Biblio

Found 1221 results

Filters: Keyword is Internet of Things  [Clear All Filters]
2023-01-06
Xu, Huikai, Yu, Miao, Wang, Yanhao, Liu, Yue, Hou, Qinsheng, Ma, Zhenbang, Duan, Haixin, Zhuge, Jianwei, Liu, Baojun.  2022.  Trampoline Over the Air: Breaking in IoT Devices Through MQTT Brokers. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :171—187.
MQTT is widely adopted by IoT devices because it allows for the most efficient data transfer over a variety of communication lines. The security of MQTT has received increasing attention in recent years, and several studies have demonstrated the configurations of many MQTT brokers are insecure. Adversaries are allowed to exploit vulnerable brokers and publish malicious messages to subscribers. However, little has been done to understanding the security issues on the device side when devices handle unauthorized MQTT messages. To fill this research gap, we propose a fuzzing framework named ShadowFuzzer to find client-side vulnerabilities when processing incoming MQTT messages. To avoiding ethical issues, ShadowFuzzer redirects traffic destined for the actual broker to a shadow broker under the control to monitor vulnerabilities. We select 15 IoT devices communicating with vulnerable brokers and leverage ShadowFuzzer to find vulnerabilities when they parse MQTT messages. For these devices, ShadowFuzzer reports 34 zero-day vulnerabilities in 11 devices. We evaluated the exploitability of these vulnerabilities and received a total of 44,000 USD bug bounty rewards. And 16 CVE/CNVD/CN-NVD numbers have been assigned to us.
2023-03-17
Alim, Mohammad Ehsanul, Maswood, Ali Iftekhar, Bin Alam, Md. Nazmus Sakib.  2022.  True-Time-Delay Line of Chipless RFID Tag for Security & IoT Sensing Applications. 2022 5th International Conference on Information and Communications Technology (ICOIACT). :1–6.
In this paper, a novel composite right/left-handed transmission line (CRLH TL) 3-unit cell is presented for finding excellent time-delay (TD) efficiency of Chipless RFID's True-Time-Delay Lines (TTDLs). RFID (Radio Frequency Identification) is a non-contact automatic identification technology that uses radio frequency (RF) signals to identify target items automatically and retrieve pertinent data without the need for human participation. However, as compared to barcodes, RFID tags are prohibitively expensive and complex to manufacture. Chipless RFID tags are RFID tags that do not contain silicon chips and are therefore less expensive and easier to manufacture. It combines radio broadcasting technology with radar technology. Radio broadcasting technology use radio waves to send and receive voice, pictures, numbers, and symbols, whereas radar technology employs the radio wave reflection theory. Chipless RFID lowers the cost of sensors such as gas, temperature, humidity, and pressure. In addition, Chipless RFID tags can be used as sensors which are also required for security purposes and future IoT applications.
ISSN: 2770-4661
2023-09-08
Pawar, Sheetal, Kuveskar, Manisha.  2022.  Vehicle Security and Road Safety System Based on Internet of Things. 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET). :1–5.
Roads are the backbone of our country, they play an important role for human progress. Roads seem to be dangerous and harmful for human beings on hills, near rivers, lakes and small ridges. It's possible with the help of IoT (Internet of things) to incorporate all the things made efficiently and effectively. IoT in combination with roads make daily life smart and excellent. This paper shows IoT technology will be the beginning of smart cities and it will reduce road accidents and collisions. If all vehicles are IoT based and connected with the internet, then an efficient method to guide, it performs urgent action, when less time is available. Internet and antenna technology in combination with IoT perform fully automation in our day-to-day life. It will provide excellent service as well as accuracy and precision.
2022-12-20
Miao, Weiwei, Jin, Chao, Zeng, Zeng, Bao, Zhejing, Wei, Xiaogang, Zhang, Rui.  2022.  A White-Box SM4 Implementation by Introducing Pseudo States Applied to Edge IoT Agents. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). :154–160.
With the widespread application of power Internet of Things (IoT), the edge IoT agents are often threatened by various attacks, among which the white-box attack is the most serious. The white-box implementation of the cryptography algorithm can hide key information even in the white-box attack context by means of obfuscation. However, under the specially designed attack, there is still a risk of the information being recovered within a certain time complexity. In this paper, by introducing pseudo states, a new white-box implementation of SM4 algorithm is proposed. The encryption and decryption processes are implemented in the form of matrices and lookup tables, which are obfuscated by scrambling encodings. The introduction of pseudo states could complicate the obfuscation, leading to the great improvement in the security. The number of pseudo states can be changed according to the requirements of security. Through several quantitative indicators, including diversity, ambiguity, the time complexity required to extract the key and the value space of the key and external encodings, it is proved that the security of the proposed implementation could been enhanced significantly, compared with the existing schemes under similar memory occupation.
2023-03-03
Yang, Gangqiang, Shi, Zhengyuan, Chen, Cheng, Xiong, Hailiang, Hu, Honggang, Wan, Zhiguo, Gai, Keke, Qiu, Meikang.  2022.  Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :19–20.
Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.
2023-07-21
Muhammad Nabi, Masooma, Shah, Munam Ali.  2022.  A Fuzzy Approach to Trust Management in Fog Computing. 2022 24th International Multitopic Conference (INMIC). :1—6.

