of the network setup. These series of tests are commonly known Penetration Test. The need for penetration testing was not well known before. This paper highlights how penetration started and how it became as popular as it has today. The internet played a big part into the push to getting the idea of penetration testing started. The styles of penetration testing can vary from physical to network or virtual based testing which either can be a benefit to how a company becomes more secure. This paper presents the steps of penetration testing that a company or organization needs to carry out, to find out their own security flaws.
Do, Quoc Huy, Hosseyni, Pedram, Küsters, Ralf, Schmitz, Guido, Wenzler, Nils, Würtele, Tim.  2022.  A Formal Security Analysis of the W3C Web Payment APIs: Attacks and Verification. 2022 IEEE Symposium on Security and Privacy (SP). :215–234.
Payment is an essential part of e-commerce. Merchants usually rely on third-parties, so-called payment processors, who take care of transferring the payment from the customer to the merchant. How a payment processor interacts with the customer and the merchant varies a lot. Each payment processor typically invents its own protocol that has to be integrated into the merchant’s application and provides the user with a new, potentially unknown and confusing user experience.Pushed by major companies, including Apple, Google, Master-card, and Visa, the W3C is currently developing a new set of standards to unify the online checkout process and “streamline the user’s payment experience”. The main idea is to integrate payment as a native functionality into web browsers, referred to as the Web Payment APIs. While this new checkout process will indeed be simple and convenient from an end-user perspective, the technical realization requires rather significant changes to browsers.Many major browsers, such as Chrome, Firefox, Edge, Safari, and Opera, already implement these new standards, and many payment processors, such as Google Pay, Apple Pay, or Stripe, support the use of Web Payment APIs for payments. The ecosystem is constantly growing, meaning that the Web Payment APIs will likely be used by millions of people worldwide.So far, there has been no in-depth security analysis of these new standards. In this paper, we present the first such analysis of the Web Payment APIs standards, a rigorous formal analysis. It is based on the Web Infrastructure Model (WIM), the most comprehensive model of the web infrastructure to date, which, among others, we extend to integrate the new payment functionality into the generic browser model.Our analysis reveals two new critical vulnerabilities that allow a malicious merchant to over-charge an unsuspecting customer. We have verified our attacks using the Chrome implementation and reported these problems to the W3C as well as the Chrome developers, who have acknowledged these problems. Moreover, we propose fixes to the standard, which by now have been adopted by the W3C and Chrome, and prove that the fixed Web Payment APIs indeed satisfy strong security properties.
ISSN: 2375-1207
Li, Fang-Qi, Wang, Shi-Lin, Zhu, Yun.  2022.  Fostering The Robustness Of White-Box Deep Neural Network Watermarks By Neuron Alignment. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3049–3053.
The wide application of deep learning techniques is boosting the regulation of deep learning models, especially deep neural networks (DNN), as commercial products. A necessary prerequisite for such regulations is identifying the owner of deep neural networks, which is usually done through the watermark. Current DNN watermarking schemes, particularly white-box ones, are uniformly fragile against a family of functionality equivalence attacks, especially the neuron permutation. This operation can effortlessly invalidate the ownership proof and escape copyright regulations. To enhance the robustness of white-box DNN watermarking schemes, this paper presents a procedure that aligns neurons into the same order as when the watermark is embedded, so the watermark can be correctly recognized. This neuron alignment process significantly facilitates the functionality of established deep neural network watermarking schemes.
2023-03-03
Lin, Zhenpeng, Chen, Yueqi, Wu, Yuhang, Mu, Dongliang, Yu, Chensheng, Xing, Xinyu, Li, Kang.  2022.  GREBE: Unveiling Exploitation Potential for Linux Kernel Bugs. 2022 IEEE Symposium on Security and Privacy (SP). :2078–2095.
