Biblio

Found 1221 results

Filters: Keyword is Internet of Things  [Clear All Filters]
2018-04-11
Medjek, F., Tandjaoui, D., Romdhani, I., Djedjig, N..  2017.  Performance Evaluation of RPL Protocol under Mobile Sybil Attacks. 2017 IEEE Trustcom/BigDataSE/ICESS. :1049–1055.

In Sybil attacks, a physical adversary takes multiple fabricated or stolen identities to maliciously manipulate the network. These attacks are very harmful for Internet of Things (IoT) applications. In this paper we implemented and evaluated the performance of RPL (Routing Protocol for Low-Power and Lossy Networks) routing protocol under mobile sybil attacks, namely SybM, with respect to control overhead, packet delivery and energy consumption. In SybM attacks, Sybil nodes take the advantage of their mobility and the weakness of RPL to handle identity and mobility, to flood the network with fake control messages from different locations. To counter these type of attacks we propose a trust-based intrusion detection system based on RPL.

2017-12-12
Massonet, P., Deru, L., Achour, A., Dupont, S., Croisez, L. M., Levin, A., Villari, M..  2017.  Security in Lightweight Network Function Virtualisation for Federated Cloud and IoT. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :148–154.

Smart IoT applications require connecting multiple IoT devices and networks with multiple services running in fog and cloud computing platforms. One approach to connecting IoT devices with cloud and fog services is to create a federated virtual network. The main benefit of this approach is that IoT devices can then interact with multiple remote services using an application specific federated network where no traffic from other applications passes. This federated network spans multiple cloud platforms and IoT networks but it can be managed as a single entity. From the point of view of security, federated virtual networks can be managed centrally and be secured with a coherent global network security policy. This does not mean that the same security policy applies everywhere, but that the different security policies are specified in a single coherent security policy. In this paper we propose to extend a federated cloud networking security architecture so that it can secure IoT devices and networks. The federated network is extended to the edge of IoT networks by integrating a federation agent in an IoT gateway or network controller (Can bus, 6LowPan, Lora, ...). This allows communication between the federated cloud network and the IoT network. The security architecture is based on the concepts of network function virtualisation (NFV) and service function chaining (SFC) for composing security services. The IoT network and devices can then be protected by security virtual network functions (VNF) running at the edge of the IoT network.

2018-04-02
Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Security Modeling and Analysis of Cross-Protocol IoT Devices. 2017 IEEE Trustcom/BigDataSE/ICESS. :1043–1048.

In the Internet of Things (IoT), smart devices are connected using various communication protocols, such as Wi-Fi, ZigBee. Some IoT devices have multiple built-in communication modules. If an IoT device equipped with multiple communication protocols is compromised by an attacker using one communication protocol (e.g., Wi-Fi), it can be exploited as an entry point to the IoT network. Another protocol (e.g., ZigBee) of this IoT device could be used to exploit vulnerabilities of other IoT devices using the same communication protocol. In order to find potential attacks caused by this kind of cross-protocol devices, we group IoT devices based on their communication protocols and construct a graphical security model for each group of devices using the same communication protocol. We combine the security models via the cross-protocol devices and compute hidden attack paths traversing different groups of devices. We use two use cases in the smart home scenario to demonstrate our approach and discuss some feasible countermeasures.

2020-07-24
Touati, Lyes.  2017.  Grouping-Proofs Based Access Control Using KP-ABE for IoT Applications. 2017 IEEE Trustcom/BigDataSE/ICESS. :301—308.

The Internet of Things (IoT) is a new paradigm in which every-day objects are interconnected between each other and to the Internet. This paradigm is receiving much attention of the scientific community and it is applied in many fields. In some applications, it is useful to prove that a number of objects are simultaneously present in a group. For example, an individual might want to authorize NFC payment with his mobile only if k of his devices are present to ensure that he is the right person. This principle is known as Grouping-Proofs. However, existing Grouping-Proofs schemes are mostly designed for RFID systems and don't fulfill the IoT characteristics. In this paper, we propose a Threshold Grouping-Proofs for IoT applications. Our scheme uses the Key-Policy Attribute-Based Encryption (KP-ABE) protocol to encrypt a message so that it can be decrypted only if at least k objects are simultaneously present in the same location. A security analysis and performance evaluation is conducted to show the effectiveness of our proposal solution.

