Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-04-19
Boche, Holger, Schaefer, Rafael F., Vincent Poor, H..  2021.  Real Number Signal Processing Can Detect Denial-of-Service Attacks. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4765–4769.
Wireless communication systems are inherently vulnerable to adversarial attacks since malevolent jammers might jam and disrupt the legitimate transmission intentionally. Of particular interest are so- called denial-of-service (DoS) attacks in which the jammer is able to completely disrupt the communication. Accordingly, it is of crucial interest for the legitimate users to detect such DoS attacks. Turing machines provide the fundamental limits of today's digital computers and therewith of the traditional signal processing. It has been shown that these are incapable of detecting DoS attacks. This stimulates the question of how powerful the signal processing must be to enable the detection of DoS attacks. This paper investigates the general computation framework of Blum-Shub-Smale machines which allows the processing and storage of arbitrary reals. It is shown that such real number signal processing then enables the detection of DoS attacks.
2022-09-09
Liu, Pengcheng, Han, Zhen, Shi, Zhixin, Liu, Meichen.  2021.  Recognition of Overlapped Frequency Hopping Signals Based on Fully Convolutional Networks. 2021 28th International Conference on Telecommunications (ICT). :1—5.
Previous research on frequency hopping (FH) signal recognition utilizing deep learning only focuses on single-label signal, but can not deal with overlapped FH signal which has multi-labels. To solve this problem, we propose a new FH signal recognition method based on fully convolutional networks (FCN). Firstly, we perform the short-time Fourier transform (STFT) on the collected FH signal to obtain a two-dimensional time-frequency pattern with time, frequency, and intensity information. Then, the pattern will be put into an improved FCN model, named FH-FCN, to make a pixel-level prediction. Finally, through the statistics of the output pixels, we can get the final classification results. We also design an algorithm that can automatically generate dataset for model training. The experimental results show that, for an overlapped FH signal, which contains up to four different types of signals, our method can recognize them correctly. In addition, the separation of multiple FH signals can be achieved by a slight improvement of our method.
2022-03-01
Wu, Cong, Shi, Rong, Deng, Ke.  2021.  Reconnaissance and Experiment on 5G-SA Communication Terminal Capability and Identity Information. 2021 9th International Conference on Intelligent Computing and Wireless Optical Communications (ICWOC). :16–22.
With the rapid development of mobile communication technology, the reconnaissance on terminal capability and identity information is not only an important guarantee to maintain the normal order of mobile communication, but also an essential means to ensure the electromagnetic space security. According to the characteristics of 5G mobile communication terminal's transporting capability and identity information, the smart jamming is first used to make the target terminal away from the 5G network, and then the jamming is turned off at once. Next the terminal will return to the 5G network. Through the time-frequency matching detection method, interactive signals of random access process and network registration between the terminal and the base station are quickly captured in this process, and the scheduling information in Physical Downlink Control Channel (PDCCH) and the capability and identity information in Physical Uplink Shared Channel (PUSCH) are demodulated and decoded under non-cooperative conditions. Finally, the experiment is carried out on the actual 5G communication terminal of China Telecom. The capability and identity information of this terminal are extracted successfully in the Stand Alone (SA) mode, which verifies the effectiveness and correctness of the method. This is a significant technical foundation for the subsequent development on the 5G terminal control equipment.
2022-12-01
Feng, Shuai, Cetinkaya, Ahmet, Ishii, Hideaki, Tesi, Pietro, De Persis, Claudio.  2021.  Resilient Quantized Control under Denial-of-Service with the Application of Variable Bit Rate Quantization. 2021 European Control Conference (ECC). :509–514.
