Biblio
Filters: Keyword is Resiliency  [Clear All Filters]
.  
2020.  Hardware Trojans Detection Based on BP Neural Network. 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). :149–150.
This paper uses side channel analysis to detect hardware Trojan based on back propagation neural network. First, a power consumption collection platform is built to collect power waveforms, and the amplifier is utilized to amplify power consumption information to improve the detection accuracy. Then the small difference between the power waveforms is recognized by the back propagation neural network to achieve the purpose of detection. This method is validated on Advanced Encryption Standard circuit. Results show this method is able to identify the circuits with a Trojan occupied 0.19% of Advanced Encryption Standard circuit. And the detection accuracy rate can reach 100%.
.  
2020.  Hardware-Assisted Isolation Technologies: Security Architecture and Vulnerability Analysis. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–8.
Hardware-assisted isolation technology provide a Trusted Execution Environment (TEE) for the Trusted Computing Base (TCB) of a system. Since there is no standardization for such systems, many technologies using different approaches have been implemented over time. Before selecting or implementing a TEE, it is essential to understand the security architecture, features and analyze the technologies with respect to the new security vulnerabilities (i.e. Micro-architectural class of vulnerabilities). These technologies can be divided into two main types: 1) Isolation by software virtualization and 2) Isolation by hardware. In this paper, we discuss technology implementation of each type i.e. Intel SGX and ARM TrustZone for type-1; Intel ME and AMD Secure Processor for type-2. We also cover the vulnerability analysis against each technology with respect to the latest discovered attacks. This would enable a user to precisely appreciate the security capabilities of each technology.
.  
2020.  Hash Retrieval Method for Recaptured Images Based on Convolutional Neural Network. 2020 2nd World Symposium on Artificial Intelligence (WSAI). :79–83.
For the purpose of outdoor advertising market researching, AD images are recaptured and uploaded everyday for statistics. But the quality of the recaptured advertising images are often affected by conditions such as angle, distance, and light during the shooting process, which consequently reduce either the speed or the accuracy of the retrieving algorithm. In this paper, we proposed a hash retrieval method based on convolutional neural networks for recaptured images. The basic idea is to add a hash layer to the convolutional neural network and then extract the binary hash code output by the hash layer to perform image retrieval in lowdimensional Hamming space. Experimental results show that the retrieval performance is improved compared with the current commonly used hash retrieval methods.
.  
2020.  HBD-Authority: Streaming Access Control Model for Hadoop. 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys). :16–25.
Big data analytics, in essence, is becoming the revolution of business intelligence around the world. This momentum has given rise to the hype around analytic technologies, including Apache Hadoop. Hadoop was not originally developed with security in mind. Despite the evolving efforts to integrate security in Hadoop through developing new tools (e.g., Apache Sentry and Ranger) and employing traditional mechanisms (e.g., Kerberos and LDAP), they mainly focus on providing encryption and authentication features, albeit with limited authorization support. Existing solutions in the literature extended these evolving efforts. However, they suffer from limitations, hindering them from providing robust authorization that effectively meets the unique requirements of big data environments. Towards covering this gap, this paper proposes a hybrid authority (HBD-Authority) as a formal attribute-based access control model with context support. This model is established on a novel hybrid approach of authorization transparency that pertains to three fundamental properties of accuracy: correctness, security, and completeness. The model leverages streaming data analytics to foster distributed parallel processing capabilities that achieve multifold benefits: a) efficiently managing the security policies and promptly updating the privileges assigned to a high number of users interacting with the analytic services; b) swiftly deciding and enforcing authorization of requests over data characterized by the 5Vs; and c) providing dynamic protection for data which is frequently updated. The implementation details and experimental evaluation of the proposed model are presented, demonstrating its performance efficiency.
.  