2017-12-20
Sun, D. Z., Xu, G. Q..  2017.  One-Round Provably Secure Yoking-Proof for RFID Applications. 2017 IEEE Trustcom/BigDataSE/ICESS. :315–322.

Under the Internet of Things (IoT), the coexistence proof of multiple RFID tagged objects becomes a very useful mechanism in many application areas such as health care, evidences in court, and stores. The yoking-proof scheme addresses this issue. However, all existing yoking-proof schemes require two or more rounds communication to generate the yoking-proof. In this paper, we investigate the design of one-round yoking-proof schemes. Our contributions are threefold: (1) to confirm the coexistence of the RFID tag pair, we propose a one-round offline yoking-proof scheme with privacy protection. (2) We define a privacy model of the yoking-proof scheme and enhance Moriyama's security model for the yoking-proof scheme. The security and the privacy of the proposed scheme are proved under our models. (3) We further extend the yoking-proof scheme for the coexistence of m RFID tags, where m\textbackslashtextgreater2. The extended scheme maintains one-round. In addition, the proposed technique has efficiency advantage, compared with previous work.

2018-03-19
Harb, H., William, A., El-Mohsen, O. A., Mansour, H. A..  2017.  Multicast Security Model for Internet of Things Based on Context Awareness. 2017 13th International Computer Engineering Conference (ICENCO). :303–309.

Internet of Things (IoT) devices are resource constrained devices in terms of power, memory, bandwidth, and processing. On the other hand, multicast communication is considered more efficient in group oriented applications compared to unicast communication as transmission takes place using fewer resources. That is why many of IoT applications rely on multicast in their transmission. This multicast traffic need to be secured specially for critical applications involving actuators control. Securing multicast traffic by itself is cumbersome as it requires an efficient and scalable Group Key Management (GKM) protocol. In case of IoT, the situation is more difficult because of the dynamic nature of IoT scenarios. This paper introduces a solution based on using context aware security server accompanied with a group of key servers to efficiently distribute group encryption keys to IoT devices in order to secure the multicast sessions. The proposed solution is evaluated relative to the Logical Key Hierarchy (LKH) protocol. The comparison shows that the proposed scheme efficiently reduces the load on the key servers. Moreover, the key storage cost on both members and key servers is reduced.

2018-12-10
Chen, J., Touati, C., Zhu, Q..  2017.  Heterogeneous Multi-Layer Adversarial Network Design for the IoT-Enabled Infrastructures. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

The emerging Internet of Things (IoT) applications that leverage ubiquitous connectivity and big data are facilitating the realization of smart everything initiatives. IoT-enabled infrastructures have naturally a multi-layer system architecture with an overlaid or underlaid device network and its coexisting infrastructure network. The connectivity between different components in these two heterogeneous networks plays an important role in delivering real-time information and ensuring a high-level situational awareness. However, IoT- enabled infrastructures face cyber threats due to the wireless nature of communications. Therefore, maintaining the network connectivity in the presence of adversaries is a critical task for the infrastructure network operators. In this paper, we establish a three-player three-stage game-theoretic framework including two network operators and one attacker to capture the secure design of multi- layer infrastructure networks by allocating limited resources. We use subgame perfect Nash equilibrium (SPE) to characterize the strategies of players with sequential moves. In addition, we assess the efficiency of the equilibrium network by comparing with its team optimal solution counterparts in which two network operators can coordinate. We further design a scalable algorithm to guide the construction of the equilibrium IoT-enabled infrastructure networks. Finally, we use case studies on the emerging paradigm of Internet of Battlefield Things (IoBT) to corroborate the obtained results.

2018-11-19
Samudrala, A. N., Blum, R. S..  2017.  Asymptotic Analysis of a New Low Complexity Encryption Approach for the Internet of Things, Smart Cities and Smart Grid. 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC). :200–204.

