Biblio
The IoT node works mostly in a specific scenario, and executes the fixed program. In order to make it suitable for more scenarios, this paper introduces a kind of the IoT node, which can change program at any time. And this node has intelligent and dynamic reconfigurable features. Then, a transport protocol is proposed. It enables this node to work in different scenarios and perform corresponding program. Finally, we use Verilog to design and FPGA to verify. The result shows that this protocol is feasible. It also offers a novel way of the IoT.
The paper introduces a smart system developed with sensors that is useful for internal and external security. The system is useful for people living in houses, apartments, high officials, bank, and offices. The system is developed in two phases one for internal security like home another is external security like open areas, streets. The system is consist of a mobile application, capacitive sensing, smart routing these valuable features to ensure safety of life and wealth. This security system is wireless sensor based which is an effective alternative of cctv cameras and other available security systems. Efficiency of this system is developed after going through practical studies and prototyping. The end result explains the feasibility rate, positive impact factor, reliability of the system. More research is possible in future based on this system this research explains that.
Many IoT devices are part of fixed critical infrastructure, where the mere act of moving an IoT device may constitute an attack. Moving pressure, chemical and radiation sensors in a factory can have devastating consequences. Relocating roadside speed sensors, or smart meters without knowledge of command and control center can similarly wreck havoc. Consequently, authenticating geolocation of IoT devices is an important problem. Unfortunately, an IoT device itself may be compromised by an adversary. Hence, location information from the IoT device cannot be trusted. Thus, we have to rely on infrastructure to obtain a proximal location. Infrastructure routers may similarly be compromised. Therefore, there must be a way to authenticate trusted routers remotely. Unfortunately, IP packets may be blocked, hijacked or forged by an adversary. Therefore IP packets are not trustworthy either. Thus, we resort to covert channels for authenticating Internet packet routers as an intermediate step towards proximal geolocation of IoT devices. Several techniques have been proposed in the literature to obtain the geolocation of an edge device, but it has been shown that a knowledgeable adversary can circumvent these techniques. In this paper, we survey the state-of-the-art geolocation techniques and corresponding adversarial countermeasures to evade geolocation to justify the use of covert channels on networks. We propose a technique for determining proximal geolocation using covert channel. Challenges and directions for future work are also explored.
Recently, the increase of interconnectivity has led to a rising amount of IoT enabled devices in botnets. Such botnets are currently used for large scale DDoS attacks. To keep track with these malicious activities, Honeypots have proven to be a vital tool. We developed and set up a distributed and highly-scalable WAN Honeypot with an attached backend infrastructure for sophisticated processing of the gathered data. For the processed data to be understandable we designed a graphical frontend that displays all relevant information that has been obtained from the data. We group attacks originating in a short period of time in one source as sessions. This enriches the data and enables a more in-depth analysis. We produced common statistics like usernames, passwords, username/password combinations, password lengths, originating country and more. From the information gathered, we were able to identify common dictionaries used for brute-force login attacks and other more sophisticated statistics like login attempts per session and attack efficiency.
The 6L0WPAN adaptation layer is widely used in many Internet of Things (IoT) and vehicular networking applications. The current IoT framework [1], which introduced 6LoWPAN to the TCP/IP model, does not specif the implementation for managing its received-fragments buffer. This paper looks into the effect of current implementations of buffer management strategies at 6LoWPAN's response in case of fragmentation-based, buffer reservation Denial of Service (DoS) attacks. The Packet Drop Rate (PDR) is used to analyze how successful the attacker is for each management technique. Our investigation uses different defence strategies, which include our implementation of the Split Buffer mechanism [2] and a modified version of this mechanism that we devise in this paper as well. In particular, we introduce dynamic calculation for the average time between consecutive fragments and the use of a list of previously dropped packets tags. NS3 is used to simulate all the implementations. Our results show that using a ``slotted'' buffer would enhance 6LoWPAN's response against these attacks. The simulations also provide an in-depth look at using scoring systems to manage buffer cleanups.