2020.  Head(er)Hunter: Fast Intrusion Detection using Packet Metadata Signatures. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
More than 75% of the Internet traffic is now encrypted, while this percentage is constantly increasing. The majority of communications are secured using common encryption protocols such as SSL/TLS and IPsec to ensure security and protect the privacy of Internet users. Yet, encryption can be exploited to hide malicious activities. Traditionally, network traffic inspection is based on techniques like deep packet inspection (DPI). Common applications for DPI include but are not limited to firewalls, intrusion detection and prevention systems, L7 filtering and packet forwarding. The core functionality of such DPI implementations is based on pattern matching that enables searching for specific strings or regular expressions inside the packet contents. With the widespread adoption of network encryption though, DPI tools that rely on packet payload content are becoming less effective, demanding the development of more sophisticated techniques in order to adapt to current network encryption trends. In this work, we present HeaderHunter, a fast signature-based intrusion detection system even in encrypted network traffic. We generate signatures using only network packet metadata extracted from packet headers. Also, to cope with the ever increasing network speeds, we accelerate the inner computations of our proposed system using off-the-shelf GPUs.
.  
2020.  High Precision Laser Fault Injection Using Low-Cost Components.. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :219–228.
This paper demonstrates that it is possible to execute sophisticated and powerful fault injection attacks on microcontrollers using low-cost equipment and readily available components. Earlier work had implied that powerful lasers and high grade optics frequently used to execute such attacks were being underutilized and that attacks were equally effective when using low-power settings and imprecise focus. This work has exploited these earlier findings to develop a low-cost laser workstation capable of generating multiple discrete faults with timing accuracy capable of targeting consecutive instruction cycles. We have shown that the capabilities of this new device exceed those of the expensive laboratory equipment typically used in related work. We describe a simplified fault model to categorize the effects of induced errors on running code and use it, along with the new device, to reevaluate the efficacy of different defensive coding techniques. This has enabled us to demonstrate an efficient hybrid defense that outperforms the individual defenses on our chosen target. This approach enables device programmers to select an appropriate compromise between the extremes of undefended code and unusable overdefended code, to do so specifically for their chosen device and without the need for prohibitively expensive equipment. This work has particular relevance in the burgeoning IoT world where many small companies with limited budgets are deploying low-cost microprocessors in ever more security sensitive roles.
.  
2020.  Highly Secured all Optical DIM Codes using AND Gate. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :64—68.
Optical Code Division Multiple Access (OCDMA) is an inevitable innovation to cope up with the impediments of regularly expanding information traffic and numerous user accesses in optical systems. In Spectral Amplitude Coding (SAC)-OCDMA systems cross correlation and Multiple Access Interference (MAI) are utmost concerns. For eliminating the cross correlation, reducing the MAI and to enhance the security, in this work, all optical Diagonal Identity Matrices codes (DIM) with Zero Cross-Correlation (ZCC) and optical gating are presented. Chip rate of the proposed work is 0.03 ns and total 60 users are considered with semiconductor optical amplifier based AND operation. Effects of optical gating are analyzed in the presence/absence of eavesdropper in terms of Q factor and received extinction ratio. Proposed system has advantages for service provider because this is mapping free technique and can be easily designed for large number of users.
.  
2020.  A Hole in the Ladder : Interleaved Variables in Iterative Conditional Branching. 2020 IEEE 27th Symposium on Computer Arithmetic (ARITH). :56–63.
The modular exponentiation is crucial to the RSA cryptographic protocol, and variants inspired by the Montgomery ladder have been studied to provide more secure algorithms. In this paper, we abstract away the iterative conditional branching used in the Montgomery ladder, and formalize systems of equations necessary to obtain what we call the semi-interleaved and fully-interleaved ladder properties. In particular, we design fault-injection attacks able to obtain bits of the secret against semi-interleaved ladders, including the Montgomery ladder, but not against fully-interleaved ladders that are more secure. We also apply these equations to extend the Montgomery ladder for both the semi- and fully-interleaved cases, thus proposing novel and more secure algorithms to compute the modular exponentiation.
.  
2020.  Horizontal Correlation Analysis of Elliptic Curve Diffie Hellman. 2020 3rd International Conference on Information and Computer Technologies (ICICT). :511–519.