Nowadays, dynamic testing tools have significantly expedited the discovery of bugs in the Linux kernel. When unveiling kernel bugs, they automatically generate reports, specifying the errors the Linux encounters. The error in the report implies the possible exploitability of the corresponding kernel bug. As a result, many security analysts use the manifested error to infer a bug’s exploitability and thus prioritize their exploit development effort. However, using the error in the report, security researchers might underestimate a bug’s exploitability. The error exhibited in the report may depend upon how the bug is triggered. Through different paths or under different contexts, a bug may manifest various error behaviors implying very different exploitation potentials. This work proposes a new kernel fuzzing technique to explore all the possible error behaviors that a kernel bug might bring about. Unlike conventional kernel fuzzing techniques concentrating on kernel code coverage, our fuzzing technique is more directed towards the buggy code fragment. It introduces an object-driven kernel fuzzing technique to explore various contexts and paths to trigger the reported bug, making the bug manifest various error behaviors. With the newly demonstrated errors, security researchers could better infer a bug’s possible exploitability. To evaluate our proposed technique’s effectiveness, efficiency, and impact, we implement our fuzzing technique as a tool GREBE and apply it to 60 real-world Linux kernel bugs. On average, GREBE could manifest 2+ additional error behaviors for each of the kernel bugs. For 26 kernel bugs, GREBE discovers higher exploitation potential. We report to kernel vendors some of the bugs – the exploitability of which was wrongly assessed and the corresponding patch has not yet been carefully applied – resulting in their rapid patch adoption.
ISSN: 2375-1207
2022-12-20
Speith, Julian, Schweins, Florian, Ender, Maik, Fyrbiak, Marc, May, Alexander, Paar, Christof.  2022.  How Not to Protect Your IP – An Industry-Wide Break of IEEE 1735 Implementations. 2022 IEEE Symposium on Security and Privacy (SP). :1656–1671.
Modern hardware systems are composed of a variety of third-party Intellectual Property (IP) cores to implement their overall functionality. Since hardware design is a globalized process involving various (untrusted) stakeholders, a secure management of the valuable IP between authors and users is inevitable to protect them from unauthorized access and modification. To this end, the widely adopted IEEE standard 1735-2014 was created to ensure confidentiality and integrity. In this paper, we outline structural weaknesses in IEEE 1735 that cannot be fixed with cryptographic solutions (given the contemporary hardware design process) and thus render the standard inherently insecure. We practically demonstrate the weaknesses by recovering the private keys of IEEE 1735 implementations from major Electronic Design Automation (EDA) tool vendors, namely Intel, Xilinx, Cadence, Siemens, Microsemi, and Lattice, while results on a seventh case study are withheld. As a consequence, we can decrypt, modify, and re-encrypt all allegedly protected IP cores designed for the respective tools, thus leading to an industry-wide break. As part of this analysis, we are the first to publicly disclose three RSA-based white-box schemes that are used in real-world products and present cryptanalytical attacks for all of them, finally resulting in key recovery.
2023-02-03
Fu, Shichong, Li, Xiaoling, Zhao, Yao.  2022.  Improved Steganography Based on Referential Cover and Non-symmetric Embedding. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1202–1206.
Minimizing embedding impact model of steganography has good performance for steganalysis detection. By using effective distortion cost function and coding method, steganography under this model becomes the mainstream embedding framework recently. In this paper, to improve the anti-detection performance, a new steganography optimization model by constructing a reference cover is proposed. First, a reference cover is construed by performing a filtering operation on the cover image. Then, by minimizing the residual between the reference cover and the original cover, the optimization function is formulated considering the effect of different modification directions. With correcting the distortion cost of +1 and \_1 modification operations, the stego image obtained by the proposed method is more consistent with the natural image. Finally, by applying the proposed framework to the cost function of the well-known HILL embedding, experimental results show that the anti-detection performance of the proposed method is better than the traditional method.
ISSN: 2768-6515
2023-08-25
Zheng, Chaofan, Hu, Wenhui, Li, Tianci, Liu, Xueyang, Zhang, Jinchan, Wang, Litian.  2022.  An Insider Threat Detection Method Based on Heterogeneous Graph Embedding. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :11—16.
Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
2022-12-09
Hussain, Karrar, Vanathi, D., Jose, Bibin K, Kavitha, S, Rane, Bhuvaneshwari Yogesh, Kaur, Harpreet, Sandhya, C..  2022.  Internet of Things- Cloud Security Automation Technology Based on Artificial Intelligence. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :42—47.
The development of industrial robots, as a carrier of artificial intelligence, has played an important role in promoting the popularisation of artificial intelligence super automation technology. The paper introduces the system structure, hardware structure, and software system of the mobile robot climber based on computer big data technology, based on this research background. At the same time, the paper focuses on the climber robot's mechanism compound method and obstacle avoidance control algorithm. Smart home computing focuses on “home” and brings together related peripheral industries to promote smart home services such as smart appliances, home entertainment, home health care, and security monitoring in order to create a safe, secure, energy-efficient, sustainable, and comfortable residential living environment. It's been twenty years. There is still no clear definition of “intelligence at home,” according to Philips Inc., a leading consumer electronics manufacturer, which once stated that intelligence should comprise sensing, connectedness, learning, adaption, and ease of interaction. S mart applications and services are still in the early stages of development, and not all of them can yet exhibit these five intelligent traits.
2023-02-03
Nie, Chenyang, Quinan, Paulo Gustavo, Traore, Issa, Woungang, Isaac.  2022.  Intrusion Detection using a Graphical Fingerprint Model. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :806–813.
The Activity and Event Network (AEN) graph is a new framework that allows modeling and detecting intrusions by capturing ongoing security-relevant activity and events occurring at a given organization using a large time-varying graph model. The graph is generated by processing various network security logs, such as network packets, system logs, and intrusion detection alerts. In this paper, we show how known attack methods can be captured generically using attack fingerprints based on the AEN graph. The fingerprints are constructed by identifying attack idiosyncrasies under the form of subgraphs that represent indicators of compromise (IOes), and then encoded using Property Graph Query Language (PGQL) queries. Among the many attack types, three main categories are implemented as a proof of concept in this paper: scanning, denial of service (DoS), and authentication breaches; each category contains its common variations. The experimental evaluation of the fingerprints was carried using a combination of intrusion detection datasets and yielded very encouraging results.
2022-12-20
von Zezschwitz, Emanuel, Chen, Serena, Stark, Emily.  2022.  "It builds trust with the customers" - Exploring User Perceptions of the Padlock Icon in Browser UI. 2022 IEEE Security and Privacy Workshops (SPW). :44–50.
We performed a large-scale online survey (n=1,880) to study the padlock icon, an established security indicator in web browsers that denotes connection security through HTTPS. In this paper, we evaluate users’ understanding of the padlock icon, and how removing or replacing it might influence their expectations and decisions. We found that the majority of respondents (89%) had misconceptions about the padlock’s meaning. While only a minority (23%-44%) referred to the padlock icon at all when asked to evaluate trustworthiness, these padlock-aware users reported that they would be deterred from a hypothetical shopping transaction when the padlock icon was absent. These users were reassured after seeing secondary UI surfaces (i.e., Chrome Page Info) where more verbose information about connection security was present.We conclude that the padlock icon, displayed by browsers in the address bar, is still misunderstood by many users. The padlock icon guarantees connection security, but is often perceived to indicate the general privacy, security, and trustworthiness of a website. We argue that communicating connection security precisely and clearly is likely to be more effective through secondary UI, where there is more surface area for content. We hope that this paper boosts the discussion about the benefits and drawbacks of showing passive security indicators in the browser UI.
ISSN: 2770-8411
2023-09-18
Amer, Eslam, Samir, Adham, Mostafa, Hazem, Mohamed, Amer, Amin, Mohamed.  2022.  Malware Detection Approach Based on the Swarm-Based Behavioural Analysis over API Calling Sequence. 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :27—32.