In this paper, we investigate a networked control problem in the presence of Denial-of-Service (DoS) attacks, which prevent transmissions over the communication network. The communication between the process and controller is also subject to bit rate constraints. For mitigating the influences of DoS attacks and bit rate constraints, we develop a variable bit rate (VBR) encoding-decoding protocol and quantized controller to stabilize the control system. We show that the system’s resilience against DoS under VBR is preserved comparing with those under constant bit rate (CBR) quantized control, with fewer bits transmitted especially when the attack levels are low. The proposed VBR quantized control framework in this paper is general enough such that the results of CBR quantized control under DoS and moreover the results of minimum bit rate in the absence of DoS can be recovered.
2022-11-18
Hariyanto, Budi, Ramli, Kalamullah, Suryanto, Yohan.  2021.  Risk Management System for Operational Services in Data Center : DC Papa Oscar Cikeas Case study. 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST). :118—123.
The presence of the Information Technology System (ITS) has become one of the components for basic needs that must be met in navigating through the ages. Organizational programs in responding to the industrial era 4.0 make the use of ITS is a must in order to facilitate all processes related to quality service in carrying out the main task of protecting and serving the community. The implementation of ITS is actually not easy forthe threat of challenges and disturbances in the form of risks haunts ITS's operations. These conditions must be able to be identified and analyzed and then action can be executed to reduce the negative impact, so the risks are acceptable. This research will study about ITS risk management using the the guideline of Information Technology Infrastructure Library (ITIL) to formulate an operational strategy in order ensure that STI services at the Papa Oscar Cikeas Data Center (DC) can run well in the form of recommendations. Based on a survey on the implementing elements of IT function, 82.18% of respondents considered that the IT services provided by DC were very important, 86.49% of respondents knew the importance of having an emergency plan to ensure their products and services were always available, and 67.17% of respondents believes that DC is well managed. The results of the study concludes that it is necessary to immediately form a structural DC organization to prepare a good path for the establishment of a professional data center in supporting public service information technology systems.
2022-02-04
Jinhui, Yuan, Hongwei, Zhou, Laisun, Zhang.  2021.  RSGX: Defeating SGX Side Channel Attack with Return Oriented Programming. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1094—1098.
Intel SGX provides a new method to protect software privacy data, but it faces the security risk of side channel attack. In our opinion, SGX side channel attack depend on the implicit mapping between control flow and data flow to infer privacy data indirectly with control flow. For this reason, we propose code reuse to construct dynamic control flow software. In this method, by loading a large number of related gadgets in advance, the software reset the software control data according to the original software semantics at runtime, so that the software control flow can change dynamically heavily. Based on code reuse, we make the software control flow change dynamically, and the mapping between control flow and data flow more complex and difficult to determine, which can increase the difficulty of SGX side channel attack.
2022-07-01
Tashman, Deemah H., Hamouda, Walaa.  2021.  Secrecy Analysis for Energy Harvesting-Enabled Cognitive Radio Networks in Cascaded Fading Channels. ICC 2021 - IEEE International Conference on Communications. :1—6.
Physical-layer security (PLS) for an underlay cognitive radio network (CRN)-based simultaneous wireless information and power transfer (SWIPT) over cascaded κ-µ fading channels is investigated. The network is composed of a pair of secondary users (SUs), a primary user (PU) receiver, and an eavesdropper attempting to intercept the data shared by the SUs. To improve the SUs’ data transmission security, we assume a full-duplex (FD) SU destination, which employs energy harvesting (EH) to extract the power required for generating jamming signals to be emitted to confound the eavesdropper. Two scenarios are presented and compared; harvesting and non-harvesting eavesdropper. Moreover, a trade-off between the system’s secrecy and reliability is explored. PLS is studied in terms of the probability of non-zero secrecy capacity and the intercept probability, whereas the reliability is studied in terms of the outage probability. Results reveal the great impact of jamming over the improvement of the SUs’ secrecy. Additionally, our work indicates that studying the system’s secrecy over cascaded channels has an influence on the system’s PLS that cannot be neglected.