The world is facing a new revolutionary technology transition, Internet of things (IoT). IoT systems requires secure connectivity of distributed entities, including in-field sensors. For such external devices, Side Channel Analysis poses a potential threat as it does not require complete knowledge about the crypto algorithm. In this work, we perform Horizontal Correlation Power Analysis (HCPA) which is a type of Side Channel Analysis (SCA) over the Elliptic Curve Diffie Hellman (ECDH) key exchange protocol. ChipWhisperer (CW) by NewAE Technologies is an open source toolchain which is utilized to perform the HCPA by using CW toolchain. To best of our knowledge, this is the first attempt to implemented ECDH on Artix-7 FPGA for HCPA. We compare our correlation results with the results from AES -128 bits provided by CW. Our point of attack is the Double and Add algorithm which is used to perform Scalar multiplication in ECC. We obtain a maximum correlation of 7% for the key guess using the HCPA. We also discuss about the possible cause for lower correlation and few potentials ways to improve it. In Addition to HCPA we also perform Simple Power Analysis (SPA) (visual) for ECDH, to guess the trailing zeros in the 128-bit secret key for different power traces.
.  
2020.  Host-Oriented Approach to Cyber Security for the SCADA Systems. 2020 6th IEEE Congress on Information Science and Technology (CiSt). :151—155.
Recent cyberattacks targeting Supervisory Control and Data Acquisition (SCADA)/Industrial Control System(ICS) exploit weaknesses of host system software environment and take over the control of host processes in the host of the station network. We analyze the attack path of these attacks, which features how the attack hijacks the host in the network and compromises the operations of field device controllers. The paper proposes a host-based protection method, which can prevent malware penetration into the process memory by code injection attacks. The method consists of two protection schemes. One is to prevent file-based code injection such as DLL injection. The other is to prevent fileless code injection. The method traces changes in memory regions and determine whether the newly allocated memory is written with malicious codes. For this method, we show how a machine learning method can be adopted.
.  
2020.  A Hybrid Approach for Fast Anomaly Detection in Controller Area Networks. 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–6.
Recent advancements in the field of in-vehicle network and wireless communication, has been steadily progressing. Also, the advent of technologies such as Vehicular Adhoc Networks (VANET) and Intelligent Transportation System (ITS), has transformed modern automobiles into a sophisticated cyber-physical system rather than just a isolated mechanical device. Modern automobiles rely on many electronic control units communicating over the Controller Area Network (CAN) bus. Although protecting the car's external interfaces is an vital part of preventing attacks, detecting malicious activity on the CAN bus is an effective second line of defense against attacks. This paper proposes a hybrid anomaly detection system for CAN bus based on patterns of recurring messages and time interval of messages. The proposed method does not require modifications in CAN bus. The proposed system is evaluated on real CAN bus traffic with simulated attack scenarios. Results obtained show that our proposed system achieved a good detection rate with fast response times.
.  
2020.  Hybrid Blockchain-Based Unification ID in Smart Environment. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :166–170.
Recently, with the increase of smart factories, smart cities, and the 4th industrial revolution, internal user authentication is emerging as an important issue. The existing user authentication and Access Control architecture can use the centralized system to forge access history by the service manager, which can cause problems such as evasion of responsibility and internal corruption. In addition, the user must independently manage the ID or physical authentication medium for authentication of each service, it is difficult to manage the subscribed services. This paper proposes a Hybrid blockchain-based integrated ID model to solve the above problems. The user creates authentication information based on the electronic signature of the Ethereum Account, a public blockchain, and provides authentication to a service provider composed of a Hyperledger Fabric, a private blockchain. The service provider ensures the integrity of the information by recording the Access History and authentication information in the Internal-Ledger. Through the proposed architecture, we can integrate the physical pass or application for user authentication and authorization into one Unification ID. Service providers can prevent non-Repudiation of responsibility by recording their authority and access history in ledger.
.  
2020.  A Hybrid Feature Extraction Network for Intrusion Detection Based on Global Attention Mechanism. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :481—485.
