Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-02-04
Rabari, Jeet, Kumar, Arun Raj P..  2021.  FIFA: Fighting against Interest Flooding Attack in NDN-based VANET. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1539–1544.
A vehicular Ad-hoc network (VANET) allows groups of autonomous or semi-autonomous vehicles to share information and content with each other and infrastructure. Named Data Networking (NDN) is recently proposed as one of the future internet architectures, which allows communication in network-based upon content name. It has originated from Information-centric networking (ICN). NDN-based VANET uses NDN as an underlying communication paradigm. NDN-based VANET suffers from several security attacks, one such attack is the Interest Flooding Attack (IFA) that targets the core forwarding mechanism of NDN-based VANET. This paper focuses on the detection and mitigation of IFA in NDN-based VANET. We proposed a method FIFA to detect and mitigate IFA. Our proposed method is capable of detecting normal IFA as well as a low-rate IFA. Along with that FIFA also ensures non-repudiation in networks. We have compared our proposed method with the existing mechanism to detect and mitigate IFA named IFAMS. Experiment results show that our method detects and mitigates normal IFA and low-rate IFA in the network.
2021-12-20
Sahay, Rajeev, Brinton, Christopher G., Love, David J..  2021.  Frequency-based Automated Modulation Classification in the Presence of Adversaries. ICC 2021 - IEEE International Conference on Communications. :1–6.
Automatic modulation classification (AMC) aims to improve the efficiency of crowded radio spectrums by automatically predicting the modulation constellation of wireless RF signals. Recent work has demonstrated the ability of deep learning to achieve robust AMC performance using raw in-phase and quadrature (IQ) time samples. Yet, deep learning models are highly susceptible to adversarial interference, which cause intelligent prediction models to misclassify received samples with high confidence. Furthermore, adversarial interference is often transferable, allowing an adversary to attack multiple deep learning models with a single perturbation crafted for a particular classification network. In this work, we present a novel receiver architecture consisting of deep learning models capable of withstanding transferable adversarial interference. Specifically, we show that adversarial attacks crafted to fool models trained on time-domain features are not easily transferable to models trained using frequency-domain features. In this capacity, we demonstrate classification performance improvements greater than 30% on recurrent neural networks (RNNs) and greater than 50% on convolutional neural networks (CNNs). We further demonstrate our frequency feature-based classification models to achieve accuracies greater than 99% in the absence of attacks.
2022-03-14
Ouyang, Yuankai, Li, Beibei, Kong, Qinglei, Song, Han, Li, Tao.  2021.  FS-IDS: A Novel Few-Shot Learning Based Intrusion Detection System for SCADA Networks. ICC 2021 - IEEE International Conference on Communications. :1—6.

Supervisory control and data acquisition (SCADA) networks provide high situational awareness and automation control for industrial control systems, whilst introducing a wide range of access points for cyber attackers. To address these issues, a line of machine learning or deep learning based intrusion detection systems (IDSs) have been presented in the literature, where a large number of attack examples are usually demanded. However, in real-world SCADA networks, attack examples are not always sufficient, having only a few shots in many cases. In this paper, we propose a novel few-shot learning based IDS, named FS-IDS, to detect cyber attacks against SCADA networks, especially when having only a few attack examples in the defenders’ hands. Specifically, a new method by orchestrating one-hot encoding and principal component analysis is developed, to preprocess SCADA datasets containing sufficient examples for frequent cyber attacks. Then, a few-shot learning based preliminary IDS model is designed and trained using the preprocessed data. Last, a complete FS-IDS model for SCADA networks is established by further training the preliminary IDS model with a few examples for cyber attacks of interest. The high effectiveness of the proposed FS-IDS, in detecting cyber attacks against SCADA networks with only a few examples, is demonstrated by extensive experiments on a real SCADA dataset.

2022-01-31
Zhang, Yun, Li, Hongwei, Xu, Guowen, Luo, Xizhao, Dong, Guishan.  2021.  Generating Audio Adversarial Examples with Ensemble Substituted Models. ICC 2021 - IEEE International Conference on Communications. :1–6.