The Internet of Things (IoT) technology has revolutionized the world where anything is smartly connected and is accessible. The IoT makes use of cloud computing for processing and storing huge amounts of data. In some way, the concept of fog computing has emerged between cloud and IoT devices to address the issue of latency. When a fog node exchanges data for completing a particular task, there are many security and privacy risks. For example, offloading data to a rogue fog node might result in an illegal gathering or modification of users' private data. In this paper, we rely on trust to detect and detach bad fog nodes. We use a Mamdani fuzzy method and we consider a hospital scenario with many fog servers. The aim is to identify the malicious fog node. Metrics such as latency and distance are used in evaluating the trustworthiness of each fog server. The main contribution of this study is identifying how fuzzy logic configuration could alter the trust value of fog nodes. The experimental results show that our method detects the bad fog device and establishes its trustworthiness in the given scenario.

2023-02-03
Halabi, Talal, Abusitta, Adel, Carvalho, Glaucio H.S., Fung, Benjamin C. M..  2022.  Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1–6.

With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.

2023-01-13
Schwaiger, Patrick, Simopoulos, Dimitrios, Wolf, Andreas.  2022.  Automated IoT security testing with SecLab. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–6.
With the growing number of IoT applications and devices, IoT security breaches are a dangerous reality. Cost pressure and complexity of security tests for embedded systems and networked infrastructure are often the excuse for skipping them completely. In our paper we introduce SecLab security test lab to overcome that problem. Based on a flexible and lightweight architecture, SecLab allows developers and IoT security specialists to harden their systems with a low entry hurdle. The open architecture supports the reuse of existing external security test libraries and scalability for the assessment of complex IoT Systems. A reference implementation of security tests in a realistic IoT application scenario proves the approach.
Praveen Kumar, K., Sree Ranganayaki, V..  2022.  Energy Saving Using Privacy Data Secure Aggregation Algorithm. 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT). :99—102.
For the Internet of things (IoT) secure data aggregation issues, data privacy-preserving and limited computation ability and energy of nodes should be tradeoff. Based on analyzing the pros-and-cons of current works, a low energy- consuming secure data aggregation method (LCSDA) was proposed. This method uses shortest path principle to choose neighbor nodes and generates the data aggregation paths in the cluster based on prim minimum spanning tree algorithm. Simulation results show that this method could effectively cut down energy consumption and reduce the probability of cluster head node being captured, in the same time preserving data privacy.
2023-04-14
Saurabh, Kumar, Singh, Ayush, Singh, Uphar, Vyas, O.P., Khondoker, Rahamatullah.  2022.  GANIBOT: A Network Flow Based Semi Supervised Generative Adversarial Networks Model for IoT Botnets Detection. 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). :1–5.
The spread of Internet of Things (IoT) devices in our homes, healthcare, industries etc. are more easily infiltrated than desktop computers have resulted in a surge in botnet attacks based on IoT devices, which may jeopardize the IoT security. Hence, there is a need to detect these attacks and mitigate the damage. Existing systems rely on supervised learning-based intrusion detection methods, which require a large labelled data set to achieve high accuracy. Botnets are onerous to detect because of stealthy command & control protocols and large amount of network traffic and hence obtaining a large labelled data set is also difficult. Due to unlabeled Network traffic, the supervised classification techniques may not be used directly to sort out the botnet that is responsible for the attack. To overcome this limitation, a semi-supervised Deep Learning (DL) approach is proposed which uses Semi-supervised GAN (SGAN) for IoT botnet detection on N-BaIoT dataset which contains "Bashlite" and "Mirai" attacks along with their sub attacks. The results have been compared with the state-of-the-art supervised solutions and found efficient in terms of better accuracy which is 99.89% in binary classification and 59% in multi classification on larger dataset, faster and reliable model for IoT Botnet detection.
2022-12-09
Sagar, Maloth, C, Vanmathi.  2022.  Network Cluster Reliability with Enhanced Security and Privacy of IoT Data for Anomaly Detection Using a Deep Learning Model. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :1670—1677.

