Biblio

Found 625 results

Filters: Keyword is Cyber-physical systems  [Clear All Filters]
2020-06-26
Nath, Anubhav, Biswas, Reetam Sen, Pal, Anamitra.  2019.  Application of Machine Learning for Online Dynamic Security Assessment in Presence of System Variability and Additive Instrumentation Errors. 2019 North American Power Symposium (NAPS). :1—6.
Large-scale blackouts that have occurred in the past few decades have necessitated the need to do extensive research in the field of grid security assessment. With the aid of synchrophasor technology, which uses phasor measurement unit (PMU) data, dynamic security assessment (DSA) can be performed online. However, existing applications of DSA are challenged by variability in system conditions and unaccounted for measurement errors. To overcome these challenges, this research develops a DSA scheme to provide security prediction in real-time for load profiles of different seasons in presence of realistic errors in the PMU measurements. The major contributions of this paper are: (1) develop a DSA scheme based on PMU data, (2) consider seasonal load profiles, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA with and without erroneous measurements. The performance of this approach is tested on the IEEE-118 bus system. Comparative analysis of the accuracies of the ML algorithms under different operating scenarios highlights the importance of considering realistic errors and variability in system conditions while creating a DSA scheme.
2020-07-20
Rumez, Marcel, Dürrwang, Jürgen, Brecht, Tim, Steinshorn, Timo, Neugebauer, Peter, Kriesten, Reiner, Sax, Eric.  2019.  CAN Radar: Sensing Physical Devices in CAN Networks based on Time Domain Reflectometry. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The presence of security vulnerabilities in automotive networks has already been shown by various publications in recent years. Due to the specification of the Controller Area Network (CAN) as a broadcast medium without security mechanisms, attackers are able to read transmitted messages without being noticed and to inject malicious messages. In order to detect potential attackers within a network or software system as early as possible, Intrusion Detection Systems (IDSs) are prevalent. Many approaches for vehicles are based on techniques which are able to detect deviations from specified CAN network behaviour regarding protocol or payload properties. However, it is challenging to detect attackers who secretly connect to CAN networks and do not actively participate in bus traffic. In this paper, we present an approach that is capable of successfully detecting unknown CAN devices and determining the distance (cable length) between the attacker device and our sensing unit based on Time Domain Reflectometry (TDR) technique. We evaluated our approach on a real vehicle network.
2020-09-14
HANJRI, Adnane EL, HAYAR, Aawatif, Haqiq, Abdelkrim.  2019.  Combined Compressive Sampling Techniques and Features Detection using Kullback Leibler Distance to Manage Handovers. 2019 IEEE International Smart Cities Conference (ISC2). :504–507.
In this paper, we present a new Handover technique which combines Distribution Analysis Detector and Compressive Sampling Techniques. The proposed approach consists of analysing Received Signal probability density function instead of demodulating and analysing Received Signal itself as in classical handover. In this method we will exploit some mathematical tools like Kullback Leibler Distance, Akaike Information Criterion (AIC) and Akaike weights, in order to decide blindly the best handover and the best Base Station (BS) for each user. The Compressive Sampling algorithm is designed to take advantage from the primary signals sparsity and to keep the linearity and properties of the original signal in order to be able to apply Distribution Analysis Detector on the compressed measurements.
2020-09-21
K.R., Raghunandan, Aithal, Ganesh, Shetty, Surendra.  2019.  Comparative Analysis of Encryption and Decryption Techniques Using Mersenne Prime Numbers and Phony Modulus to Avoid Factorization Attack of RSA. 2019 International Conference on Advanced Mechatronic Systems (ICAMechS). :152–157.
In this advanced era, it is important to keep up an abnormal state of security for online exchanges. Public Key cryptography assumes an indispensable job in the field of security. Rivest, Shamir and Adleman (RSA) algorithm is being utilized for quite a long time to give online security. RSA is considered as one of the famous Public Key cryptographic algorithm. Nevertheless, a few fruitful assaults are created to break this algorithm because of specific confinements accepted in its derivation. The algorithm's security is principally founded on the issue of factoring large number. If the process factorization is done then, at that point the entire algorithm can end up fragile. This paper presents a methodology which is more secure than RSA algorithm by doing some modifications in it. Public Key exponent n, which is termed as common modulus replaced by phony modulus to avoid the factorization attack and it is constructed by Mersenne prime numbers to provide more efficiency and security. Paper presents a comparative analysis of the proposed algorithm with the conventional RSA algorithm and Dual RSA.