The rapid development of machine learning technology has prompted the applications of Automatic Speech Recognition(ASR). However, studies have shown that the state-of-the-art ASR technologies are still vulnerable to various attacks, which undermines the stability of ASR destructively. In general, most of the existing attack techniques for the ASR model are based on white box scenarios, where the adversary uses adversarial samples to generate a substituted model corresponding to the target model. On the contrary, there are fewer attack schemes in the black-box scenario. Moreover, no scheme considers the problem of how to construct the architecture of the substituted models. In this paper, we point out that constructing a good substituted model architecture is crucial to the effectiveness of the attack, as it helps to generate a more sophisticated set of adversarial examples. We evaluate the performance of different substituted models by comprehensive experiments, and find that ensemble substituted models can achieve the optimal attack effect. The experiment shows that our approach performs attack over 80% success rate (2% improvement compared to the latest work) meanwhile maintaining the authenticity of the original sample well.
2022-08-12
Bichhawat, Abhishek, McCall, McKenna, Jia, Limin.  2021.  Gradual Security Types and Gradual Guarantees. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
Information flow type systems enforce the security property of noninterference by detecting unauthorized data flows at compile-time. However, they require precise type annotations, making them difficult to use in practice as much of the legacy infrastructure is written in untyped or dynamically-typed languages. Gradual typing seamlessly integrates static and dynamic typing, providing the best of both approaches, and has been applied to information flow control, where information flow monitors are derived from gradual security types. Prior work on gradual information flow typing uncovered tensions between noninterference and the dynamic gradual guarantee- the property that less precise security type annotations in a program should not cause more runtime errors.This paper re-examines the connection between gradual information flow types and information flow monitors to identify the root cause of the tension between the gradual guarantees and noninterference. We develop runtime semantics for a simple imperative language with gradual information flow types that provides both noninterference and gradual guarantees. We leverage a proof technique developed for FlowML and reduce noninterference proofs to preservation proofs.
2022-02-07
Gülmez, Sibel, Sogukpinar, Ibrahim.  2021.  Graph-Based Malware Detection Using Opcode Sequences. 2021 9th International Symposium on Digital Forensics and Security (ISDFS). :1–5.
The impact of malware grows for IT (information technology) systems day by day. The number, the complexity, and the cost of them increase rapidly. While researchers are developing new and better detection algorithms, attackers are also evolving malware to fail the current detection techniques. Therefore malware detection becomes one of the most challenging tasks in cyber security. To increase the performance of the detection techniques, researchers benefit from different approaches. But some of them might cost a lot both in time and hardware resources. This situation puts forward fast and cheap detection methods. In this context, static analysis provides these utilities but it is important to keep detection accuracy high while reducing resource consumption. Opcodes (operational codes) are commonly used in static analysis but sometimes feature extraction from opcodes might be difficult since an opcode sequence might have a great length. Furthermore, most of the malware developers use obfuscation and encryption techniques to avoid detection methods based on static analysis. This kind of malware is called packed malware and according to common belief, packed malware should be either unpacked or analyzed dynamically in order to detect them. In this study, a graph-based malware detection method has been proposed to overcome these problems. The proposed method relies on obtaining the opcode graph of every executable file in the dataset and using them for future extraction. In this way, the proposed method reaches up to 98% detection accuracy. In addition to the accuracy rate, the proposed method makes it possible to detect packed malware without the need for unpacking or dynamic analysis.
2022-01-10
Stan, Orly, Bitton, Ron, Ezrets, Michal, Dadon, Moran, Inokuchi, Masaki, Ohta, Yoshinobu, Yagyu, Tomohiko, Elovici, Yuval, Shabtai, Asaf.  2021.  Heuristic Approach for Countermeasure Selection Using Attack Graphs. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
Selecting the optimal set of countermeasures to secure a network is a challenging task, since it involves various considerations and trade-offs, such as prioritizing the risks to mitigate given the mitigation costs. Previously suggested approaches are based on limited and largely manual risk assessment procedures, provide recommendations for a specific event, or don't consider the organization's constraints (e.g., limited budget). In this paper, we present an improved attack graph-based risk assessment process and apply heuristic search to select an optimal countermeasure plan for a given network and budget. The risk assessment process represents the risk in the system in such a way that incorporates the quantitative risk factors and relevant countermeasures; this allows us to assess the risk in the system under different countermeasure plans during the search, without the need to regenerate the attack graph. We also provide a detailed description of countermeasure modeling and discuss how the countermeasures can be automatically matched to the security issues discovered in the network.