Cyber Physical Systems (CPS), which contain devices to aid with physical infrastructure activities, comprise sensors, actuators, control units, and physical objects. CPS sends messages to physical devices to carry out computational operations. CPS mainly deals with the interplay among cyber and physical environments. The real-time network data acquired and collected in physical space is stored there, and the connection becomes sophisticated. CPS incorporates cyber and physical technologies at all phases. Cyber Physical Systems are a crucial component of Internet of Things (IoT) technology. The CPS is a traditional concept that brings together the physical and digital worlds inhabit. Nevertheless, CPS has several difficulties that are likely to jeopardise our lives immediately, while the CPS's numerous levels are all tied to an immediate threat, therefore necessitating a look at CPS security. Due to the inclusion of IoT devices in a wide variety of applications, the security and privacy of users are key considerations. The rising level of cyber threats has left current security and privacy procedures insufficient. As a result, hackers can treat every person on the Internet as a product. Deep Learning (DL) methods are therefore utilised to provide accurate outputs from big complex databases where the outputs generated can be used to forecast and discover vulnerabilities in IoT systems that handles medical data. Cyber-physical systems need anomaly detection to be secure. However, the rising sophistication of CPSs and more complex attacks means that typical anomaly detection approaches are unsuitable for addressing these difficulties since they are simply overwhelmed by the volume of data and the necessity for domain-specific knowledge. The various attacks like DoS, DDoS need to be avoided that impact the network performance. In this paper, an effective Network Cluster Reliability Model with enhanced security and privacy levels for the data in IoT for Anomaly Detection (NSRM-AD) using deep learning model is proposed. The security levels of the proposed model are contrasted with the proposed model and the results represent that the proposed model performance is accurate