2020-06-26
Bento, Murilo E. C., Ramos, Rodrigo A..  2019.  Computing the Worst Case Scenario for Electric Power System Dynamic Security Assessment. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—5.
In operation centers, it is important to know the power transfer limit to guarantee the safety operation of the power system. The Voltage Stability Margin (VSM) is a widely used measure and needs to definition of a load growth direction (LGD) to be computed. However, different definitions of LGD can provide different VSMs and then the VSM may not be reliable. Besides, the measure of this power transfer limit usually is related to the Saddle-Node Bifurcation. In dynamic security assessment (DSA) is highly desirable to identify limit regions where the power system can operate safely due to Hopf (HB) and Saddle-Node (SNB) Bifurcations. This paper presents a modeling of the power system incorporating the LGD variation based on participation factors to evaluate the effects on the stability margin estimation due to HB and SNB. A direct method is used to calculate the stability margin of the power system for a given load direction. The analysis was performed in the IEEE 39 bus system.
2020-10-19
Dong, Hongbo, Zhu, Qianxiang.  2019.  A Cyber-Physical Interaction Model Based Impact Assessment of Cyberattacks for Internet of Vehicles. 2019 4th International Conference on Communication and Information Systems (ICCIS). :79–83.
Internet of Vehicles are the important part of Intelligence Traffic Systems (ITS), which are essential for the national security and economy development. The impact assessment for cyberattacks in the IoV protection is of great theoretical and practical significance. Most of the researchers in this field pay attention on the attack impact on a vehicle, and the seldom investigate the impact on the whole system which combines all the vehicles as a whole integration. To tackle this problem, a cyber-physical interaction model based impact assessment of cyberattacks is presented. In this approach, the operation of IoV is modeled from the cyberphysical interaction perspective, and then the propagating process from cyber layer to physical layer is investigated. Based on above model, the impact assessment of cyberattacks on IoV is realized quantitatively. Finally, a simulation on an IoV is conducted to verify the effectiveness of this approach.
2019-10-02
Zhang, Y., Eisele, S., Dubey, A., Laszka, A., Srivastava, A. K..  2019.  Cyber-Physical Simulation Platform for Security Assessment of Transactive Energy Systems. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.
2020-09-14
Anselmi, Nicola, Poli, Lorenzo, Oliveri, Giacomo, Rocca, Paolo, Massa, Andrea.  2019.  Dealing with Correlation and Sparsity for an Effective Exploitation of the Compressive Processing in Electromagnetic Inverse Problems. 2019 13th European Conference on Antennas and Propagation (EuCAP). :1–4.
In this paper, a novel method for tomographic microwave imaging based on the Compressive Processing (CP) paradigm is proposed. The retrieval of the dielectric profiles of the scatterers is carried out by efficiently solving both the sampling and the sensing problems suitably formulated under the first order Born approximation. Selected numerical results are presented in order to show the improvements provided by the CP with respect to conventional compressive sensing (CSE) approaches.
2020-07-20
Urien, Pascal.  2019.  Designing Attacks Against Automotive Control Area Network Bus and Electronic Control Units. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–4.
Security is a critical issue for new car generation targeting intelligent transportation systems (ITS), involving autonomous and connected vehicles. In this work we designed a low cost CAN probe and defined analysis tools in order to build attack scenarios. We reuse some threats identified by a previous work. Future researches will address new security protocols.
2020-09-14
Zhu, Xiaofeng, Huang, Liang, Wang, Ziqian.  2019.  Dynamic range analysis of one-bit compressive sampling with time-varying thresholds. The Journal of Engineering. 2019:6608–6611.
From the point of view of statistical signal processing, the dynamic range for one-bit quantisers with time-varying thresholds is studied. Maximum tolerable amplitudes, minimum detectable amplitudes and dynamic ranges of this one-bit sampling approach and uniform quantisers, such as N-bits analogue-to-digital converters (ADCs), are derived and simulated. The results reveal that like conventional ADCs, the dynamic ranges of one-bit sampling approach are linearly proportional to the Gaussian noise standard deviations, while one-bit sampling's dynamic ranges are lower than N-bits ADC under the same noise levels.
2020-10-06
Ravikumar, Gelli, Hyder, Burhan, Govindarasu, Manimaran.  2019.  Efficient Modeling of HIL Multi-Grid System for Scalability Concurrency in CPS Security Testbed. 2019 North American Power Symposium (NAPS). :1—6.