2022-06-08
Aksoy, Levent, Nguyen, Quang-Linh, Almeida, Felipe, Raik, Jaan, Flottes, Marie-Lise, Dupuis, Sophie, Pagliarini, Samuel.  2021.  High-level Intellectual Property Obfuscation via Decoy Constants. 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–7.

This paper presents a high-level circuit obfuscation technique to prevent the theft of intellectual property (IP) of integrated circuits. In particular, our technique protects a class of circuits that relies on constant multiplications, such as neural networks and filters, where the constants themselves are the IP to be protected. By making use of decoy constants and a key-based scheme, a reverse engineer adversary at an untrusted foundry is rendered incapable of discerning true constants from decoys. The time-multiplexed constant multiplication (TMCM) block of such circuits, which realizes the multiplication of an input variable by a constant at a time, is considered as our case study for obfuscation. Furthermore, two TMCM design architectures are taken into account; an implementation using a multiplier and a multiplierless shift-adds implementation. Optimization methods are also applied to reduce the hardware complexity of these architectures. The well-known satisfiability (SAT) and automatic test pattern generation (ATPG) based attacks are used to determine the vulnerability of the obfuscated designs. It is observed that the proposed technique incurs small overheads in area, power, and delay that are comparable to the hardware complexity of prominent logic locking methods. Yet, the advantage of our approach is in the insight that constants - instead of arbitrary circuit nodes - become key-protected.

2022-01-31
Alexopoulos, Ilias, Neophytou, Stelios, Kyriakides, Ioannis.  2021.  Identifying Metrics for an IoT Performance Estimation Framework. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–6.
In this work we introduce a framework to support design decisions for heterogeneous IoT platforms and devices. The framework methodology as well as the development of software and hardware models are outlined. Specific factors that affect the performance of device are identified and formulated in a metric form. The performance aspects are embedded in a flexible and scalable framework for decision support. An indicative experimental setup investigates the applicability of the framework for a specific functional block. The experimental results are used to assess the significance of the framework under development.
Luchian, Razvan-Adrian, Stamatescu, Grigore, Stamatescu, Iulia, Fagarasan, Ioana, Popescu, Dan.  2021.  IIoT Decentralized System Monitoring for Smart Industry Applications. 2021 29th Mediterranean Conference on Control and Automation (MED). :1161–1166.
Convergence of operation technology (OT) and information technology (IT) in industrial automation is currently being adopted as an accelerating trend. The Industrial Internet of Things (IIoT) consists of heterogeneous sensing, computing and actuation nodes that are meshed through a layer of communication protocols, and represents a key enabler for this convergence. Experimental test beds are required to validate complex system designs in terms of scalability, latency, real-time operation and security. We use the open source Coaty - distributed industrial systems framework to present a smart industry application integrating field devices and controllers over the OPCUA and MQTT protocols. The experimental evaluation, using both proprietary automation components and open software modules, serves as a reference tool for building robust systems and provides practical insights for interoperability.
2022-04-19
Gürcüo\u glu, O\u guz, Erdem, Mehmet Can, Çirkino\u glu, H. Ozan, Ferhanoglu, Onur, Kurt, Güne\c s Karabulut, Panayırcı, Erdal.  2021.  Improved Physical Layer Security in Visible Light Communications by Using Focused Light Emitters. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1–4.