Parameter estimation in wireless sensor networks (WSN) using encrypted non-binary quantized data is studied. In a WSN, sensors transmit their observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. Encryption approaches for WSNs with fixed threshold binary quantization were previously explored. However, fixed threshold binary quantization limits parameter estimation to scalar parameters. In this paper, we propose a stochastic encryption approach for WSNs that can operate on non-binary quantized observations and has the capability for vector parameter estimation. We extend a binary stochastic encryption approach proposed previously, to a non-binary generalized case. Sensor outputs are quantized using a quantizer with R + 1 levels, where R $ε$ 1, 2, 3,..., encrypted by flipping them with certain flipping probabilities, and then transmitted. Optimal estimators using maximum-likelihood estimation are derived for both a legitimate fusion center (LFC) and a third party fusion center (TPFC) perspectives. We assume the TPFC is unaware of the encryption. Asymptotic analysis of the estimators is performed by deriving the Cramer-Rao lower bound for LFC estimation, and the asymptotic bias and variance for TPFC estimation. Numerical results validating the asymptotic analysis are presented.

2018-04-02
Langone, M., Setola, R., Lopez, J..  2017.  Cybersecurity of Wearable Devices: An Experimental Analysis and a Vulnerability Assessment Method. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:304–309.

The widespread diffusion of the Internet of Things (IoT) is introducing a huge number of Internet-connected devices in our daily life. Mainly, wearable devices are going to have a large impact on our lifestyle, especially in a healthcare scenario. In this framework, it is fundamental to secure exchanged information between these devices. Among other factors, it is important to take into account the link between a wearable device and a smart unit (e.g., smartphone). This connection is generally obtained via specific wireless protocols such as Bluetooth Low Energy (BLE): the main topic of this work is to analyse the security of this communication link. In this paper we expose, via an experimental campaign, a methodology to perform a vulnerability assessment (VA) on wearable devices communicating with a smartphone. In this way, we identify several security issues in a set of commercial wearable devices.

2018-02-02
Kan-Siew-Leong, Chze, P. L. R., Wee, A. K., Sim, E., May, K. E..  2017.  A multi-factors security key generation mechanism for IoT. 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). :1019–1021.

This paper introduces a multi-factors security key generation mechanism for self-organising Internet of Things (IoT) network and nodes. The mechanism enables users to generate unique set of security keys to enhance IoT security while meeting various business needs. The multi-factor security keys presents an additional security layer to existing security standards and practices currently being adopted by the IoT community. The proposed security key generation mechanism enables user to define and choose any physical and logical parameters he/she prefers, in generating a set of security keys to be encrypted and distributed to registered IoT nodes. IoT applications and services will only be activated after verifying that all security keys are present. Multiple levels of authorisation for different user groups can be easily created through the mix and match of the generated multi-factors security keys. A use case, covering indoor and outdoor field tests was conducted. The results of the tests showed that the mechanism is easily adaptable to meet diverse multivendor IoT devices and is scalable for various applications.

2017-12-12
Wei, B., Liao, G., Li, W., Gong, Z..  2017.  A Practical One-Time File Encryption Protocol for IoT Devices. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). 2:114–119.

Security and privacy issues of the Internet of Things (IoT in short, hereafter) attracts the hot topic of researches through these years. As the relationship between user and server become more complicated than before, the existing security solutions might not provide exhaustive securities in IoT environment and novel solutions become new research challenges, e.g., the solutions based on symmetric cryptosystems are unsuited to handle with the occasion that decryption is only allowed in specific time range. In this paper, a new scalable one-time file encryption scheme combines reliable cryptographic techniques, which is named OTFEP, is proposed to satisfy specialized security requirements. One of OTFEP's key features is that it offers a mechanism to protect files in the database from arbitrary visiting from system manager or third-party auditors. OTFEP uses two different approaches to deal with relatively small file and stream file. Moreover, OTFEP supports good node scalability and secure key distribution mechanism. Based on its practical security and performance, OTFEP can be considered in specific IoT devices where one-time file encryption is necessary.

2018-02-27
Dhanush, V., Mahendra, A. R., Kumudavalli, M. V., Samanta, D..  2017.  Application of Deep Learning Technique for Automatic Data Exchange with Air-Gapped Systems and Its Security Concerns. 2017 International Conference on Computing Methodologies and Communication (ICCMC). :324–328.

Many a time's assumptions are key to inventions. One such notion in recent past is about data exchange between two disjoint computer systems. It is always assumed that, if any two computers are separated physically without any inter communication, it is considered to be very secure and will not be compromised, the exchange of data between them would be impossible. But recent growth in the field of computers emphasizes the requirements of security analysis. One such security concern is with the air-gapped systems. This paper deals with the flaws and flow of air-gapped systems.