Cyber-event-triggered power grid blackout compels utility operators to intensify cyber-aware and physics-constrained recovery and restoration process. Recently, coordinated cyber attacks on the Ukrainian grid witnessed such a cyber-event-triggered power system blackout. Various cyber-physical system (CPS) testbeds have attempted with multitude designs to analyze such interdependent events and evaluate remedy measures. However, resource constraints and modular integration designs have been significant barriers while modeling large-scale grid models (scalability) and multi-grid isolated models (concurrency) under a single real-time execution environment for the hardware-in-the-loop (HIL) CPS security testbeds. This paper proposes a meticulous design and effective modeling for simulating large-scale grid models and multi-grid isolated models in a HIL realtime digital simulator environment integrated with industry-grade hardware and software systems. We have used our existing HIL CPS security testbed to demonstrate scalability by the realtime performance of a Texas-2000 bus US synthetic grid model and concurrency by the real-time performance of simultaneous ten IEEE-39 bus grid models and an IEEE-118 bus grid model. The experiments demonstrated significant results by 100% realtime performance with zero overruns, low latency while receiving and executing control signals from SEL Relays via IEC-61850 protocol and low latency while computing and transmitting grid data streams including stability measures via IEEE C37.118 synchrophasor data protocol to SEL Phasor Data Concentrators.
2020-09-28
Evans, David, Calvo, Daniel, Arroyo, Adrian, Manilla, Alejandro, Gómez, David.  2019.  End-to-end security assessment framework for connected vehicles. 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC). :1–6.
To increase security and to offer user experiences according to the requirements of a hyper-connected world, modern vehicles are integrating complex electronic systems, being transformed into systems of Cyber-Physical Systems (CPS). While a great diversity of heterogeneous hardware and software components must work together and control in real-time crucial functionalities, cybersecurity for the automotive sector is still in its infancy. This paper provides an analysis of the most common vulnerabilities and risks of connected vehicles, using a real example based on industrial and market-ready technologies. Several components have been implemented to inject and simulate multiple attacks, which enable security services and mitigation actions to be developed and validated.
2020-06-26
Samir, Nagham, Gamal, Yousef, El-Zeiny, Ahmed N., Mahmoud, Omar, Shawky, Ahmed, Saeed, AbdelRahman, Mostafa, Hassan.  2019.  Energy-Adaptive Lightweight Hardware Security Module using Partial Dynamic Reconfiguration for Energy Limited Internet of Things Applications. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1—4.
Data security is the main challenge in Internet of Things (IoT) applications. Security strength and the immunity to security attacks depend mainly on the available power budget. The power-security level trade-off is the main challenge for low power IoT applications, especially, energy limited IoT applications. In this paper, multiple encryption modes that provide different power consumption and security level values are hardware implemented. In other words, some modes provide high security levels at the expense of high power consumption and other modes provide low power consumption with low security level. Dynamic Partial Reconfiguration (DPR) is utilized to adaptively configure the hardware security module based on the available power budget. For example, for a given power constraint, the DPR controller configures the security module with the security mode that meets the available power constraint. ZC702 evaluation board is utilized to implement the proposed encryption modes using DPR. A Lightweight Authenticated Cipher (ACORN) is the most suitable encryption mode for low power IoT applications as it consumes the minimum power and area among the selected candidates at the expense of low throughput. The whole DPR system is tested with a maximum dynamic power dissipation of 10.08 mW. The suggested DPR system saves about 59.9% of the utilized LUTs compared to the individual implementation of the selected encryption modes.
2020-02-17
Eckhart, Matthias, Ekelhart, Andreas, Weippl, Edgar.  2019.  Enhancing Cyber Situational Awareness for Cyber-Physical Systems through Digital Twins. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1222–1225.
Operators of cyber-physical systems (CPSs) need to maintain awareness of the cyber situation in order to be able to adequately address potential issues in a timely manner. For instance, detecting early symptoms of cyber attacks may speed up the incident response process and mitigate consequences of attacks (e.g., business interruption, safety hazards). However, attaining a full understanding of the cyber situation may be challenging, given the complexity of CPSs and the ever-changing threat landscape. In particular, CPSs typically need to be continuously operational, may be sensitive to active scanning, and often provide only limited in-depth analysis capabilities. To address these challenges, we propose to utilize the concept of digital twins for enhancing cyber situational awareness. Digital twins, i.e., virtual replicas of systems, can run in parallel to their physical counterparts and allow deep inspection of their behavior without the risk of disrupting operational technology services. This paper reports our work in progress to develop a cyber situational awareness framework based on digital twins that provides a profound, holistic, and current view on the cyber situation that CPSs are in. More specifically, we present a prototype that provides real-time visualization features (i.e., system topology, program variables of devices) and enables a thorough, repeatable investigation process on a logic and network level. A brief explanation of technological use cases and outlook on future development efforts completes this work.