Smart Internet of Things (IoT) applications will rely on advanced IoT platforms that not only provide access to IoT sensors and actuators, but also provide access to cloud services and data analytics. Future IoT platforms should thus provide connectivity and intelligence. One approach to connecting IoT devices, IoT networks to cloud networks and services is to use network federation mechanisms over the internet to create network slices across heterogeneous platforms. Network slices also need to be protected from potential external and internal threats. In this paper we describe an approach for enforcing global security policies in the federated cloud and IoT networks. Our approach allows a global security to be defined in the form of a single service manifest and enforced across all federation network segments. It relies on network function virtualisation (NFV) and service function chaining (SFC) to enforce the security policy. The approach is illustrated with two case studies: one for a user that wishes to securely access IoT devices and another in which an IoT infrastructure administrator wishes to securely access some remote cloud and data analytics services.
The Internet of Things (IoT) comes together with the connection between sensors and devices. These smart devices have been upgraded from a standalone device which can only handle a specific task at one time to an interactive device that can handle multiple tasks in time. However, this technology has been exposed to many vulnerabilities especially on the malicious attacks of the devices. With the IoT constraints and low-security mechanisms applied, the malicious attacks could exploit the sensor vulnerability to provide wrong data where it can lead to wrong interpretation and actuation to the users. Due to this problems, this short paper presents an event-based access control framework that considers integrity, privacy and the authenticity in the IoT devices.
6L0WPAN is a communication protocol for Internet of Things. 6LoWPAN is IPv6 protocol modified for low power and lossy personal area networks. 6LoWPAN inherits threats from its predecessors IPv4 and IPv6. IP spoofing is a known attack prevalent in IPv4 and IPv6 networks but there are new vulnerabilities which creates new paths, leading to the attack. This study performs the experimental study to check the feasibility of performing IP spoofing attack on 6LoWPAN Network. Intruder misuses 6LoWPAN control messages which results into wrong IPv6-MAC binding in router. Attack is also simulated in cooja simulator. Simulated results are analyzed for finding cost to the attacker in terms of energy and memory consumption.
The following topics are dealt with: feature extraction; data mining; support vector machines; mobile computing; photovoltaic power systems; mean square error methods; fault diagnosis; natural language processing; control system synthesis; and Internet of Things.
Internet of Things (IoT) will be emerged over many of devices that are dynamically networked. Because of distributed and dynamic nature of IoT, designing a recommender system for them is a challenging problem. Recently, cognitive systems are used to design modern frameworks in different types of computer applications such as cognitive radio networks and cognitive peer-to-peer networks. A cognitive system can learn to improve its performance while operating under its unknown environment. In this paper, we propose a framework for cognitive recommender systems in IoT. To the best of our knowledge, there is no recommender system based on cognitive systems in the IoT. The proposed algorithm is compared with the existing recommender systems.
Having an effective security level for Embedded System (ES), helps a reliable and stable operation of this system. In order to identify, if the current security level for a given ES is effective or not, we need a proactive evaluation for this security level. The evaluation of the security level for ESs is not straightforward process, things like the heterogeneity among the components of ES complicate this process. One of the productive approaches, which overcame the complexity of evaluation for Security, Privacy and Dependability (SPD) is the Multi Metrics (MM). As most of SPD evaluation approaches, the MM approach bases on the experts knowledge for the basic evaluation. Regardless of its advantages, experts evaluation has some drawbacks, which foster the need for less experts-dependent evaluation. In this paper, we propose a framework for security measurability as a part of security, privacy and dependability evaluation. The security evaluation based on Multi Metric (MM) approach as being an effective approach for evaluations, thus, we call it MM framework. The art of evaluation investigated within MM framework, based also on systematic storing and retrieving of experts knowledge. Using MM framework, the administrator of the ES could evaluate and enhance the S-level of their system, without being an expert in security.
Security of sensible data for ultraconstrained IoT smart devices is one of the most challenging task in modern design. The needs of CPA-resistant cryptographic devices has to deal with the demanding requirements of small area and small impact on the overall power consumption. In this work, a novel current-mode feedback suppressor as on-chip analog-level CPA countermeasure is proposed. It aims to suppress differences in power consumption due to data-dependency of CMOS cryptographic devices, in order to counteract CPA attacks. The novel countermeasure is able to improve MTD of unprotected CMOS implementation of at least three orders of magnitude, providing a ×1.1 area and ×1.7 power overhead.