2018-02-21
Win, E. K., Yoshihisa, T., Ishi, Y., Kawakami, T., Teranishi, Y., Shimojo, S..  2017.  A Lightweight Multi-receiver Encryption Scheme with Mutual Authentication. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:491–497.

In this paper, we propose a lightweight multi-receiver encryption scheme for the device to device communications on Internet of Things (IoT) applications. In order for the individual user to control the disclosure range of his/her own data directly and to prevent sensitive personal data disclosure to the trusted third party, the proposed scheme uses device-generated public keys. For mutual authentication, third party generates Schnorr-like lightweight identity-based partial private keys for users. The proposed scheme provides source authentication, message integrity, replay-attack prevention and implicit user authentication. In addition to more security properties, computation expensive pairing operations are eliminated to achieve less time usage for both sender and receiver, which is favourable property for IoT applications. In this paper, we showed a proof of security of our scheme, computational cost comparison and experimental performance evaluations. We implemented our proposed scheme on real embedded Android devices and confirmed that it achieves less time cost for both encryption and decryption comparing with the existing most efficient certificate-based multi-receiver encryption scheme and certificateless multi-receiver encryption scheme.

2018-02-14
Ayed, H. Kaffel-Ben, Boujezza, H., Riabi, I..  2017.  An IDMS approach towards privacy and new requirements in IoT. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :429–434.
Identities are known as the most sensitive information. With the increasing number of connected objects and identities (a connected object may have one or many identities), the computing and communication capabilities improved to manage these connected devices and meet the needs of this progress. Therefore, new IoT Identity Management System (IDMS) requirements have been introduced. In this work, we suggest an IDMS approach to protect private information and ensures domain change in IoT for mobile clients using a personal authentication device. Firstly, we present basic concepts, existing requirements and limits of related works. We also propose new requirements and show our motivations. Next, we describe our proposal. Finally, we give our security approach validation, perspectives, and some concluding remarks.
2018-06-07
Rullo, A., Serra, E., Bertino, E., Lobo, J..  2017.  Shortfall-Based Optimal Security Provisioning for Internet of Things. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :2585–2586.

We present a formal method for computing the best security provisioning for Internet of Things (IoT) scenarios characterized by a high degree of mobility. The security infrastructure is intended as a security resource allocation plan, computed as the solution of an optimization problem that minimizes the risk of having IoT devices not monitored by any resource. We employ the shortfall as a risk measure, a concept mostly used in the economics, and adapt it to our scenario. We show how to compute and evaluate an allocation plan, and how such security solutions address the continuous topology changes that affect an IoT environment.

2018-01-23
Hossain, M., Hasan, R..  2017.  Boot-IoT: A Privacy-Aware Authentication Scheme for Secure Bootstrapping of IoT Nodes. 2017 IEEE International Congress on Internet of Things (ICIOT). :1–8.

The Internet of Things (IoT) devices perform security-critical operations and deal with sensitive information in the IoT-based systems. Therefore, the increased deployment of smart devices will make them targets for cyber attacks. Adversaries can perform malicious actions, leak private information, and track devices' and their owners' location by gaining unauthorized access to IoT devices and networks. However, conventional security protocols are not primarily designed for resource constrained devices and therefore cannot be applied directly to IoT systems. In this paper, we propose Boot-IoT - a privacy-preserving, lightweight, and scalable security scheme for limited resource devices. Boot-IoT prevents a malicious device from joining an IoT network. Boot-IoT enables a device to compute a unique identity for authentication each time the device enters a network. Moreover, during device to device communication, Boot-IoT provides a lightweight mutual authentication scheme that ensures privacy-preserving identity usages. We present a detailed analysis of the security strength of BootIoT. We implemented a prototype of Boot-IoT on IoT devices powered by Contiki OS and provided an extensive comparative analysis of Boot-IoT with contemporary authentication methods. Our results show that Boot-IoT is resource efficient and provides better scalability compared to current solutions.

2018-01-10
Zhang, Y., Duan, L., Sun, C. A., Cheng, B., Chen, J..  2017.  A Cross-Layer Security Solution for Publish/Subscribe-Based IoT Services Communication Infrastructure. 2017 IEEE International Conference on Web Services (ICWS). :580–587.