The rapidly increasing malware threats must be coped with new effective malware detection methodologies. Current malware threats are not limited to daily personal transactions but dowelled deeply within large enterprises and organizations. This paper introduces a new methodology for detecting and discriminating malicious versus normal applications. In this paper, we employed Ant-colony optimization to generate two behavioural graphs that characterize the difference in the execution behavior between malware and normal applications. Our proposed approach relied on the API call sequence generated when an application is executed. We used the API calls as one of the most widely used malware dynamic analysis features. Our proposed method showed distinctive behavioral differences between malicious and non-malicious applications. Our experimental results showed a comparative performance compared to other machine learning methods. Therefore, we can employ our method as an efficient technique in capturing malicious applications.
2023-07-21
Churaev, Egor, Savchenko, Andrey V..  2022.  Multi-user facial emotion recognition in video based on user-dependent neural network adaptation. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT). :1—5.
In this paper, the multi-user video-based facial emotion recognition is examined in the presence of a small data set with the emotions of end users. By using the idea of speaker-dependent speech recognition, we propose a novel approach to solve this task if labeled video data from end users is available. During the training stage, a deep convolutional neural network is trained for user-independent emotion classification. Next, this classifier is adapted (fine-tuned) on the emotional video of a concrete person. During the recognition stage, the user is identified based on face recognition techniques, and an emotional model of the recognized user is applied. It is experimentally shown that this approach improves the accuracy of emotion recognition by more than 20% for the RAVDESS dataset.
2023-05-12
Pupezescu, Valentin, Pupezescu, Marilena-Cătălina, Perișoară, Lucian-Andrei.  2022.  Optimizations of Database Management Systems for Real Time IoT Edge Applications. 2022 23rd International Carpathian Control Conference (ICCC). :171–176.

The exponential growth of IoT-type systems has led to a reconsideration of the field of database management systems in terms of storing and handling high-volume data. Recently, many real-time Database Management Systems(DBMS) have been developed to address issues such as security, managing concurrent access to stored data, and optimizing data query performance. This paper studies methods that allow to reduce the temporal validity range for common DBMS. The primary purpose of IoT edge devices is to generate data and make it available for machine learning or statistical algorithms. This is achieved inside the Knowledge Discovery in Databases process. In order to visualize and obtain critical Data Mining results, all the device-generated data must be made available as fast as possible for selection, preprocessing and data transformation. In this research we investigate if IoT edge devices can be used with common DBMS proper configured in order to access data fast instead of working with Real Time DBMS. We will study what kind of transactions are needed in large IoT ecosystems and we will analyze the techniques of controlling concurrent access to common resources (stored data). For this purpose, we built a series of applications that are able to simulate concurrent writing operations to a common DBMS in order to investigate the performance of concurrent access to database resources. Another important procedure that will be tested with the developed applications will be to increase the availability of data for users and data mining applications. This will be achieved by using field indexing.

2023-03-03
Shrestha, Raj, Leinonen, Juho, Zavgorodniaia, Albina, Hellas, Arto, Edwards, John.  2022.  Pausing While Programming: Insights From Keystroke Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). :187–198.
Pauses in typing are generally considered to indicate cognitive processing and so are of interest in educational contexts. While much prior work has looked at typing behavior of Computer Science students, this paper presents results of a study specifically on the pausing behavior of students in Introductory Computer Programming. We investigate the frequency of pauses of different lengths, what last actions students take before pausing, and whether there is a correlation between pause length and performance in the course. We find evidence that frequency of pauses of all lengths is negatively correlated with performance, and that, while some keystrokes initiate pauses consistently across pause lengths, other keystrokes more commonly initiate short or long pauses. Clustering analysis discovers two groups of students, one that takes relatively fewer mid-to-long pauses and performs better on exams than the other.
2023-06-22
Verma, Amandeep, Saha, Rahul.  2022.  Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.