2022-05-10
Ben, Yanglin, Chen, Ming, Cao, Binghao, Yang, Zhaohui, Li, Zhiyang, Cang, Yihan, Xu, Zheng.  2021.  On Secrecy Sum-Rate of Artificial-Noise-Aided Multi-user Visible Light Communication Systems. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Recently, the physical layer security (PLS) is becoming an important research area for visible light communication (VLC) systems. In this paper, the secrecy rate performance is investigated for an indoor multi-user visible light communication (VLC) system using artificial noise (AN). In the considered model, all users simultaneously communicate with the legitimate receiver under wiretap channels. The legitimate receiver uses the minimum mean squared error (MMSE) equalizer to detect the received signals. Both lower bound and upper bound of the secrecy rate are obtained for the case that users' signals are uniformly distributed. Simulation results verify the theoretical findings and show the system secrecy rate performance for various positions of illegal eavesdropper.
2022-05-09
Aman, Mohd, Verma, Prashant, Rajeswari, D.  2021.  Secure Cloud Data Deduplication with Efficient Re-Encryption. 2021 International Conference on Intelligent Technologies (CONIT). :1–4.
After the emergence of the cloud architecture, many companies migrate their data from conventional storage i.e., on bare metal to the cloud storage. Since then huge amount of data was stored on cloud servers, which later resulted in redundancy of huge amount of data. Hence in this cloud world, many data de-duplication techniques has been widely used. Not only the redundancy but also made data more secure and privacy of the existing data were also increased. Some techniques got limitations and some have their own advantages based on the requirements. Some of the attributes like data privacy, tag regularity and interruption to brute-force attacks. To make data deduplication technique more efficient based on the requirements. This paper will discuss schemes that brace user-defined access control, by allowing the service provider to get information of the information owners. Thus our scheme eliminates redundancy of the data without breaching the privacy and security of clients that depends on service providers. Our lastest deduplication scheme after performing various algorithms resulted in conclusion and producing more efficient data confidentiality and tag consistency. This paper has discussion on various techniques and their drawbacks for the effectiveness of the deduplication.
2022-05-06
Yu, Xiujun, Chen, Huifang, Xie, Lei.  2021.  A Secure Communication Protocol between Sensor Nodes and Sink Node in Underwater Acoustic Sensor Networks. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :279—283.
Underwater acoustic sensor networks (UASNs) have been receiving more and more attention due to their wide applications and the marine data collection is one of the important applications of UASNs. However, the openness and unreliability of underwater acoustic communication links and the easy capture of underwater wireless devices make UASNs vulnerable to various attacks. On the other hand, due to the limited resources of underwater acoustic network nodes, the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels, many mature security mechanisms in terrestrial wireless sensor networks cannot be applied in the underwater environment [1]. In this paper, a secure communication protocol for marine data collection was proposed to ensure the confidentiality and data integrity of communication between under sensor nodes and the sink node in UASNs.
2022-05-10
Qian, Lei, Chi, Xuefen, Zhao, Linlin, Chaaban, Anas.  2021.  Secure Visible Light Communications via Intelligent Reflecting Surfaces. ICC 2021 - IEEE International Conference on Communications. :1–6.
Intelligent reflecting surfaces (IRS) can improve the physical layer security (PLS) by providing a controllable wireless environment. In this paper, we propose a novel PLS technique with the help of IRS implemented by an intelligent mirror array for the visible light communication (VLC) system. First, for the IRS aided VLC system containing an access point (AP), a legitimate user and an eavesdropper, the IRS channel gain and a lower bound of the achievable secrecy rate are derived. Further, to enhance the IRS channel gain of the legitimate user while restricting the IRS channel gain of the eavesdropper, we formulate an achievable secrecy rate maximization problem for the proposed IRS-aided PLS technique to find the optimal orientations of mirrors. Since the sensitivity of mirrors’ orientations on the IRS channel gain makes the optimization problem hard to solve, we transform the original problem into a reflected spot position optimization problem and solve it by a particle swarm optimization (PSO) algorithm. Our simulation results show that secrecy performance can be significantly improved by adding an IRS in a VLC system.