The widespread application of 5G will make intrusion detection of large-scale network traffic a mere need. However, traditional intrusion detection cannot meet the requirements by manually extracting features, and the existing AI methods are also relatively inefficient. Therefore, when performing intrusion detection tasks, they have significant disadvantages of high false alarm rates and low recognition performance. For this challenge, this paper proposes a novel hybrid network, RULA-IDS, which can perform intrusion detection tasks by great amount statistical data from the network monitoring system. RULA-IDS consists of the fully connected layer, the feature extraction layer, the global attention mechanism layer and the SVM classification layer. In the feature extraction layer, the residual U-Net and LSTM are used to extract the spatial and temporal features of the network traffic attributes. It is worth noting that we modified the structure of U-Net to suit the intrusion detection task. The global attention mechanism layer is then used to selectively retain important information from a large number of features and focus on those. Finally, the SVM is used as a classifier to output results. The experimental results show that our method outperforms existing state-of-the-art intrusion detection methods, and the accuracies of training and testing are improved to 97.01% and 98.19%, respectively, and presents stronger robustness during training and testing.
.  
2020.  Hybrid Network Mobility Support in Named Data Networking. 2020 International Conference on Information Networking (ICOIN). :16–19.
Named Data Networking (NDN) is a promising Internet architecture which is expected to solve some problems (e.g., security, mobility) of the current TCP/IP architecture. The basic concept of NDN is to use named data for routing instead of using location addresses like IP address. NDN natively supports consumer mobility, but producer mobility is still a challenge and there have been quite a few researches. Considering the Internet connection such as public transport vehicles, network mobility support in NDN is important, but it is still a challenge. That is the reason that this paper proposes an efficient network mobility support scheme in NDN in terms of signaling protocols and data retrieval.
.  
2020.  HybridCache: AI-Assisted Cloud-RAN Caching with Reduced In-Network Content Redundancy. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
The ever-increasing growth of urban populations coupled with recent mobile data usage trends has led to an unprecedented increase in wireless devices, services and applications, with varying quality of service needs in terms of latency, data rate, and connectivity. To cope with these rising demands and challenges, next-generation wireless networks have resorted to cloud radio access network (Cloud-RAN) technology as a way of reducing latency and network traffic. A concrete example of this is New York City's LinkNYC network infrastructure, which replaces the city's payphones with kiosk-like structures, called Links, to provide fast and free public Wi-Fi access to city users. When enabled with data storage capability, these Links can, for example, play the role of edge cloud devices to allow in-network content caching so that access latency and network traffic are reduced. In this paper, we propose HybridCache, a hybrid proactive and reactive in-network caching scheme that reduces content access latency and network traffic congestion substantially. It does so by first grouping edge cloud devices in clusters to minimize intra-cluster content access latency and then enabling cooperative-proactively and reactively-caching using LSTM-based prediction to minimize in-network content redundancy. Using the LinkNYC network as the backbone infrastructure for evaluation, we show that HybridCache reduces the number of hops that content needs to traverse and increases cache hit rates, thereby reducing both network traffic and content access latency.
.  
2020.  Hyper Secure Cognitive Radio Communications in an Internet of Space Things Network Based on the BB84 Protocol. 2020 Intermountain Engineering, Technology and Computing (IETC). :1–5.
Once constellation of satellites are working in a collaborative manner, the security of their messages would have to be highly secure from all angles of scenarios by which the praxis of eavesdropping constitutes a constant thread for the instability of the different tasks and missions. In this paper we employ the Bennet-Brassard commonly known as the BB84 protocol in conjunction to the technique of Cognitive Radio applied to the Internet of Space Things to build a prospective technology to guarantee the communications among geocentric orbital satellites. The simulations have yielded that for a constellation of 5 satellites, the probability of successful of completion the communication might be of order of 75% ±5%.
.  
2020.  A Hypergame‐Based Defense Strategy Toward Cyber Deception in Internet of Battlefield Things (IoBT). Modeling and Design of Secure Internet of Things. :59–77.