2023-02-03
Chen, Songlin, Wang, Sijing, Xu, Xingchen, Jiao, Long, Wen, Hong.  2022.  Physical Layer Security Authentication Based Wireless Industrial Communication System for Spoofing Detection. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Security is of vital importance in wireless industrial communication systems. When spoofing attacking has occurred, leading to economic losses or even safety accidents. So as to address the concern, existing approaches mainly rely on traditional cryptographic algorithms. However, these methods cannot meet the needs of short delay and lightweight. In this paper, we propose a CSI-based PHY-layer security authentication scheme to detect spoofing detection. The main idea takes advantage of the uncorrelated nature of wireless channels to the identification of spoofing nodes in the physical layer. We demonstrate a MIMO-OFDM based spoofing detection prototype in industrial environments. Firstly, utilizing Universal Software Radio Peripheral (USRPs) to establish MIMO-OFDM communication systems is presented. Secondly, our proposed security scheme of CSI-based PHY-layer authentication is demonstrated. Finally, the effectiveness of the proposed approach has been verified via attack experiments.
2022-12-20
Albayrak, Cenk, Arslan, Hüseyin, Türk, Kadir.  2022.  Physical Layer Security for Visible Light Communication in the Presence of ISI and NLoS. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :469–474.
Visible light communication (VLC) is an important alternative and/or complementary technology for next generation indoor wireless broadband communication systems. In order to ensure data security for VLC in public areas, many studies in literature consider physical layer security (PLS). These studies generally neglect the reflections in the VLC channel and assume no inter symbol interference (ISI). However, increasing the data transmission rate causes ISI. In addition, even if the power of the reflections is small compared to the line of sight (LoS) components, it can affect the secrecy rate in a typical indoor VLC system. In this study, we investigate the effects of ISI and reflected channel components on secrecy rate in multiple-input single-output (MISO) VLC scenario utilized null-steering (NS) and artificial noise (AN) PLS techniques.
ISSN: 2694-2941
Song, Suhwan, Hur, Jaewon, Kim, Sunwoo, Rogers, Philip, Lee, Byoungyoung.  2022.  R2Z2: Detecting Rendering Regressions in Web Browsers through Differential Fuzz Testing. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1818–1829.
A rendering regression is a bug introduced by a web browser where a web page no longer functions as users expect. Such rendering bugs critically harm the usability of web browsers as well as web applications. The unique aspect of rendering bugs is that they affect the presented visual appearance of web pages, but those web pages have no pre-defined correct appearance. Therefore, it is challenging to automatically detect errors in their appearance. In practice, web browser vendors rely on non-trivial and time-prohibitive manual analysis to detect and handle rendering regressions. This paper proposes R2Z2, an automated tool to find rendering regressions. R2Z2 uses the differential fuzz testing approach, which repeatedly compares the rendering results of two different versions of a browser while providing the same HTML as input. If the rendering results are different, R2Z2 further performs cross browser compatibility testing to check if the rendering difference is indeed a rendering regression. After identifying a rendering regression, R2Z2 will perform an in-depth analysis to aid in fixing the regression. Specifically, R2Z2 performs a delta-debugging-like analysis to pinpoint the exact browser source code commit causing the regression, as well as inspecting the rendering pipeline stages to pinpoint which pipeline stage is responsible. We implemented a prototype of R2Z2 particularly targeting the Chrome browser. So far, R2Z2 found 11 previously undiscovered rendering regressions in Chrome, all of which were confirmed by the Chrome developers. Importantly, in each case, R2Z2 correctly reported the culprit commit. Moreover, R2Z2 correctly pin-pointed the culprit rendering pipeline stage in all but one case.
ISSN: 1558-1225
2023-02-17
K, Devaki, L, Leena Jenifer.  2022.  Re-Encryption Model for Multi-Block Data Updates in Network Security. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1331–1336.
Nowadays, online cloud storage networks can be accessed by third parties. Businesses that host large data centers buy or rent storage space from individuals who need to store their data. According to customer needs, data hub operators visualise the data and expose the cloud storage for storing data. Tangibly, the resources may wander around numerous servers. Data resilience is a prior need for all storage methods. For routines in a distributed data center, distributed removable code is appropriate. A safe cloud cache solution, AES-UCODR, is proposed to decrease I/O overheads for multi-block updates in proxy re-encryption systems. Its competence is evaluated using the real-world finance sector.