2022-07-29
Gallus, Petr, Frantis, Petr.  2021.  Security analysis of the Raspbian Linux operating system and its settings to increase resilience against attacks via network interface. 2021 International Conference on Military Technologies (ICMT). :1—5.

The Internet, originally an academic network for the rapid exchange of information, has moved over time into the commercial media, business and later industrial communications environment. Recently, it has been included as a part of cyberspace as a combat domain. Any device connected to the unprotected Internet is thus exposed to possible attacks by various groups and individuals pursuing various criminal, security and political objectives. Therefore, each such device must be set up to be as resistant as possible to these attacks. For the implementation of small home, academic or industrial systems, people very often use small computing system Raspberry PI, which is usually equipped with the operating system Raspbian Linux. Such a device is often connected to an unprotected Internet environment and if successfully attacked, can act as a gateway for an attacker to enter the internal network of an organization or home. This paper deals with security configuration of Raspbian Linux operating system for operation on public IP addresses in an unprotected Internet environment. The content of this paper is the conduction and analysis of an experiment in which five Raspbian Linux/Raspberry PI accounts were created with varying security levels; the easiest to attack is a simulation of the device of a user who has left the system without additional security. The accounts that follow gradually add further protection and security. These accounts are used to simulate a variety of experienced users, and in a practical experiment the effects of these security measures are evaluated; such as the number of successful / unsuccessful attacks; where the attacks are from; the type and intensity of the attacks; and the target of the attack. The results of this experiment lead to formulated conclusions containing an analysis of the attack and subsequent design recommendations and settings to secure such a device. The subsequent section of the paper discusses the implementation of a simple TCP server that is configured to listen to incoming traffic on preset ports; it simulates the behaviour of selected services on these ports. This server's task is to intercept unauthorized connection attempts to these ports and intercepting attempts to communicate or attack these services. These recorded attack attempts are analyzed in detail and formulated in the conclusion, including implications for the security settings of such a device. The overall result of this paper is the recommended set up of operating system Raspbian Linux to work on public IP addresses in an unfiltered Internet environment.

2022-07-01
Xie, Yuncong, Ren, Pinyi, Xu, Dongyang, Li, Qiang.  2021.  Security and Reliability Performance Analysis for URLLC With Randomly Distributed Eavesdroppers. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.
This paper for the first time investigate the security and reliability performance of ultra-reliable low-latency communication (URLLC) systems in the presence of randomly distributed eavesdroppers, where the impact of short blocklength codes and imperfect channel estimation are jointly considered. Based on the finite-blocklength information theory, we first derive a closed-form approximation of transmission error probability to describe the degree of reliability loss. Then, we also derive an asymptotic expression of intercept probability to characterize the security performance, where the impact of secrecy protected zone is also considered. Simulation and numerical results validate the accuracy of theoretical approximations, and illustrate the tradeoff between security and reliability. That is, the intercept probability of URLLC systems can be suppressed by loosening the reliability requirement, and vice versa. More importantly, the theoretical analysis and methodologies presented in this paper can offer some insights and design guidelines for supporting secure URLLC applications in the future 6G wireless networks.
2022-11-18
Dubasi, Yatish, Khan, Ammar, Li, Qinghua, Mantooth, Alan.  2021.  Security Vulnerability and Mitigation in Photovoltaic Systems. 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). :1—7.
Software and firmware vulnerabilities pose security threats to photovoltaic (PV) systems. When patches are not available or cannot be timely applied to fix vulnerabilities, it is important to mitigate vulnerabilities such that they cannot be exploited by attackers or their impacts will be limited when exploited. However, the vulnerability mitigation problem for PV systems has received little attention. This paper analyzes known security vulnerabilities in PV systems, proposes a multi-level mitigation framework and various mitigation strategies including neural network-based attack detection inside inverters, and develops a prototype system as a proof-of-concept for building vulnerability mitigation into PV system design.