A wireless sensor network (WSN) is composed of sensor nodes and a base station. In WSNs, constructing an efficient key-sharing scheme to ensure a secure communication is important. In this paper, we propose a new key-sharing scheme for groups, which shares a group key in a single broadcast without being dependent on the number of nodes. This scheme is based on geometric characteristics and has information-theoretic security in the analysis of transmitted data. We compared our scheme with conventional schemes in terms of communication traffic, computational complexity, flexibility, and security, and the results showed that our scheme is suitable for an Internet-of-Things (IoT) network.
In an Internet of Things (IOT) network, each node (device) provides and requires services and with the growth in IOT, the number of nodes providing the same service have also increased, thus creating a problem of selecting one reliable service from among many providers. In this paper, we propose a scalable graph-based collaborative filtering recommendation algorithm, improved using trust to solve service selection problem, which can scale to match the growth in IOT unlike a central recommender which fails. Using this recommender, a node can predict its ratings for the nodes that are providing the required service and then select the best rated service provider.
Due to the increasing concerns of securing private information, context-aware Internet of Things (IoT) applications are in dire need of supporting data privacy preservation for users. In the past years, game theory has been widely applied to design secure and privacy-preserving protocols for users to counter various attacks, and most of the existing work is based on a two-player game model, i.e., a user/defender-attacker game. In this paper, we consider a more practical scenario which involves three players: a user, an attacker, and a service provider, and such a complicated system renders any two-player model inapplicable. To capture the complex interactions between the service provider, the user, and the attacker, we propose a hierarchical two-layer three-player game framework. Finally, we carry out a comprehensive numerical study to validate our proposed game framework and theoretical analysis.
Recently, the researches utilizing environmentally friendly new and renewable energy and various methods have been actively pursued to solve environmental and energy problems. The trend of the technology is converged with the latest ICT technology and expanded to the cloud of share and two-way system. In the center of this tide of change, new technologies such as IoT, Big Data and AI are sustaining to energy technology. Now, the cloud concept which is a universal form in IT field will be converged with energy field to develop Energy Cloud, manage zero energy towns and develop into social infrastructure supporting smart city. With the development of social infrastructure, it is very important as a security facility. In this paper, it is discussed the concept and the configuration of the Energy Cloud, and present a basic design method of the Energy Cloud's security that can examine and respond to the risk factors of information security in the Energy Cloud.
The Internet of Things (IoT) era envisions billions of interconnected devices capable of providing new interactions between the physical and digital worlds, offering new range of content and services. At the fundamental level, IoT nodes are physical devices that exist in the real world, consisting of networking, sensor, and processing components. Some application examples include mobile and pervasive computing or sensor nets, and require distributed device deployment that feed information into databases for exploitation. While the data can be centralized, there are advantages, such as system resiliency and security to adopting a decentralized architecture that pushes the computation and storage to the network edge and onto IoT devices. However, these devices tend to be much more limited in computation power than traditional racked servers. This research explores using the Cassandra distributed database on IoT-representative device specifications. Experiments conducted on both virtual machines and Raspberry Pi's to simulate IoT devices, examined latency issues with network compression, processing workloads, and various memory and node configurations in laboratory settings. We demonstrate that distributed databases are feasible on Raspberry Pi's as IoT representative devices and show findings that may help in application design.
The Radio Frequency Identification (RFID), as one of the key technologies in sensing layer of the Internet of Things (IoT) framework, has increasingly been deployed in a wide variety of application domains. But the reliability of RFID is still a great concern. This article introduces the group management of RFID passwords method, come up with by YUICHI KOBAYASHI and other researchers, which aimed to reduce the risk of privacy disclosure. But for reason that the password and pass key in the method, which are set to protect the ID, doesn't change and the ID is transmitted directly in the unsafe channel, it causes serious vulnerabilities that may be used by resourceful adversary. Thus, we proposed an improved method by using the random number to encrypt the password and switching the password into the temporally valid information. Besides, the protocol encrypts the ID during to avoid the direct transmission situation significantly increases the reliability.
All over the world, objects are increasingly connected in networks such as the Industrial Internet of Things. Interconnections, intercommunications and interactions are driving the development of an entirely new whole in the form of the Industrial Internet of Things. Communication and interaction are the norm both for separate components, such as cyber-physical systems, and for the functioning of the system as a whole. This new whole can be likened to a natural ecosystem where the process of homeostasis ensures the stability and security of the whole. Components of such an industrial ecosystem, or even an industrial ecosystem as a whole, are increasingly targeted by cyber attacks. Such attacks not only threaten the functioning of one or multiple components, they also constitute a threat to the functioning of the new whole. General systems theory can offer a scientific framework for the development of measures to improve the security and stability of both separate components and the new whole.