The publish/subscribe paradigm can be used to build IoT service communication infrastructure owing to its loose coupling and scalability. Its features of decoupling among event producers and event consumers make IoT services collaborations more real-time and flexible, and allow indirect, anonymous and multicast IoT service interactions. However, in this environment, the IoT service cannot directly control the access to the events. This paper proposes a cross-layer security solution to address the above issues. The design principle of our security solution is to embed security policies into events as well as allow the network to route events according to publishers' policies and requirements. This solution helps to improve the system's performance, while keeping features of IoT service interactions and minimizing the event visibility at the same time. Experimental results show that our approach is effective.

2017-12-28
Kumar, S. A. P., Bhargava, B., Macêdo, R., Mani, G..  2017.  Securing IoT-Based Cyber-Physical Human Systems against Collaborative Attacks. 2017 IEEE International Congress on Internet of Things (ICIOT). :9–16.

Security issues in the IoT based CPS are exacerbated with human participation in CPHS due to the vulnerabilities in both the technologies and the human involvement. A holistic framework to mitigate security threats in the IoT-based CPHS environment is presented to mitigate these issues. We have developed threat model involving human elements in the CPHS environment. Research questions, directions, and ideas with respect to securing IoT based CPHS against collaborative attacks are presented.

2018-02-02
Hossain, M., Hasan, R., Zawoad, S..  2017.  Trust-IoV: A Trustworthy Forensic Investigation Framework for the Internet of Vehicles (IoV). 2017 IEEE International Congress on Internet of Things (ICIOT). :25–32.

The Internet of Vehicles (IoV) is a complex and dynamic mobile network system that enables information sharing between vehicles, their surrounding sensors, and clouds. While IoV opens new opportunities in various applications and services to provide safety on the road, it introduces new challenges in the field of digital forensics investigations. The existing tools and procedures of digital forensics cannot meet the highly distributed, decentralized, dynamic, and mobile infrastructures of the IoV. Forensic investigators will face challenges while identifying necessary pieces of evidence from the IoV environment, and collecting and analyzing the evidence. In this article, we propose TrustIoV - a digital forensic framework for the IoV systems that provides mechanisms to collect and store trustworthy evidence from the distributed infrastructure. Trust-IoV maintains a secure provenance of the evidence to ensure the integrity of the stored evidence and allows investigators to verify the integrity of the evidence during an investigation. Our experimental results on a simulated environment suggest that Trust-IoV can operate with minimal overhead while ensuring the trustworthiness of evidence in a strong adversarial scenario.

2018-04-02
Hayawi, K., Ho, P. H., Mathew, S. S., Peng, L..  2017.  Securing the Internet of Things: A Worst-Case Analysis of Trade-Off between Query-Anonymity and Communication-Cost. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :939–946.

Cloud services are widely used to virtualize the management and actuation of the real-world the Internet of Things (IoT). Due to the increasing privacy concerns regarding querying untrusted cloud servers, query anonymity has become a critical issue to all the stakeholders which are related to assessment of the dependability and security of the IoT system. The paper presents our study on the problem of query receiver-anonymity in the cloud-based IoT system, where the trade-off between the offered query-anonymity and the incurred communication is considered. The paper will investigate whether the accepted worst-case communication cost is sufficient to achieve a specific query anonymity or not. By way of extensive theoretical analysis, it shows that the bounds of worst-case communication cost is quadratically increased as the offered level of anonymity is increased, and they are quadratic in the network diameter for the opposite range. Extensive simulation is conducted to verify the analytical assertions.

2018-02-21
Muñoz, C., Wang, L., Solana, E., Crowcroft, J..  2017.  I(FIB)F: Iterated bloom filters for routing in named data networks. 2017 International Conference on Networked Systems (NetSys). :1–8.

Named Data Networks provide a clean-slate redesign of the Future Internet for efficient content distribution. Because Internet of Things are expected to compose a significant part of Future Internet, most content will be managed by constrained devices. Such devices are often equipped with limited CPU, memory, bandwidth, and energy supply. However, the current Named Data Networks design neglects the specific requirements of Internet of Things scenarios and many data structures need to be further optimized. The purpose of this research is to provide an efficient strategy to route in Named Data Networks by constructing a Forwarding Information Base using Iterated Bloom Filters defined as I(FIB)F. We propose the use of content names based on iterative hashes. This strategy leads to reduce the overhead of packets. Moreover, the memory and the complexity required in the forwarding strategy are lower than in current solutions. We compare our proposal with solutions based on hierarchical names and Standard Bloom Filters. We show how to further optimize I(FIB)F by exploiting the structure information contained in hierarchical content names. Finally, two strategies may be followed to reduce: (i) the overall memory for routing or (ii) the probability of false positives.