A conventional visible light communication system consists of a transmitter, a jammer that includes a few light emitting diodes, a legal listener and an eavesdropper. In this work, a similar system is designed with a collimating lens in order to create an extra layer of practical physical security measure. The use of a collimating lens makes it available to spatially limiting data transmission to an area under the lensed transmitter. Also focused data transmission through the optical lens, increases the secrecy rate. To investigate the applicability of the proposed design we designed a sample experimental setup using USRP and implemented in a laboratory environment. In the proposed set up, the receiver is in a fixed position. However, it is possible to implement an easy, practical and cheap hardware solution with respect to a beamforming type VLC that uses directional beam forming method to establish transmission to a dynamic target. In addition, it is achievable to control the size of the area where a receiver can access data by manipulating the distance between the optical lens and transmitter.

2022-03-09
Jia, Ning, Gong, Xiaoyi, Zhang, Qiao.  2021.  Improvement of Style Transfer Algorithm based on Neural Network. 2021 International Conference on Computer Engineering and Application (ICCEA). :1—6.
In recent years, the application of style transfer has become more and more widespread. Traditional deep learning-based style transfer networks often have problems such as image distortion, loss of detailed information, partial content disappearance, and transfer errors. The style transfer network based on deep learning that we propose in this article is aimed at dealing with these problems. Our method uses image edge information fusion and semantic segmentation technology to constrain the image structure before and after the migration, so that the converted image maintains structural consistency and integrity. We have verified that this method can successfully suppress image conversion distortion in most scenarios, and can generate good results.
2022-04-13
Rose, Joseph R, Swann, Matthew, Bendiab, Gueltoum, Shiaeles, Stavros, Kolokotronis, Nicholas.  2021.  Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :409–415.
The rapid increase in the use of IoT devices brings many benefits to the digital society, ranging from improved efficiency to higher productivity. However, the limited resources and the open nature of these devices make them vulnerable to various cyber threats. A single compromised device can have an impact on the whole network and lead to major security and physical damages. This paper explores the potential of using network profiling and machine learning to secure IoT against cyber attacks. The proposed anomaly-based intrusion detection solution dynamically and actively profiles and monitors all networked devices for the detection of IoT device tampering attempts as well as suspicious network transactions. Any deviation from the defined profile is considered to be an attack and is subject to further analysis. Raw traffic is also passed on to the machine learning classifier for examination and identification of potential attacks. Performance assessment of the proposed methodology is conducted on the Cyber-Trust testbed using normal and malicious network traffic. The experimental results show that the proposed anomaly detection system delivers promising results with an overall accuracy of 98.35% and 0.98% of false-positive alarms.
2022-06-09
Nagai, Yuki, Watanabe, Hiroki, Kondo, Takao, Teraoka, Fumio.  2021.  LiONv2: An Experimental Network Construction Tool Considering Disaggregation of Network Configuration and Device Configuration. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :171–175.
An experimental network environment plays an important role to examine new systems and protocols. We have developed an experimental network construction tool called LiONv1 (Lightweight On-Demand Networking, ver.1). LiONv1 satisfies the following four requirements: programmer-friendly configuration file based on Infrastructure as Code, multiple virtualization technologies for virtual nodes, physical topology conscious virtual node placement, and L3 protocol agnostic virtual networks. None of existing experimental network environments satisfy all the four requirements. In this paper, we develop LiONv2 which satisfies three more requirements: diversity of available network devices, Internet-scale deployment, and disaggregation of network configuration and device configuration. LiONv2 employs NETCONF and YANG to achieve diversity of available network devices and Internet-scale deployment. LiONv2 also defines two YANG models which disaggregate network configuration and device configuration. LiONv2 is implemented in Go and C languages with public libraries for Go. Measurement results show that construction time of a virtual network is irrelevant to the number of virtual nodes if a single virtual node is created per physical node.
2022-01-31
Baumann, Lukas, Heftrig, Elias, Shulman, Haya, Waidner, Michael.  2021.  The Master and Parasite Attack. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :141—148.