2020-07-06
Evgeny, Pavlenko, Dmitry, Zegzhda, Anna, Shtyrkina.  2019.  Estimating the sustainability of cyber-physical systems based on spectral graph theory. 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1–5.
Paper proposed an approach to estimating the sustainability of cyber-physical systems based on system state analysis. Authors suggested that sustainability is the system ability to reconfigure for recovering from attacking influences. Proposed a new criterion for cyber-physical systems sustainability assessment based on spectral graph theory. Numerical calculation of the criterion is based on distribution properties of the graph spectrum - the set of eigenvalues of the adjacency matrix corresponding to the graph. Experimental results have shown dependency of change in Δσ, difference between initial value of σstart and final σstop, on working route length, and on graph connectivity was revealed. This parameter is proposed to use as a criterion for CPS sustainability.
2020-02-24
Ahmadi-Assalemi, Gabriela, al-Khateeb, Haider M., Epiphaniou, Gregory, Cosson, Jon, Jahankhani, Hamid, Pillai, Prashant.  2019.  Federated Blockchain-Based Tracking and Liability Attribution Framework for Employees and Cyber-Physical Objects in a Smart Workplace. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–9.
The systematic integration of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) into the supply chain to increase operational efficiency and quality has also introduced new complexities to the threat landscape. The myriad of sensors could increase data collection capabilities for businesses to facilitate process automation aided by Artificial Intelligence (AI) but without adopting an appropriate Security-by-Design framework, threat detection and response are destined to fail. The emerging concept of Smart Workplace incorporates many CPS (e.g. Robots and Drones) to execute tasks alongside Employees both of which can be exploited as Insider Threats. We introduce and discuss forensic-readiness, liability attribution and the ability to track moving Smart SPS Objects to support modern Digital Forensics and Incident Response (DFIR) within a defence-in-depth strategy. We present a framework to facilitate the tracking of object behaviour within Smart Controlled Business Environments (SCBE) to support resilience by enabling proactive insider threat detection. Several components of the framework were piloted in a company to discuss a real-life case study and demonstrate anomaly detection and the emerging of behavioural patterns according to objects' movement with relation to their job role, workspace position and nearest entry or exit. The empirical data was collected from a Bluetooth-based Proximity Monitoring Solution. Furthermore, a key strength of the framework is a federated Blockchain (BC) model to achieve forensic-readiness by establishing a digital Chain-of-Custody (CoC) and a collaborative environment for CPS to qualify as Digital Witnesses (DW) to support post-incident investigations.
2020-09-14
Chandrala, M S, Hadli, Pooja, Aishwarya, R, Jejo, Kevin C, Sunil, Y, Sure, Pallaviram.  2019.  A GUI for Wideband Spectrum Sensing using Compressive Sampling Approaches. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
Cognitive Radio is a prominent solution for effective spectral resource utilization. The rapidly growing device to device (D2D) communications and the next generation networks urge the cognitive radio networks to facilitate wideband spectrum sensing in order to assure newer spectral opportunities. As Nyquist sampling rates are formidable owing to complexity and cost of the ADCs, compressive sampling approaches are becoming increasingly popular. One such approach exploited in this paper is the Modulated Wideband Converter (MWC) to recover the spectral support. On the multiple measurement vector (MMV) framework provided by the MWC, threshold based Orthogonal Matching Pursuit (OMP) and Sparse Bayesian Learning (SBL) algorithms are employed for support recovery. We develop a Graphical User Interface (GUI) that assists a beginner to simulate the RF front-end of a MWC and thereby enables the user to explore support recovery as a function of Signal to Noise Ratio (SNR), number of measurement vectors and threshold. The GUI enables the user to explore spectrum sensing in DVB-T, 3G and 4G bands and recovers the support using OMP or SBL approach. The results show that the performance of SBL is better than that of OMP at a lower SNR values.
2020-09-28
Kandah, Farah, Cancelleri, Joseph, Reising, Donald, Altarawneh, Amani, Skjellum, Anthony.  2019.  A Hardware-Software Codesign Approach to Identity, Trust, and Resilience for IoT/CPS at Scale. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1125–1134.