2017-12-20
Shi, Z., Chen, J., Chen, S., Ren, S..  2017.  A lightweight RFID authentication protocol with confidentiality and anonymity. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1631–1634.

Radio Frequency IDentification(RFID) is one of the most important sensing techniques for Internet of Things(IoT) and RFID systems have been applied to various different fields. But an RFID system usually uses open wireless radio wave to communicate and this will lead to a serious threat to its privacy and security. The current popular RFID tags are some low-cost passive tags. Their computation and storage resources are very limited. It is not feasible for them to complete some complicated cryptographic operations. So it is very difficult to protect the security and privacy of an RFID system. Lightweight authentication protocol is considered as an effective approach. Many typical authentication protocols usually use Hash functions so that they require more computation and storage resources. Based on CRC function, we propose a lightweight RFID authentication protocol, which needs less computation and storage resources than Hash functions. This protocol exploits an on-chip CRC function and a pseudorandom number generator to ensure the anonymity and freshness of communications between reader and tag. It provides forward security and confidential communication. It can prevent eavesdropping, location trace, replay attack, spoofing and DOS-attack effectively. It is very suitable to be applied to RFID systems.

2018-06-11
Kakanakov, N., Shopov, M..  2017.  Adaptive models for security and data protection in IoT with Cloud technologies. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1001–1004.

The paper presents an example Sensor-cloud architecture that integrates security as its native ingredient. It is based on the multi-layer client-server model with separation of physical and virtual instances of sensors, gateways, application servers and data storage. It proposes the application of virtualised sensor nodes as a prerequisite for increasing security, privacy, reliability and data protection. All main concerns in Sensor-Cloud security are addressed: from secure association, authentication and authorization to privacy and data integrity and protection. The main concept is that securing the virtual instances is easier to implement, manage and audit and the only bottleneck is the physical interaction between real sensor and its virtual reflection.

2018-10-26
Dang, T. D., Hoang, D..  2017.  A data protection model for fog computing. 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC). :32–38.

Cloud computing has established itself as an alternative IT infrastructure and service model. However, as with all logically centralized resource and service provisioning infrastructures, cloud does not handle well local issues involving a large number of networked elements (IoTs) and it is not responsive enough for many applications that require immediate attention of a local controller. Fog computing preserves many benefits of cloud computing and it is also in a good position to address these local and performance issues because its resources and specific services are virtualized and located at the edge of the customer premise. However, data security is a critical challenge in fog computing especially when fog nodes and their data move frequently in its environment. This paper addresses the data protection and the performance issues by 1) proposing a Region-Based Trust-Aware (RBTA) model for trust translation among fog nodes of regions, 2) introducing a Fog-based Privacy-aware Role Based Access Control (FPRBAC) for access control at fog nodes, and 3) developing a mobility management service to handle changes of users and fog devices' locations. The implementation results demonstrate the feasibility and the efficiency of our proposed framework.

2018-03-19
Metongnon, L., Ezin, E. C., Sadre, R..  2017.  Efficient Probing of Heterogeneous IoT Networks. 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :1052–1058.

The Internet of Things leads to the inter-connectivity of a wide range of devices. This heterogeneity of hardware and software poses significant challenges to security. Constrained IoT devices often do not have enough resources to carry the overhead of an intrusion protection system or complex security protocols. A typical initial step in network security is a network scan in order to find vulnerable nodes. In the context of IoT, the initiator of the scan can be particularly interested in finding constrained devices, assuming that they are easier targets. In IoT networks hosting devices of various types, performing a scan with a high discovery rate can be a challenging task, since low-power networks such as IEEE 802.15.4 are easily overloaded. In this paper, we propose an approach to increase the efficiency of network scans by combining them with active network measurements. The measurements allow the scanner to differentiate IoT nodes by the used network technology. We show that the knowledge gained from this differentiation can be used to control the scan strategy in order to reduce probe losses.