We explore a new type of malicious script attacks: the persistent parasite attack. Persistent parasites are stealthy scripts, which persist for a long time in the browser's cache. We show to infect the caches of victims with parasite scripts via TCP injection. Once the cache is infected, we implement methodologies for propagation of the parasites to other popular domains on the victim client as well as to other caches on the network. We show how to design the parasites so that they stay long time in the victim's cache not restricted to the duration of the user's visit to the web site. We develop covert channels for communication between the attacker and the parasites, which allows the attacker to control which scripts are executed and when, and to exfiltrate private information to the attacker, such as cookies and passwords. We then demonstrate how to leverage the parasites to perform sophisticated attacks, and evaluate the attacks against a range of applications and security mechanisms on popular browsers. Finally we provide recommendations for countermeasures.
2022-02-07
Singh, Shirish, Kaiser, Gail.  2021.  Metamorphic Detection of Repackaged Malware. 2021 IEEE/ACM 6th International Workshop on Metamorphic Testing (MET). :9–16.
Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset.1 We perform an extensive study on other publicly available datasets to show our approach's effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.
2022-10-28
Ponader, Jonathan, Thomas, Kyle, Kundu, Sandip, Solihin, Yan.  2021.  MILR: Mathematically Induced Layer Recovery for Plaintext Space Error Correction of CNNs. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :75–87.
The increased use of Convolutional Neural Networks (CNN) in mission-critical systems has increased the need for robust and resilient networks in the face of both naturally occurring faults as well as security attacks. The lack of robustness and resiliency can lead to unreliable inference results. Current methods that address CNN robustness require hardware modification, network modification, or network duplication. This paper proposes MILR a software-based CNN error detection and error correction system that enables recovery from single and multi-bit errors. The recovery capabilities are based on mathematical relationships between the inputs, outputs, and parameters(weights) of the layers; exploiting these relationships allows the recovery of erroneous parameters (iveights) throughout a layer and the network. MILR is suitable for plaintext-space error correction (PSEC) given its ability to correct whole-weight and even whole-layer errors in CNNs.
2022-02-22
Gao, Chungang, Wang, Yongjie, Xiong, Xinli, Zhao, Wendian.  2021.  MTDCD: an MTD Enhanced Cyber Deception Defense System. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:1412—1417.
Advanced persistent threat (APT) attackers usually conduct a large number of network reconnaissance before a formal attack to discover exploitable vulnerabilities in the target network and system. The static configuration in traditional network systems provides a great advantage for adversaries to find network targets and launch attacks. To reduce the effectiveness of adversaries' continuous reconnaissance attacks, this paper develops a moving target defense (MTD) enhanced cyber deception defense system based on software-defined networks (SDN). The system uses virtual network topology to confuse the target network and system information collected by adversaries. Also Besides, it uses IP address randomization to increase the dynamics of network deception to enhance its defense effectiveness. Finally, we implemented the system prototype and evaluated it. In a configuration where the virtual network topology scale is three network segments, and the address conversion cycle is 30 seconds, this system delayed the adversaries' discovery of vulnerable hosts by an average of seven times, reducing the probability of adversaries successfully attacking vulnerable hosts by 83%. At the same time, the increased system overhead is basically within 10%.
2022-06-09
Mangino, Antonio, Bou-Harb, Elias.  2021.  A Multidimensional Network Forensics Investigation of a State-Sanctioned Internet Outage. 2021 International Wireless Communications and Mobile Computing (IWCMC). :813–818.
In November 2019, the government of Iran enforced a week-long total Internet blackout that prevented the majority of Internet connectivity into and within the nation. This work elaborates upon the Iranian Internet blackout by characterizing the event through Internet-scale, near realtime network traffic measurements. Beginning with an investigation of compromised machines scanning the Internet, nearly 50 TB of network traffic data was analyzed. This work discovers 856,625 compromised IP addresses, with 17,182 attributed to the Iranian Internet space. By the second day of the Internet shut down, these numbers dropped by 18.46% and 92.81%, respectively. Empirical analysis of the Internet-of-Things (IoT) paradigm revealed that over 90% of compromised Iranian hosts were fingerprinted as IoT devices, which saw a significant drop throughout the shutdown (96.17% decrease by the blackout's second day). Further examination correlates BGP reachability metrics and related data with geolocation databases to statistically evaluate the number of reachable Iranian ASNs (dropping from approximately 1100 to under 200 reachable networks). In-depth investigation reveals the top affected ASNs, providing network forensic evidence of the longitudinal unplugging of such key networks. Lastly, the impact's interruption of the Bitcoin cryptomining market is highlighted, disclosing a massive spike in unsuccessful (i.e., pending) transactions. When combined, these network traffic measurements provide a multidimensional perspective of the Iranian Internet shutdown.