2022-07-01
Mani, Santosh, Nene, Manisha J.  2021.  Self-organizing Software Defined Mesh Networks to Counter Failures and Attacks. 2021 International Conference on Intelligent Technologies (CONIT). :1–7.
With current Traditional / Legacy networks, the reliance on manual intervention to solve a variety of issues be it primary operational functionalities like addressing Link-failure or other consequent complexities arising out of existing solutions for challenges like Link-flapping or facing attacks like DDoS attacks is substantial. This physical and manual approach towards network configurations to make significant changes result in very slow updates and increased probability of errors and are not sufficient to address and support the rapidly shifting workload of the networks due to the fact that networking decisions are left to the hands of physical networking devices. With the advent of Software Defined Networking (SDN) which abstracts the network functionality planes, separating it from physical hardware – and decoupling the data plane from the control plane, it is able to provide a degree of automation for the network resources and management of the services provided by the network. This paper explores some of the aspects of automation provided by SDN capabilities in a Mesh Network (provides Network Security with redundancy of communication links) which contribute towards making the network inherently intelligent and take decisions without manual intervention and thus take a step towards Intelligent Automated Networks.
2022-03-10
Zhang, Zhongtang, Liu, Shengli, Yang, Qichao, Guo, Shichen.  2021.  Semantic Understanding of Source and Binary Code based on Natural Language Processing. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:2010—2016.
With the development of open source projects, a large number of open source codes will be reused in binary software, and bugs in source codes will also be introduced into binary codes. In order to detect the reused open source codes in binary codes, it is sometimes necessary to compare and analyze the similarity between source codes and binary codes. One of the main challenge is that the compilation process can generate different binary code representations for the same source code, such as different compiler versions, compilation optimization options and target architectures, which greatly increases the difficulty of semantic similarity detection between source code and binary code. In order to solve the influence of the compilation process on the comparison of semantic similarity of codes, this paper transforms the source code and binary code into LLVM intermediate representation (LLVM IR), which is a universal intermediate representation independent of source code and binary code. We carry out semantic feature extraction and embedding training on LLVM IR based on natural language processing model. Experimental results show that LLVM IR eliminates the influence of compilation on the syntax differences between source code and binary code, and the semantic features of code are well represented and preserved.
2022-04-19
Mu, Jing, Jia, Xia.  2021.  Simulation and Analysis of the Influence of Artificial Interference Signal Style on Wireless Security System Performance. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:2106–2109.
Aimming at the severe security threat faced by information transmission in wireless communication, the artificial interference in physical layer security technology was considered, and the influence of artificial interference signal style on system information transmission security was analyzed by simulation, which provided technical accumulation for the design of wireless security transmission system based on artificial interference.
2022-03-01
Varadharajan, Vijay, Tupakula, Uday, Karmakar, Kallol Krishna.  2021.  Software Enabled Security Architecture and Mechanisms for Securing 5G Network Services. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :273–277.
The 5G network systems are evolving and have complex network infrastructures. There is a great deal of work in this area focused on meeting the stringent service requirements for the 5G networks. Within this context, security requirements play a critical role as 5G networks can support a range of services such as healthcare services, financial and critical infrastructures. 3GPP and ETSI have been developing security frameworks for 5G networks. Our work in 5G security has been focusing on the design of security architecture and mechanisms enabling dynamic establishment of secure and trusted end to end services as well as development of mechanisms to proactively detect and mitigate security attacks in virtualised network infrastructures. The focus of this paper is on the latter, namely the facilities and mechanisms, and the design of a security architecture providing facilities and mechanisms to detect and mitigate specific security attacks. We have developed a simplified version of the security architecture using Software Defined Networks (SDN) and Network Function Virtualisation (NFV) technologies. The specific security functions developed in this architecture can be directly integrated into the 5G core network facilities enhancing its security.