Advancement in communication technologies and the Internet of Things (IoT) is driving adoption in smart cities that aims to increase operational efficiency and improve the quality of services and citizen welfare, among other potential benefits. The privacy, reliability, and integrity of communications must be ensured so that actions can be appropriate, safe, accurate, and implemented promptly after receiving actionable information. In this work, we present a multi-tier methodology consisting of an authentication and trust-building/distribution framework designed to ensure the safety and validity of the information exchanged in the system. Blockchain protocols and Radio Frequency-Distinct Native Attributes (RF-DNA) combine to provide a hardware-software codesigned system for enhanced device identity and overall system trustworthiness. Our threat model accounts for counterfeiting, breakout fraud, and bad mouthing of one entity by others. Entity trust (e.g., IoT devices) depends on quality and level of participation, quality of messages, lifetime of a given entity in the system, and the number of known "bad" (non-consensus) messages sent by that entity. Based on this approach to trust, we are able to adjust trust upward and downward as a function of real-time and past behavior, providing other participants with a trust value upon which to judge information from and interactions with the given entity. This approach thereby reduces the potential for manipulation of an IoT system by a bad or byzantine actor.
2020-09-14
Wang, Lizhi, Xiong, Zhiwei, Huang, Hua, Shi, Guangming, Wu, Feng, Zeng, Wenjun.  2019.  High-Speed Hyperspectral Video Acquisition By Combining Nyquist and Compressive Sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 41:857–870.
We propose a novel hybrid imaging system to acquire 4D high-speed hyperspectral (HSHS) videos with high spatial and spectral resolution. The proposed system consists of two branches: one branch performs Nyquist sampling in the temporal dimension while integrating the whole spectrum, resulting in a high-frame-rate panchromatic video; the other branch performs compressive sampling in the spectral dimension with longer exposures, resulting in a low-frame-rate hyperspectral video. Owing to the high light throughput and complementary sampling, these two branches jointly provide reliable measurements for recovering the underlying HSHS video. Moreover, the panchromatic video can be used to learn an over-complete 3D dictionary to represent each band-wise video sparsely, thanks to the inherent structural similarity in the spectral dimension. Based on the joint measurements and the self-adaptive dictionary, we further propose a simultaneous spectral sparse (3S) model to reinforce the structural similarity across different bands and develop an efficient computational reconstruction algorithm to recover the HSHS video. Both simulation and hardware experiments validate the effectiveness of the proposed approach. To the best of our knowledge, this is the first time that hyperspectral videos can be acquired at a frame rate up to 100fps with commodity optical elements and under ordinary indoor illumination.
2020-09-08
Chen, Yu-Cheng, Gieseking, Tim, Campbell, Dustin, Mooney, Vincent, Grijalva, Santiago.  2019.  A Hybrid Attack Model for Cyber-Physical Security Assessment in Electricity Grid. 2019 IEEE Texas Power and Energy Conference (TPEC). :1–6.
A detailed model of an attack on the power grid involves both a preparation stage as well as an execution stage of the attack. This paper introduces a novel Hybrid Attack Model (HAM) that combines Probabilistic Learning Attacker, Dynamic Defender (PLADD) model and a Markov Chain model to simulate the planning and execution stages of a bad data injection attack in power grid. We discuss the advantages and limitations of the prior work models and of our proposed Hybrid Attack Model and show that HAM is more effective compared to individual PLADD or Markov Chain models.
2020-03-16
Al Ghazo, Alaa T., Kumar, Ratnesh.  2019.  ICS/SCADA Device Recognition: A Hybrid Communication-Patterns and Passive-Fingerprinting Approach. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :19–24.
The Industrial Control System (ICS) and Supervisory Control and Data Acquisition (SCADA) systems are the backbones for monitoring and supervising factories, power grids, water distribution systems, nuclear plants, and other critical infrastructures. These systems are installed by third party contractors, maintained by site engineers, and operate for a long time. This makes tracing the documentation of the systems' changes and updates challenging since some of their components' information (type, manufacturer, model, etc.) may not be up-to-date, leading to possibly unaccounted security vulnerabilities in the systems. Device recognition is useful first step in vulnerability identification and defense augmentation, but due to the lack of full traceability in case of legacy ICS/SCADA systems, the typical device recognition based on document inspection is not applicable. In this paper, we propose a hybrid approach involving the mix of communication-patterns and passive-fingerprinting to identify the unknown devices' types, manufacturers, and models. The algorithm uses the ICS/SCADA devices's communication-patterns to recognize the control hierarchy levels of the devices. In conjunction, certain distinguishable features in the communication-packets are used to recognize the device manufacturer, and model. We have implemented this hybrid approach in Python, and tested on traffic data from a water treatment SCADA testbed in Singapore (iTrust).