2023-04-14
Pahlevi, Rizka Reza, Suryani, Vera, Nuha, Hilal Hudan, Yasirandi, Rahmat.  2022.  Secure Two-Factor Authentication for IoT Device. 2022 10th International Conference on Information and Communication Technology (ICoICT). :407–412.
The development of IoT has penetrated various sectors. The development of IoT devices continues to increase and is predicted to reach 75 billion by 2025. However, the development of IoT devices is not followed by security developments. Therefore, IoT devices can become gateways for cyber attacks, including brute force and sniffing attacks. Authentication mechanisms can be used to ward off attacks. However, the implementation of authentication mechanisms on IoT devices is challenging. IoT devices are dominated by constraint devices that have limited computing. Thus, conventional authentication mechanisms are not suitable for use. Two-factor authentication using RFID and fingerprint can be a solution in providing an authentication mechanism. Previous studies have proposed a two-factor authentication mechanism using RFID and fingerprint. However, previous research did not pay attention to message exchange security issues and did not provide mutual authentication. This research proposes a secure mutual authentication protocol using two-factor RFID and fingerprint using MQTT protocol. Two processes support the authentication process: the registration process and authentication. The proposed protocol is tested based on biometric security by measuring the false acceptance rate (FAR) and false rejection rate (FRR) on the fingerprint, measuring brute force attacks, and measuring sniffing attacks. The test results obtained the most optimal FAR and FRR at the 80% threshold. Then the equal error rate (ERR) on FAR and FRR is around 59.5%. Then, testing brute force and sniffing attacks found that the proposed protocol is resistant to both attacks.
2023-05-12
Zhang, Xinyan.  2022.  Access Control Mechanism Based on Game Theory in the Internet of Things Environment. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1–6.
In order to solve the problem that the traditional “centralized” access control technology can no longer guarantee the security of access control in the current Internet of Things (IoT)environment, a dynamic access control game mechanism based on trust is proposed. According to the reliability parameters of the recommended information obtained by the two elements of interaction time and the number of interactions, the user's trust value is dynamically calculated, and the user is activated and authorized to the role through the trust level corresponding to the trust value. The trust value and dynamic adjustment factor are introduced into the income function to carry out game analysis to avoid malicious access behavior of users. The hybrid Nash equilibrium strategy of both sides of the transaction realizes the access decision-making work in the IoT environment. Experimental results show that the game mechanism proposed in this paper has a certain restraining effect on malicious nodes and can play a certain incentive role in the legitimate access behavior of IoT users.
2023-09-01
Fang, Lele, Liu, Jiahao, Zhu, Yan, Chan, Chi-Hang, Martins, Rui Paulo.  2022.  LSB-Reused Protection Technique in Secure SAR ADC against Power Side-Channel Attack. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—6.
Successive approximation register analog-to-digital converter (SAR ADC) is widely adopted in the Internet of Things (IoT) systems due to its simple structure and high energy efficiency. Unfortunately, SAR ADC dissipates various and unique power features when it converts different input signals, leading to severe vulnerability to power side-channel attack (PSA). The adversary can accurately derive the input signal by only measuring the power information from the analog supply pin (AVDD), digital supply pin (DVDD), and/or reference pin (Ref) which feed to the trained machine learning models. This paper first presents the detailed mathematical analysis of power side-channel attack (PSA) to SAR ADC, concluding that the power information from AVDD is the most vulnerable to PSA compared with the other supply pin. Then, an LSB-reused protection technique is proposed, which utilizes the characteristic of LSB from the SAR ADC itself to protect against PSA. Lastly, this technique is verified in a 12-bit 5 MS/s secure SAR ADC implemented in 65nm technology. By using the current waveform from AVDD, the adopted convolutional neural network (CNN) algorithms can achieve \textgreater99% prediction accuracy from LSB to MSB in the SAR ADC without protection. With the proposed protection, the bit-wise accuracy drops to around 50%.
2023-07-14
Bourreau, Hugo, Guichet, Emeric, Barrak, Amine, Simon, Benoît, Jaafar, Fehmi.  2022.  On Securing the Communication in IoT Infrastructure using Elliptic Curve Cryptography. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :758–759.
Internet of Things (IoT) is widely present nowadays, from businesses to connected houses, and more. IoT is considered a part of the Internet of the future and will comprise billions of intelligent communication. These devices transmit data from sensors to entities like servers to perform suitable responses. The problem of securing these data from cyberattacks increases due to the sensitive information it contains. In addition, studies have shown that most of the time data transiting in IoT devices does not apply encrypted communication. Thus, anyone has the ability to listen to or modify the information. Encrypting communications seems mandatory to secure networks and data transiting from sensors to servers. In this paper, we propose an approach to secure the transmission and the storage of data in IoT using Elliptic Curve Cryptography (ECC). The proposed method offers a high level of security at a reasonable computational cost. Indeed, we present an adequate architecture that ensures the use of a state-of-the-art cryptography algorithm to encrypt sensitive data in IoT.
ISSN: 2693-9371
2023-05-19
Acheampong, Edward Mensah, Zhou, Shijie, Liao, Yongjian, Antwi-Boasiako, Emmanuel, Obiri, Isaac Amankona.  2022.  Smart Health Records Sharing Scheme based on Partially Policy-Hidden CP-ABE with Leakage Resilience. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). :1408—1415.
