Biblio
Learning-enabled components (LECs) are widely used in cyber-physical systems (CPS) since they can handle the uncertainty and variability of the environment and increase the level of autonomy. However, it has been shown that LECs such as deep neural networks (DNN) are not robust and adversarial examples can cause the model to make a false prediction. The paper considers the problem of efficiently detecting adversarial examples in LECs used for regression in CPS. The proposed approach is based on inductive conformal prediction and uses a regression model based on variational autoencoder. The architecture allows to take into consideration both the input and the neural network prediction for detecting adversarial, and more generally, out-of-distribution examples. We demonstrate the method using an advanced emergency braking system implemented in an open source simulator for self-driving cars where a DNN is used to estimate the distance to an obstacle. The simulation results show that the method can effectively detect adversarial examples with a short detection delay.
In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.
The security problem of networked control systems (NCSs) suffering denial of service(DoS) attacks with incomplete information is investigated in this paper. Data transmission among different components in NCSs may be blocked due to DoS attacks. We use the concept of security level to describe the degree of security of different components in an NCS. Intrusion detection system (IDS) is used to monitor the invalid data generated by DoS attacks. At each time slot, the defender considers which component to monitor while the attacker considers which place for invasion. A one-shot game between attacker and defender is built and both the complete information case and the incomplete information case are considered. Furthermore, a repeated game model with updating beliefs is also established based on the Bayes' rule. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.
Implementations of Cyber-Physical Systems (CPS), like the Internet of Things, Smart Factories or Smart Grid gain more and more impact in their fields of application, as they extend the functionality and quality of the offered services significantly. However, the coupling of safety-critical embedded systems and services of the cyber-space domain introduce many new challenges for system engineers. Especially, the goal to achieve a high level of security throughout CPS presents a major challenge. However, it is necessary to develop and deploy secure CPS, as vulnerabilities and threats may lead to a non- or maliciously modified functionality of the CPS. This could ultimately cause harm to life of involved actors, or at least sensitive information can be leaked or lost. Therefore, it is essential that system engineers are aware of the level of security of the deployed CPS. For this purpose, security metrics and security evaluation frameworks can be utilized, as they are able to quantitatively express security, based on different measurements and rules. However, existing security scoring solutions may not be able to generate accurate security scores for CPS, as they insufficiently consider the typical CPS characteristics, like the communication of heterogeneous systems of physical- and cyber-space domain in an unpredictable manner. Therefore, we propose a security analysis framework, called Security Qualification Matrix (SQM). The SQM is capable to analyses multiple attacks on a System-of-Systems level simultaneously. With this approach, dependencies, potential side effects and the impact of mitigation concepts can quickly be identified and evaluated.
Cyber-physical systems (CPSs) are implemented in many industrial and embedded control applications. Where these systems are safety-critical, correct and safe behavior is of paramount importance. Malicious attacks on such CPSs can have far-reaching repercussions. For instance, if elements of a power grid behave erratically, physical damage and loss of life could occur. Currently, there is a trend toward increased complexity and connectivity of CPS. However, as this occurs, the potential attack vectors for these systems grow in number, increasing the risk that a given controller might become compromised. In this article, we examine how the dangers of compromised controllers can be mitigated. We propose a novel application of runtime enforcement that can secure the safety of real-world physical systems. Here, we synthesize enforcers to a new hardware architecture within programmable logic controller I/O modules to act as an effective line of defence between the cyber and the physical domains. Our enforcers prevent the physical damage that a compromised control system might be able to perform. To demonstrate the efficacy of our approach, we present several benchmarks, and show that the overhead for each system is extremely minimal.
The emergence of Cyber-Physical Systems (CPSs) is a potential paradigm shift for the usage of Information and Communication Technologies (ICT). From predominantly a facilitator of information and communication services, the role of ICT in the present age has expanded to the management of objects and resources in the physical world. Thus, it is imperative to devise mechanisms to ensure the trustworthiness of data to secure vulnerable devices against security threats. This work presents an analytical framework based on non-cooperative game theory to evaluate the trustworthiness of individual sensor nodes that constitute the CPS. The proposed game-theoretic model captures the factors impacting the trustworthiness of CPS sensor nodes. Further, the model is used to estimate the Nash equilibrium solution of the game, to derive a trust threshold criterion. The trust threshold represents the minimum trust score required to be maintained by individual sensor nodes during CPS operation. Sensor nodes with trust scores below the threshold are potentially malicious and may be removed or isolated to ensure the secure operation of CPS.
Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.
Wide integration of information and communication technology (ICT) in modern power grids has brought many benefits as well as the risk of cyber attacks. A critical step towards defending grid cyber security is to understand the cyber-physical causal chain, which describes the progression of intrusion in cyber-space leading to the formation of consequences on the physical power grid. In this paper, we develop an attack vector for a time delay attack at load frequency control in the power grid. Distinct from existing works, which are separately focused on cyber intrusion, grid response, or testbed validation, the proposed attack vector for the first time provides a full cyber-physical causal chain. It targets specific vulnerabilities in the protocols, performs a denial-of-service (DoS) attack, induces the delays in control loop, and destabilizes grid frequency. The proposed attack vector is proved in theory, presented as an attack tree, and validated in an experimental environment. The results will provide valuable insights to develop security measures and robust controls against time delay attacks.
A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.
Developing mission-centric impact assessment techniques to address cyber resiliency in the cyber-physical systems (CPSs) requires integrating system inter-dependencies to the risk and resilience analysis process. Generally, network administrators utilize attack graphs to estimate possible consequences in a networked environment. Attack graphs lack to incorporate the operations-specific dependencies. Localizing the dependencies among operational missions, tasks, and the hosting devices in a large-scale CPS is also challenging. In this work, we offer a graphical modeling technique to integrate the mission-centric impact assessment of cyberattacks by relating the effect to the operational resiliency by utilizing a combination of the logical attack graph and mission impact propagation graph. We propose formal techniques to compute cyberattacks’ impact on the operational mission and offer an optimization process to minimize the same, having budgetary restrictions. We also relate the effect to the system functional operability. We illustrate our modeling techniques using a SCADA (supervisory control and data acquisition) case study for the cyber-physical power systems. We believe our proposed method would help evaluate and minimize the impact of cyber attacks on CPS’s operational missions and, thus, enhance cyber resiliency.