2022-05-10
Chen, Jian, Shu, Tao.  2021.  Spoofing Detection for Indoor Visible Light Systems with Redundant Orthogonal Encoding. ICC 2021 - IEEE International Conference on Communications. :1–6.
As more and more visible light communication (VLC) and visible light sensing (VLS) systems are mounted on today’s light fixtures, how to guarantee the authenticity of the visible light (VL) signal in these systems becomes an urgent problem. This is because almost all of today’s light fixtures are unprotected and can be openly accessed by almost anyone, and hence are subject to tampering and substitution attacks. In this paper, by exploiting the intrinsic linear superposition characteristics of visible light, we propose VL-Watchdog, a scalable and always-on signal-level spoofing detection framework that is applicable to both VLC and VLS systems. VL-Watchdog is based on redundant orthogonal encoding of the transmitted visible light, and can be implemented as a small hardware add-on to an existing VL system. The effectiveness of the proposed framework was validated through extensive numerical evaluations against a comprehensive set of factors.
2022-03-01
Chen, Chen, Song, Li, Bo, Cao, Shuo, Wang.  2021.  A Support Vector Machine with Particle Swarm Optimization Grey Wolf Optimizer for Network Intrusion Detection. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :199–204.
Support Vector Machine (SVM) is a relatively novel classification technology, which has shown higher performance than traditional learning methods in many applications. Therefore, some security researchers have proposed an intrusion detection method based on SVM. However, the SVM algorithm is very sensitive to the choice of kernel function and parameter adjustment. Once the parameter selection is unscientific, it will lead to poor classification accuracy. To solve this problem, this paper presents a Grey Wolf Optimizer Algorithm based on Particle Swarm Optimization (PSOGWO) algorithm to improve the Intrusion Detection System (IDS) based on SVM. This method uses PSOGWO algorithm to optimize the parameters of SVM to improve the overall performance of intrusion detection based on SVM. The "optimal detection model" of SVM classifier is determined by the fusion of PSOGWO algorithm and SVM. The comparison experiments based on NSL-KDD dataset show that the intrusion detection method based on PSOGWO-SVM achieves the optimization of the parameters of SVM, and has improved significantly in terms of detection rate, convergence speed and model balance. This shows that the method has better performance for network intrusion detection.
2022-02-08
Shukla, Mukul, Joshi, Brijendra Kumar.  2021.  A Trust Based Approach to Mitigate Wormhole Attacks in Mobile Adhoc Networks. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). :776–782.
MANET stands for Mobile ad-hoc network, which is also known as a wireless network. It provides a routable networking environment which does not have a centralized infrastructure. MANET is used in many important sectors like economic sector (corporate field), security sector (military field), education sector (video conferences and lectures), law sector (law enforcement) and many more. Even though it plays a vital role in different sectors and improves its economic growth, security is a major concern in MANET. Due to lack of inbuilt security, several attacks like data traffic attack, control traffic attack. The wormhole is a kind of control traffic attack which forms wormhole link between nodes. In this paper, we have proposed an approach to detect and get rid of the wormhole attack. The proposed approach is based on trust values, which will decide whether nodes are affected by using parameters like receiving time and data rate. On evaluation, we have concluded that the wormhole attack decreases the network's performance while using trusted approach its value increases. Means PDR and throughput return best results for the affected network while in case of end to end delay it returns similar results as of unaffected network.
2022-07-29
de Souza Donato, Robson, de Aguiar, Marlius Hudson, Cruz, Roniel Ferreira, Vitorino, Montiê Alves, de Rossiter Corrêa, Maurício Beltrão.  2021.  Two-Switch Zeta-Based Single-Phase Rectifier With Inherent Power Decoupling And No Extra Buffer Circuit. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC). :1830–1836.