With the rapid innovation of cloud computing technologies, which has enhanced the application of the Internet of Things (IoT), smart health (s-health) is expected to enhance the quality of the healthcare system. However, s-health records (SHRs) outsourcing, storage, and sharing via a cloud server must be protected and users attribute privacy issues from the public domain. Ciphertext policy attribute-based encryption (CP-ABE) is the cryptographic primitive which is promising to provide fine-grained access control in the cloud environment. However, the direct application of traditional CP-ABE has brought a lot of security issues like attributes' privacy violations and vulnerability in the future by potential powerful attackers like side-channel and cold-bot attacks. To solve these problems, a lot of CP-ABE schemes have been proposed but none of them concurrently support partially policy-hidden and leakage resilience. Hence, we propose a new Smart Health Records Sharing Scheme that will be based on Partially Policy-Hidden CP-ABE with Leakage Resilience which is resilient to bound leakage from each of many secret keys per user, as well as many master keys, and ensure attribute privacy. Our scheme hides attribute values of users in both secret key and ciphertext which contain sensitive information in the cloud environment and are fully secure in the standard model under the static assumptions.
2023-03-31
Shi, Huan, Hui, Bo, Hu, Biao, Gu, RongJie.  2022.  Construction of Intelligent Emergency Response Technology System Based on Big Data Technology. 2022 International Conference on Big Data, Information and Computer Network (BDICN). :59–62.
This paper analyzes the problems existing in the existing emergency management technology system in China from various perspectives, and designs the construction of intelligent emergency system in combination with the development of new generation of Internet of Things, big data, cloud computing and artificial intelligence technology. The overall design is based on scientific and technological innovation to lead the reform of emergency management mechanism and process reengineering to build an intelligent emergency technology system characterized by "holographic monitoring, early warning, intelligent research and accurate disposal". To build an intelligent emergency management system that integrates intelligent monitoring and early warning, intelligent emergency disposal, efficient rehabilitation, improvement of emergency standards, safety and operation and maintenance construction.
2023-01-13
Y, Justindhas., Kumar, G. Anil, Chandrashekhar, A, Raman, R Raghu, Kumar, A. Ravi, S, Ashwini.  2022.  Internet of Things based Data Security Management using Three Level Cyber Security Policies. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–8.
The Internet of Things devices is rapidly becoming widespread, as are IoT services. Their achievement has not gone unnoticed, as threats as well as attacks towards IoT devices as well as services continue to grow. Cyber attacks are not unique to IoT, however as IoT becomes more ingrained in our lives as well as communities, it is imperative to step up as well as take cyber defense seriously. As a result, there is a genuine need to protect IoT, which necessitates a thorough understanding of the dangers and attacks against IoT infrastructure. The purpose of this study is to define threat types, as well as to assess and characterize intrusions and assaults against IoT devices as well as services
2023-09-08
Zalozhnev, Alexey Yu., Ginz, Vasily N., Loktionov, Anatoly Eu..  2022.  Intelligent System and Human-Computer Interaction for Personal Data Cyber Security in Medicaid Enterprises. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–4.
Intelligent Systems for Personal Data Cyber Security is a critical component of the Personal Information Management of Medicaid Enterprises. Intelligent Systems for Personal Data Cyber Security combines components of Cyber Security Systems with Human-Computer Interaction. It also uses the technology and principles applied to the Internet of Things. The use of software-hardware concepts and solutions presented in this report is, in the authors’ opinion, some step in the working-out of the Intelligent Systems for Personal Data Cyber Security in Medicaid Enterprises. These concepts may also be useful for developers of these types of systems.
Buddhi, Dharam, A, Prabhu, Hamad, Abdulsattar Abdullah, Sarojwal, Atul, Alanya-Beltran, Joel, Chakravarthi, M. Kalyan.  2022.  Power System Monitoring, Control and protection using IoT and cyber security. 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). :1–5.
The analysis shows how important Power Network Measuring and Characterization (PSMC) is to the plan. Networks planning and oversight for the transmission of electrical energy is becoming increasingly frequent. In reaction to the current contest of assimilating trying to cut charging in the crate, estimation, information sharing, but rather govern into PSMC reasonable quantities, Electrical Transmit Monitoring and Management provides a thorough outline of founding principles together with smart sensors for domestic spying, security precautions, and control of developed broadening power systems.Electricity supply control must depend increasingly heavily on telecommunications infrastructure to manage and run their processes because of the fluctuation in transmission and distribution of electricity. A wider attack surface will also be available to threat hackers as a result of the more communications. Large-scale blackout have occurred in the past as a consequence of cyberattacks on electrical networks. In order to pinpoint the key issues influencing power grid computer networks, we looked at the network infrastructure supporting electricity grids in this research.
2022-12-06
Khodayer Al-Dulaimi, Omer Mohammed, Hassan Al-Dulaimi, Mohammed Khodayer, Khodayer Al-Dulaimi, Aymen Mohammed.  2022.  Analysis of Low Power Wireless Technologies used in the Internet of Things (IoT). 2022 2nd International Conference on Computing and Machine Intelligence (ICMI). :1-6.