2022-02-04
Biswas, Ananda, Dee, Timothy M., Guo, Yunxi, Li, Zelong, Tyagi, Akhilesh.  2021.  Multi-Granularity Control Flow Anomaly Detection with Hardware Counters. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :449—454.
Hardware counters are included in processors to count microarchitecture level events affecting performance. When control flow anomalies caused by attacks such as buffer overflow or return oriented programming (ROP) occur, they leave a microarchitectural footprint. Hardware counters reflect such footprints to flag control flow anomalies. This paper is geared towards buffer overflow and ROP control flow anomaly detection in embedded programs. The targeted program entities are main event loops and task/event handlers. Embedded systems also have enhanced need for variable anomaly detection time in order to meet the system response time requirements. We propose a novel repurposing of Patt-Yeh two level branch predictor data structure for abstracting/hashing HW counter signatures to support such variable anomaly detection times. The proposed anomaly detection mechanism is evaluated on some generic benchmark programs and ArduPilot - a popular autopilot software. Experimental evaluation encompasses both Intel X86 and ARM Cortex M processors. DWT within Cortex M provides sufficiently interesting program level event counts to capture these control flow anomalies. We are able to achieve 97-99%+ accuracy with 1-10 micro-second time overhead per anomaly check.
2022-03-01
Wang, Xingbin, Zhao, Boyan, HOU, RUI, Awad, Amro, Tian, Zhihong, Meng, Dan.  2021.  NASGuard: A Novel Accelerator Architecture for Robust Neural Architecture Search (NAS) Networks. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). :776–789.
Due to the wide deployment of deep learning applications in safety-critical systems, robust and secure execution of deep learning workloads is imperative. Adversarial examples, where the inputs are carefully designed to mislead the machine learning model is among the most challenging attacks to detect and defeat. The most dominant approach for defending against adversarial examples is to systematically create a network architecture that is sufficiently robust. Neural Architecture Search (NAS) has been heavily used as the de facto approach to design robust neural network models, by using the accuracy of detecting adversarial examples as a key metric of the neural network's robustness. While NAS has been proven effective in improving the robustness (and accuracy in general), the NAS-generated network models run noticeably slower on typical DNN accelerators than the hand-crafted networks, mainly because DNN accelerators are not optimized for robust NAS-generated models. In particular, the inherent multi-branch nature of NAS-generated networks causes unacceptable performance and energy overheads.To bridge the gap between the robustness and performance efficiency of deep learning applications, we need to rethink the design of AI accelerators to enable efficient execution of robust (auto-generated) neural networks. In this paper, we propose a novel hardware architecture, NASGuard, which enables efficient inference of robust NAS networks. NASGuard leverages a heuristic multi-branch mapping model to improve the efficiency of the underlying computing resources. Moreover, NASGuard addresses the load imbalance problem between the computation and memory-access tasks from multi-branch parallel computing. Finally, we propose a topology-aware performance prediction model for data prefetching, to fully exploit the temporal and spatial localities of robust NAS-generated architectures. We have implemented NASGuard with Verilog RTL. The evaluation results show that NASGuard achieves an average speedup of 1.74× over the baseline DNN accelerator.
2022-10-20
Boukela, Lynda, Zhang, Gongxuan, Yacoub, Meziane, Bouzefrane, Samia.  2021.  A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :374—379.
Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled. Therefore, in this paper, after highlighting these issues, we present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks. The IDS is composed of supervised and unsupervised modules, namely, a Deep Neural Network (DNN) and the K-Nearest Neighbors (KNN) algorithm, respectively. The proposed system is near-autonomous since the intervention of the expert is minimized through the active learning (AL) approach. A query strategy for the labeling process is presented, it aims at teaching the supervised module to detect unknown attacks and improve the detection of the already-known attacks. This teaching is achieved through sliding windows (SW) in an incremental fashion where the DNN is retrained when the data is available over time, thus rendering the IDS adaptive to cope with the evolutionary aspect of the network traffic. A set of experiments was conducted on the CICIDS2017 dataset in order to evaluate the performance of the IDS, promising results were obtained.
2022-05-06
Haugdal, Hallvar, Uhlen, Kjetil, Jóhannsson, Hjörtur.  2021.  An Open Source Power System Simulator in Python for Efficient Prototyping of WAMPAC Applications. 2021 IEEE Madrid PowerTech. :1–6.
An open source software package for performing dynamic RMS simulation of small to medium-sized power systems is presented, written entirely in the Python programming language. The main objective is to facilitate fast prototyping of new wide area monitoring, control and protection applications for the future power system by enabling seamless integration with other tools available for Python in the open source community, e.g. for signal processing, artificial intelligence, communication protocols etc. The focus is thus transparency and expandability rather than computational efficiency and performance.The main purpose of this paper, besides presenting the code and some results, is to share interesting experiences with the power system community, and thus stimulate wider use and further development. Two interesting conclusions at the current stage of development are as follows:First, the simulation code is fast enough to emulate real-time simulation for small and medium-size grids with a time step of 5 ms, and allows for interactive feedback from the user during the simulation. Second, the simulation code can be uploaded to an online Python interpreter, edited, run and shared with anyone with a compatible internet browser. Based on this, we believe that the presented simulation code could be a valuable tool, both for researchers in early stages of prototyping real-time applications, and in the educational setting, for students developing intuition for concepts and phenomena through real-time interaction with a running power system model.
2022-01-31
Mani, Santosh, Nene, Manisha J.  2021.  Preventing Distributed Denial of Service Attacks in Software Defined Mesh Networks. 2021 International Conference on Intelligent Technologies (CONIT). :1–7.
Mesh topology networks provide Network security in the form of redundancy of communication links. But redundancy also contributes to complexity in configuration and subsequent troubleshooting. Mesh topology deployed in Critical networks like Backbone Networks (used in Cloud Computing) deploy the Mesh topology provides additional security in terms of redundancy to ensure availability of services. One amongst most prominent attacks is Distributed Denial of Service attacks which cause an immense amount of loss of data as well as monetary losses to service providers. This paper proposes a method by which using SDN capabilities and sFlow-RT application, Distributed Denial of Service (DDoS) attacks is detected and consequently mitigated by using REST API to implement Policy Based Flow Management (PBFM) through the SDN Controller which will help in ensuring uninterrupted services in scenarios of such attacks and also further simply and enhance the management of Mesh architecture-based networks.
2022-03-01
Chen, Yefeng, Chen, Zhengxu.  2021.  Preventive Measures of Influencing Factors of Computer Network Security Technology. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1187–1191.
How to prevent the computer system from being interfered by external factors and maintain a strong working state is a problem that needs to be solved at present. At present, encryption and network security defense systems are important technical means of security defense. Based on this research background, the paper proposes an AES data encryption scheme in the Hadoop big data environment. The AES algorithm performs several rounds of plaintext encryption through the steps of round key addition, byte replacement, row displacement, column confusion, etc. Under the MapReduce architecture, the plaintext data is divided into multiple data fragments. The Map function is responsible for the AES algorithm encryption operation, and the Reduce function Combine encrypted data information. Finally, the paper designs a computer network security defense system that can actively discover the security threats in the network and effectively prevent them, so as to ensure the normal and safe operation of the network. At the same time, we use the encryption algorithm on the computer network security defense system. Experimental research has proved that this method can safely transmit network data packets. With the increase of computing cluster nodes, its encryption transmission efficiency continues to improve. This solution not only solves the problem of computer network data security encryption, but also realizes the parallel transmission of encrypted data in the information age.