Internet of Thing (IoT) provide services by linking the different platform devices. They have the limitation in providing intelligent service. The IoT devices are heterogeneous which includes wireless sensors to less resource constrained devices. These devices are prone to hardware/software and network attacks. If not properly secured, it may lead to security issues like privacy and confidentiality. To resolve the above problem, an Intelligent Security Framework for IoT Devices is proposed in this paper. The proposed method is made up of (1) the light weight Asymmetric cryptography for securing the End-To-End devices which protects the IoT service gateway and the low power sensor nodes and (2) implements Lattice-based cryptography for securing the Broker devices/Gateway and the cloud services. The proposed architecture implements Asymmetric Key Encryption to share session key between the nodes and then uses this session key for message transfer This protects the system from Distributed Denial of Service Attacks, eavesdropping and Quantum algorithm attacks. The proposed protocol uses the unique Device ID of the sensors to generate key pair to establish mutual authentication between Devices and Services. Finally, the Mutual authentication mechanism is implemented in the gateway.
IoT (Internet of Things) is a network of interconnected devices, designed to collect and exchange data which can then turn it into information, eventually into wisdom. IoT is a region where digital world converges with physical world. With the evolution of IoT, it is expected to create substantial impact on human lives. IoT ecosystem produces and exchanges sizeable data due to which IoT becomes an attractive target for adversary. The large-scale interconnectivity leads to various potential risk related to information security. Security assurance in IoT ecosystem is one of the major challenges to address. In this context, embedded security becomes a key issue in IoT devices which are constrained in terms of processing, power, memory and bandwidth. The focus of this paper is on the recommended design considerations for constrained IoT devices with the objective to achieve security by default. Considering established set of protocols along with best practices during design and development stage can address majority of security challenges.
This paper addresses the need for standard communication protocols for IoT devices with limited power and computational capabilities. The world is rapidly changing with the proliferation and deployment of IoT devices. This will bring in new communication challenges as these devices are connected to Internet and need to communicate with each other in real time. The paper provides an overview of IoT system architecture and the forthcoming challenges it will bring. There is an urging need to establish standards for communication in the IoT world. With the recent development of new protocols like CoAP, 6LowPAN, IEEE 802.15.4 and Thread in different layers of OSI model, additional challenges also present themselves. Performance and data management is becoming more critical than ever before due to the complexity of connecting raging number of IoT devices. The performance of the systems dealing with IoT devices will require appropriate capacity planning the associated development of data centers. Finally, the paper also presents some reasonable approaches to address the above issues in the IoT world.
The Semantic Web can be used to enable the interoperability of IoT devices and to annotate their functional and nonfunctional properties, including security and privacy. In this paper, we will show how to use the ontology and JSON-LD to annotate connectivity, security and privacy properties of IoT devices. Out of that, we will present our prototype for a lightweight, secure application level protocol wrapper that ensures communication consistency, secrecy and integrity for low cost IoT devices like the ESP8266 and Photon particle.
This article presents introduction to HTTP Security Headers - new security topic in communication over Internet. It is emphasized that HTTPS protocol and SSL/TLS certificates alone do not offer sufficient level of security for communication among people and devices. In the world of web applications and Internet of Things (IoT), it is vital to bring communication security at higher level, what could be realised via few simple steps. HTTP Response Headers used for different purposes in the past are now the effective way how to propagate security policies from servers to clients (from web servers to web browsers). First improvement is enforcing HTTPS protocol for communication everywhere it is possible and promote this protocol as first and only option for secure connection over the Internet. It is emphasized that HTTP protocol for communication is not suitable anymore.
Many companies within the Internet of Things (IoT) sector rely on the personal data of users to deliver and monetize their services, creating a high demand for personal information. A user can be seen as making a series of transactions, each involving the exchange of personal data for a service. In this paper, we argue that privacy can be described quantitatively, using the game- theoretic concept of value of information (VoI), enabling us to assess whether each exchange is an advantageous one for the user. We introduce PrivacyGate, an extension to the Android operating system built for the purpose of studying privacy of IoT transactions. An example study, and its initial results, are provided to illustrate its capabilities.