The Internet of Things (IoT) is a novel paradigm that enables the development of a slew of Services for the future of technology advancements. When it comes to IoT applications, the cyber and physical worlds can be seamlessly integrated, but they are essentially limitless. However, despite the great efforts of standardization bodies, coalitions, companies, researchers, and others, there are still a slew of issues to overcome in order to fully realize the IoT's promise. These concerns should be examined from a variety of perspectives, including enabling technology, applications, business models, and social and environmental consequences. The focus of this paper is on open concerns and challenges from a technological standpoint. We will study the differences in technical such Sigfox, NB-IoT, LoRa, and 6LowPAN, and discuss their advantages and disadvantage for each technology compared with other technologies. Demonstrate that each technology has a position in the internet of things market. Each technology has different advantages and disadvantages it depends on the quality of services, latency, and battery life as a mention. The first will be analysis IoT technologies. SigFox technology offers a long-range, low-power, low-throughput communications network that is remarkably resistant to environmental interference, enabling information to be used efficiently in a wide variety of applications. We analyze how NB-IoT technology will benefit higher-value-added services markets for IoT devices that are willing to pay for exceptionally low latency and high service quality. The LoRa technology will be used as a low-cost device, as it has a very long-range (high coverage).

Raich, Philipp, Kastner, Wolfgang.  2022.  Failure Detectors for 6LoWPAN: Model and Implementation. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1-6.

Consensus is a basic building block in distributed systems for a myriad of related problems that involve agreement. For asynchronous networks, consensus has been proven impossible, and is well known as Augean task. Failure Detectors (FDs) have since emerged as a possible remedy, able to solve consensus in asynchronous systems under certain assumptions. With the increasing use of asynchronous, wireless Internet of Things (IoT) technologies, such as IEEE 802.15.4/6LoWPAN, the demand of applications that require some form of reliability and agreement is on the rise. What was missing so far is an FD that can operate under the tight constraints offered by Low Power and Lossy Networks (LLNs) without compromising the efficiency of the network. We present 6LoFD, an FD specifically aimed at energy and memory efficient operation in small scale, unreliable networks, and evaluate its working principles by using an ns-3 implementation of 6LoFD.