In some single-phase systems, power decoupling is necessary to balance the difference between constant power at load side and double-frequency ripple power at AC side. The application of active power decoupling methods aim to smooth this power oscillatory component, but, in general, these methods require the addition of many semiconductor devices and/or energy storage components, which is not lined up with achieving low cost, high efficiency and high power quality. This paper presents the analysis of a new single-phase rectifier based on zeta topology with power decoupling function and power factor correction using only two active switches and without extra reactive components. Its behavior is based on three stages of operation in a switching period, such that the power oscillating component is stored in one of the inherent zeta inductor. The theoretical foundation that justifies its operation is presented, as well as the simulation and experimental results to validate the applied concepts.
2022-05-06
Bai, Zilong, Hu, Beibei.  2021.  A Universal Bert-Based Front-End Model for Mandarin Text-To-Speech Synthesis. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :6074–6078.
The front-end text processing module is considered as an essential part that influences the intelligibility and naturalness of a Mandarin text-to-speech system significantly. For commercial text-to-speech systems, the Mandarin front-end should meet the requirements of high accuracy and low time latency while also ensuring maintainability. In this paper, we propose a universal BERT-based model that can be used for various tasks in the Mandarin front-end without changing its architecture. The feature extractor and classifiers in the model are shared for several sub-tasks, which improves the expandability and maintainability. We trained and evaluated the model with polyphone disambiguation, text normalization, and prosodic boundary prediction for single task modules and multi-task learning. Results show that, the model maintains high performance for single task modules and shows higher accuracy and lower time latency for multi-task modules, indicating that the proposed universal front-end model is promising as a maintainable Mandarin front-end for commercial applications.
2021-11-29
AlShiab, Ismael, Leivadeas, Aris, Ibnkahla, Mohamed.  2021.  Virtual Sensing Networks and Dynamic RPL-Based Routing for IoT Sensing Services. ICC 2021 - IEEE International Conference on Communications. :1–6.
IoT applications are quickly evolving in scope and objectives while their focus is being shifted toward supporting dynamic users’ requirements. IoT users initiate applications and expect quick and reliable deployment without worrying about the underlying complexities of the required sensing and routing resources. On the other hand, IoT sensing nodes, sinks, and gateways are heterogeneous, have limited resources, and require significant cost and installation time. Sensing network-level virtualization through virtual Sensing Networks (VSNs) could play an important role in enabling the formation of virtual groups that link the needed IoT sensing and routing resources. These VSNs can be initiated on-demand with the goal to satisfy different IoT applications’ requirements. In this context, we present a joint algorithm for IoT Sensing Resource Allocation with Dynamic Resource-Based Routing (SRADRR). The SRADRR algorithm builds on the current distinguished empowerment of sensing networks using recent standards like RPL and 6LowPAN. The proposed algorithm suggests employing the RPL standard concepts to create DODAG routing trees that dynamically adapt according to the available sensing resources and the requirements of the running and arriving applications. Our results and implementation of the SRADRR reveal promising enhancements in the overall applications deployment rate.
2022-07-29
Liu, Wei, Zhao, Tao.  2021.  Vulnerability Assessment and Attack Simulation of Power IoT Based on the Attractiveness of Equipment Assets. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:1246—1250.
With the rapid development of the electric power Internet-of-Things (power IoT) technology and the widespread use of general-purpose software, hardware and network facilities, the power IoT has become more and more open, which makes the traditional power system face new cyber security threats. In order to find the vulnerable device nodes and attack links in the power IoT system, this paper studies a set of attack path calculation methods and vulnerability node discovery algorithms, which can construct a power IoT attack simulation program based on the value of equipment assets and information attributes. What’s more, this paper has carried on the example analysis and verification on the improved IEEE RBTS Bus 2 system. Based on the above research plan, this paper finally developed a set of power IoT attack simulation tool based on distribution electronic stations, which can well find the vulnerable devices in the system.