In this chapter, we develop a defense strategy to secure Internet of Battlefield Things (IoBT) based on a hypergame employing deceptive techniques. The hypergame is played multiple rounds. At each round, the adversary updates its perception of the attack graph and chooses the next node to compromise. The defender updates its perceived list of compromised nodes and actively feeds false signals to the adversary to create deception. The hypergame developed in this chapter provides an important theoretical framework for us to model how a cyberattack spreads on a network and the interaction between the adversary and the defender. It also provides quantitative metrics such as the time it takes the adversary to explore the network and compromise the target nodes. Based on these metrics, the defender can reboot the network devices and reset the network topology in time to clean up all potentially compromised devices and to protect the critical nodes. The hypergame provides useful guidance on how to create cyber deceptions so that the adversary cannot obtain information about the correct network topology and can be deterred from reaching the target critical nodes on a military network while it is in service.
.  
2020.  Identification of Computer Displays Through Their Electromagnetic Emissions Using Support Vector Machines. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.
As a TEMPEST information security problem, electromagnetic emissions from the computer displays can be captured, and reconstructed using signal processing techniques. It is necessary to identify the display type to intercept the image of the display. To determine the display type not only significant for attackers but also for protectors to prevent display compromising emanations. This study relates to the identification of the display type using Support Vector Machines (SVM) from electromagnetic emissions emitted from computer displays. After measuring the emissions using receiver measurement system, the signals were processed and training/test data sets were formed and the classification performance of the displays was examined with the SVM. Moreover, solutions for a better classification under real conditions have been proposed. Thus, one of the important step of the display image capture can accomplished by automatically identification the display types. The performance of the proposed method was evaluated in terms of confusion matrix and accuracy, precision, F1-score, recall performance measures.
.  
2020.  Identifying Attack Surfaces in the Evolving Space Industry Using Reference Architectures. 2020 IEEE Aerospace Conference. :1–20.
The space environment is currently undergoing a substantial change and many new entrants to the market are deploying devices, satellites and systems in space; this evolution has been termed as NewSpace. The change is complicated by technological developments such as deploying machine learning based autonomous space systems and the Internet of Space Things (IoST). In the IoST, space systems will rely on satellite-to-x communication and interactions with wider aspects of the ground segment to a greater degree than existing systems. Such developments will inevitably lead to a change in the cyber security threat landscape of space systems. Inevitably, there will be a greater number of attack vectors for adversaries to exploit, and previously infeasible threats can be realised, and thus require mitigation. In this paper, we present a reference architecture (RA) that can be used to abstractly model in situ applications of this new space landscape. The RA specifies high-level system components and their interactions. By instantiating the RA for two scenarios we demonstrate how to analyse the attack surface using attack trees.
.  
2020.  Identity-based Secret Sharing Access Control Framework for Information-Centric Networking. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :507–511.
Information-centric networking (ICN) has played an increasingly important role in the next generation network design. However, to make better use of request-response communication mode in the ICN network, revoke user privileges more efficiently and protect user privacy more safely, an effective access control mechanism is needed. In this paper, we propose IBSS (identity-based secret sharing), which achieves efficient content distribution by using improved Shamir's secret sharing method. At the same time, collusion attacks are avoided by associating polynomials' degree with the number of users. When authenticating user identity and transmitting content, IBE and IBS are introduced to achieve more efficient and secure identity encryption. From the experimental results, the scheme only introduces an acceptable delay in file retrieval, and it can request follow-up content very efficiently.
.  
2020.  An IDS Rule Redundancy Verification. 2020 17th International Joint Conference on Computer Science and Software Engineering (JCSSE). :110—115.
Intrusion Detection System (IDS) is a network security software and hardware widely used to detect anomaly network traffics by comparing the traffics against rules specified beforehand. Snort is one of the most famous open-source IDS system. To write a rule, Snort specifies structure and values in Snort manual. This specification is expressive enough to write in different way with the same meaning. If there are rule redundancy, it could distract performance. We, thus, propose a proof of semantical issues for Snort rule and found four pairs of Snort rule combinations that can cause redundancy. In addition, we create a tool to verify such redundancy between two rules on the public rulesets from Snort community and Emerging threat. As a result of our test, we found several redundancy issues in public rulesets if the user enables commented rules.
.  