Han, May Pyone, Htet, Soe Ye, Wuttisttikulkij, Lunchakorn.  2022.  Hybrid GNS3 and Mininet-WiFi Emulator for SDN Backbone Network Supporting Wireless IoT Traffic. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :768-771.

In the IoT (Internet of Things) domain, it is still a challenge to modify the routing behavior of IoT traffic at the decentralized backbone network. In this paper, centralized and flexible software-defined networking (SDN) is utilized to route the IoT traffic. The management of IoT data transmission through the SDN core network gives the chance to choose the path with the lowest delay, minimum packet loss, or hops. Therefore, fault-tolerant delay awareness routing is proposed for the emulated SDN-based backbone network to handle delay-sensitive IoT traffic. Besides, the hybrid form of GNS3 and Mininet-WiFi emulation is introduced to collaborate the SDN-based backbone network in GNS3 and the 6LoWPAN (IPv6 over Low Power Personal Area Network) sensor network in Mininet-WiFi.

2022-12-23
Rodríguez, Elsa, Fukkink, Max, Parkin, Simon, van Eeten, Michel, Gañán, Carlos.  2022.  Difficult for Thee, But Not for Me: Measuring the Difficulty and User Experience of Remediating Persistent IoT Malware. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :392–409.
Consumer IoT devices may suffer malware attacks, and be recruited into botnets or worse. There is evidence that generic advice to device owners to address IoT malware can be successful, but this does not account for emerging forms of persistent IoT malware. Less is known about persistent malware, which resides on persistent storage, requiring targeted manual effort to remove it. This paper presents a field study on the removal of persistent IoT malware by consumers. We partnered with an ISP to contrast remediation times of 760 customers across three malware categories: Windows malware, non-persistent IoT malware, and persistent IoT malware. We also contacted ISP customers identified as having persistent IoT malware on their network-attached storage devices, specifically QSnatch. We found that persistent IoT malware exhibits a mean infection duration many times higher than Windows or Mirai malware; QSnatch has a survival probability of 30% after 180 days, whereby most if not all other observed malware types have been removed. For interviewed device users, QSnatch infections lasted longer, so are apparently more difficult to get rid of, yet participants did not report experiencing difficulty in following notification instructions. We see two factors driving this paradoxical finding: First, most users reported having high technical competency. Also, we found evidence of planning behavior for these tasks and the need for multiple notifications. Our findings demonstrate the critical nature of interventions from outside for persistent malware, since automatic scan of an AV tool or a power cycle, like we are used to for Windows malware and Mirai infections, will not solve persistent IoT malware infections.
2023-02-13
Mukalazi, Arafat, Boyaci, Ali.  2022.  The Internet of Things: a domain-specific security requirement classification. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1—8.
Worldwide, societies are rapidly becoming more connected, owing primarily to the growing number of intelligent things and smart applications (e.g, smart automobiles, smart wearable devices, etc.) These have occurred in tandem with the Internet Of Things, a new method of connecting the physical and virtual worlds. It is a new promising paradigm whereby every ‘thing’ can connect to anything via the Internet. However, with IoT systems being deployed even on large-scale, security concerns arise amongst other challenges. Hence the need to allocate appropriate protection of resources. The realization of secure IoT systems could only be accomplished with a comprehensive understanding of the particular needs of a specific system. How-ever, this paradigm lacks a proper and exhaustive classification of security requirements. This paper presents an approach towards understanding and classifying the security requirements of IoT devices. This effort is expected to play a role in designing cost-efficient and purposefully secured future IoT systems. During the coming up with and the classification of the requirements, We present a variety of set-ups and define possible attacks and threats within the scope of IoT. Considering the nature of IoT and security weaknesses as manifestations of unrealized security requirements, We put together possible attacks and threats in categories, assessed the existent IoT security requirements as seen in literature, added more in accordance with the applied domain of the IoT and then classified the security requirements. An IoT system can be secure, scalable, and flexible by following the proposed security requirement classification.