2020-08-17
Al Ghazo, Alaa T., Kumar, Ratnesh.  2019.  Identification of Critical-Attacks Set in an Attack-Graph. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0716–0722.
SCADA/ICS (Supervisory Control and Data Acqui-sition/Industrial Control Systems) networks are becoming targets of advanced multi-faceted attacks, and use of attack-graphs has been proposed to model complex attacks scenarios that exploit interdependence among existing atomic vulnerabilities to stitch together the attack-paths that might compromise a system-level security property. While such analysis of attack scenarios enables security administrators to establish appropriate security measurements to secure the system, practical considerations on time and cost limit their ability to address all system vulnerabilities at once. In this paper, we propose an approach that identifies label-cuts to automatically identify a set of critical-attacks that, when blocked, guarantee system security. We utilize the Strongly-Connected-Components (SCCs) of the given attack graph to generate an abstracted version of the attack-graph, a tree over the SCCs, and next use an iterative backward search over this tree to identify set of backward reachable SCCs, along with their outgoing edges and their labels, to identify a cut with a minimum number of labels that forms a critical-attacks set. We also report the implementation and validation of the proposed algorithm to a real-world case study, a SCADA network for a water treatment cyber-physical system.
2020-07-20
Tanksale, Vinayak.  2019.  Intrusion Detection For Controller Area Network Using Support Vector Machines. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :121–126.
Controller Area Network is the most widely adopted communication standard in automobiles. The CAN protocol is robust and is designed to minimize overhead. The light-weight nature of this protocol implies that it can't efficiently process secure communication. With the exponential increase in automobile communications, there is an urgent need for efficient and effective security countermeasures. We propose a support vector machine based intrusion detection system that is able to detect anomalous behavior with high accuracy. We outline a process for parameter selection and feature vector selection. We identify strengths and weaknesses of our system and propose to extend our work for time-series based data.
2020-09-14
Feng, Qi, Huang, Jianjun, Yang, Zhaocheng.  2019.  Jointly Optimized Target Detection and Tracking Using Compressive Samples. IEEE Access. 7:73675–73684.
In this paper, we consider the problem of joint target detection and tracking in compressive sampling and processing (CSP-JDT). CSP can process the compressive samples of sparse signals directly without signal reconstruction, which is suitable for handling high-resolution radar signals. However, in CSP, the radar target detection and tracking problems are usually solved separately or by a two-stage strategy, which cannot obtain a globally optimal solution. To jointly optimize the target detection and tracking performance and inspired by the optimal Bayes joint decision and estimation (JDE) framework, a jointly optimized target detection and tracking algorithm in CSP is proposed. Since detection and tracking are highly correlated, we first develop a measurement matrix construction method to acquire the compressive samples, and then a joint CSP Bayesian approach is developed for target detection and tracking. The experimental results demonstrate that the proposed method outperforms the two-stage algorithms in terms of the joint performance metric.
2020-09-21
Pudukotai Dinakarrao, Sai Manoj, Sayadi, Hossein, Makrani, Hosein Mohammadi, Nowzari, Cameron, Rafatirad, Setareh, Homayoun, Houman.  2019.  Lightweight Node-level Malware Detection and Network-level Malware Confinement in IoT Networks. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :776–781.
The sheer size of IoT networks being deployed today presents an "attack surface" and poses significant security risks at a scale never before encountered. In other words, a single device/node in a network that becomes infected with malware has the potential to spread malware across the network, eventually ceasing the network functionality. Simply detecting and quarantining the malware in IoT networks does not guarantee to prevent malware propagation. On the other hand, use of traditional control theory for malware confinement is not effective, as most of the existing works do not consider real-time malware control strategies that can be implemented using uncertain infection information of the nodes in the network or have the containment problem decoupled from network performance. In this work, we propose a two-pronged approach, where a runtime malware detector (HaRM) that employs Hardware Performance Counter (HPC) values to detect the malware and benign applications is devised. This information is fed during runtime to a stochastic model predictive controller to confine the malware propagation without hampering the network performance. With the proposed solution, a runtime malware detection accuracy of 92.21% with a runtime of 10ns is achieved, which is an order of magnitude faster than existing malware detection solutions. Synthesizing this output with the model predictive containment strategy lead to achieving an average network throughput of nearly 200% of that of IoT networks without any embedded defense.