2020.  Image And Text Encrypted Data With Authorized Deduplication In Cloud. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
In this paper, the role re-encryption is used to avoid the privacy data lekage and also to avoid the deduplication in a secure role re-encryption system(SRRS). And also it checks for the proof of ownership for to identify whether the user is authorized user or not. This is for the efficiency. Role re-encrytion method is to share the access key for the corresponding authorized user for accessing the particular file without the leakage of privacy data. In our project we are using both the avoidance of text and digital images. For example we have the personal images in our mobile, handheld devices, and in the desktop etc., So, as these images have to keep secure and so we are using the encryption for to increase the high security. The text file also important for the users now-a-days. It has to keep secure in a cloud server. Digital images have to be protected over the communication, however generally personal identification details like copies of pan card, Passport, ATM, etc., to store on one's own pc. So, we are protecting the text file and image data for avoiding the duplication in our proposed system.
.  
2020.  Image Classification using Convolution Neural Network Based Hash Encoding and Particle Swarm Optimization. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI). :1–5.
Image Retrieval (IR) has become one of the main problems facing computer society recently. To increase computing similarities between images, hashing approaches have become the focus of many programmers. Indeed, in the past few years, Deep Learning (DL) has been considered as a backbone for image analysis using Convolutional Neural Networks (CNNs). This paper aims to design and implement a high-performance image classifier that can be used in several applications such as intelligent vehicles, face recognition, marketing, and many others. This work considers experimentation to find the sequential model's best configuration for classifying images. The best performance has been obtained from two layers' architecture; the first layer consists of 128 nodes, and the second layer is composed of 32 nodes, where the accuracy reached up to 0.9012. The proposed classifier has been achieved using CNN and the data extracted from the CIFAR-10 dataset by the inception model, which are called the Transfer Values (TRVs). Indeed, the Particle Swarm Optimization (PSO) algorithm is used to reduce the TRVs. In this respect, the work focus is to reduce the TRVs to obtain high-performance image classifier models. Indeed, the PSO algorithm has been enhanced by using the crossover technique from genetic algorithms. This led to a reduction of the complexity of models in terms of the number of parameters used and the execution time.
.  
2020.  Image Processing Technique for Smart Home Security Based On the Principal Component Analysis (PCA) Methods. 2020 6th International Conference on Wireless and Telematics (ICWT). :1–4.
Smart home is one application of the pervasive computing branch of science. Three categories of smart homes, namely comfort, healthcare, and security. The security system is a part of smart home technology that is very important because the intensity of crime is increasing, especially in residential areas. The system will detect the face by the webcam camera if the user enters the correct password. Face recognition will be processed by the Raspberry pi 3 microcontroller with the Principal Component Analysis method using OpenCV and Python software which has outputs, namely actuators in the form of a solenoid lock door and buzzer. The test results show that the webcam can perform face detection when the password input is successful, then the buzzer actuator can turn on when the database does not match the data taken by the webcam or the test data and the solenoid door lock actuator can run if the database matches the test data taken by the sensor. webcam. The mean response time of face detection is 1.35 seconds.
.  
2020.  Immutable DNA Sequence Data Transmission for Next Generation Bioinformatics Using Blockchain Technology. 2nd International Conference on Data, Engineering and Applications (IDEA). :1–6.
In recent years, there is fast growth in the high throughput DNA sequencing technology, and also there is a reduction in the cost of genome-sequencing, that has led to a advances in the genetic industries. However, the reduction in cost and time required for DNA sequencing there is still an issue of managing such large amount of data. Also, the security and transmission of such huge amount of DNA sequence data is still an issue. The idea is to provide a secure storage platform for future generation bioinformatics systems for both researchers and healthcare user. Secure data sharing strategies, that can permit the healthcare providers along with their secured substances for verifying the accuracy of data, are crucial for ensuring proper medical services. In this paper, it has been surveyed about the applications of blockchain technology for securing healthcare data, where the recorded information is encrypted so that it becomes difficult to penetrate or being removed, as the primary goals of block-chaining technology is to make data immutable.



