Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2020-12-28
Yang, H., Huang, L., Luo, C., Yu, Q..  2020.  Research on Intelligent Security Protection of Privacy Data in Government Cyberspace. 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :284—288.

Based on the analysis of the difficulties and pain points of privacy protection in the opening and sharing of government data, this paper proposes a new method for intelligent discovery and protection of structured and unstructured privacy data. Based on the improvement of the existing government data masking process, this method introduces the technologies of NLP and machine learning, studies the intelligent discovery of sensitive data, the automatic recommendation of masking algorithm and the full automatic execution following the improved masking process. In addition, the dynamic masking and static masking prototype with text and database as data source are designed and implemented with agent-based intelligent masking middleware. The results show that the recognition range and protection efficiency of government privacy data, especially government unstructured text have been significantly improved.

2021-09-16
Liu, Mujie, Yu, Wei, Xu, Ming.  2020.  Security Job Management System Based on RFID and IOT Technology. 2020 6th International Conference on Control, Automation and Robotics (ICCAR). :44–48.
As it was difficult for the State Grid Corporation of China (SGCC) to manage a large amount of safety equipment efficiently, resulting in the frequent occurrence of safety accidents caused by the quality of equipment. Therefore, this paper presents a design of a self-powered wireless communication radio frequency identification tag system based on the Si24R1. The system uses blockchain technology to provide a full-length, chain-like path for RFID big data to achieve data security management. Using low-power Si24R1 chips to make tags can extend the use time of tags and achieve full life cycle management of equipment. In addition, a transmission scheme was designed to reduce the packet loss rate, in this paper. Finally, the result showed that the device terminal received and processed information from the six tags simultaneously. According to calculations, this electronic tag could be used for up to three years. This system can be widely used for safe operation management, which can effectively reduce the investment of manpower and material resources.
2021-05-13
Ammar, Mahmoud, Crispo, Bruno, Tsudik, Gene.  2020.  SIMPLE: A Remote Attestation Approach for Resource-constrained IoT devices. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :247—258.

Remote Attestation (RA) is a security service that detects malware presence on remote IoT devices by verifying their software integrity by a trusted party (verifier). There are three main types of RA: software (SW)-, hardware (HW)-, and hybrid (SW/HW)-based. Hybrid techniques obtain secure RA with minimal hardware requirements imposed on the architectures of existing microcontrollers units (MCUs). In recent years, considerable attention has been devoted to hybrid techniques since prior software-based ones lack concrete security guarantees in a remote setting, while hardware-based approaches are too costly for low-end MCUs. However, one key problem is that many already deployed IoT devices neither satisfy minimal hardware requirements nor support hardware modifications, needed for hybrid RA. This paper bridges the gap between software-based and hybrid RA by proposing a novel RA scheme based on software virtualization. In particular, it proposes a new scheme, called SIMPLE, which meets the minimal hardware requirements needed for secure RA via reliable software. SIMPLE depends on a formally-verified software-based memory isolation technique, called Security MicroVisor (Sμ V). Its reliability is achieved by extending the formally-verified safety and correctness properties to cover the entire software architecture of SIMPLE. Furthermore, SIMPLE is used to construct SIMPLE+, an efficient swarm attestation scheme for static and dynamic heterogeneous IoT networks. We implement and evaluate SIMPLE and SIMPLE+ on Atmel AVR architecture, a common MCU platform.

2021-03-09
Razaque, A., Amsaad, F., Almiani, M., Gulsezim, D., Almahameed, M. A., Al-Dmour, A., Khan, M. J., Ganda, R..  2020.  Successes and Failures in Exploring Biometric Algorithms in NIST Open Source Software and Data. 2020 Seventh International Conference on Software Defined Systems (SDS). :231—234.

With the emergence of advanced technology, the user authentication methods have also been improved. Authenticating the user, several secure and efficient approaches have been introduced, but the biometric authentication method is considered much safer as compared to password-driven methods. In this paper, we explore the risks, concerns, and methods by installing well-known open-source software used in Unibiometric analysis by the partners of The National Institute of Standards and Technology (NIST). Not only are the algorithms used all open source but it comes with test data and several internal open source utilities necessary to process biometric data.

2021-05-20
Neema, Himanshu, Sztipanovits, Janos, Hess, David J., Lee, Dasom.  2020.  TE-SAT: Transactive Energy Simulation and Analysis Toolsuite. 2020 IEEE Workshop on Design Automation for CPS and IoT (DESTION). :19—20.

Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.

2021-02-16
Karmakar, K. K., Varadharajan, V., Tupakula, U., Hitchens, M..  2020.  Towards a Dynamic Policy Enhanced Integrated Security Architecture for SDN Infrastructure. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.

Enterprise networks are increasingly moving towards Software Defined Networking, which is becoming a major trend in the networking arena. With the increased popularity of SDN, there is a greater need for security measures for protecting the enterprise networks. This paper focuses on the design and implementation of an integrated security architecture for SDN based enterprise networks. The integrated security architecture uses a policy-based approach to coordinate different security mechanisms to detect and counteract a range of security attacks in the SDN. A distinguishing characteristic of the proposed architecture is its ability to deal with dynamic changes in the security attacks as well as changes in trust associated with the network devices in the infrastructure. The adaptability of the proposed architecture to dynamic changes is achieved by having feedback between the various security components/mechanisms in the architecture and managing them using a dynamic policy framework. The paper describes the prototype implementation of the proposed architecture and presents security and performance analysis for different attack scenarios. We believe that the proposed integrated security architecture provides a significant step towards achieving a secure SDN for enterprises.

2021-08-17
Jin, Liang, Wang, Xu, Lou, Yangming, Xu, Xiaoming.  2020.  Achieving one-time pad via endogenous secret keys in wireless communication. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1092–1097.
The open and broadcast nature of wireless channels makes eavesdropping possible, leading to the inherent problem of information leakage. Inherent problems should be solved by endogenous security functions. Accordingly, wireless security problems should be resolved by channel-based endogenous security mechanisms. Firstly, this paper analyzes the endogenous security principle of the physical-layer-secret-key method. Afterward, we propose a novel conjecture that in a fast-fading environment, there must exist wireless systems where the endogenous secret key rate can match the user data rate. Moreover, the conjecture is well founded by the instantiation validation in a wireless system with BPSK inputs from the perspectives of both theoretical analysis and simulation experiments. These results indicate that it is possible to accomplish the one-time pad via endogenous secret keys in wireless communication.
2021-02-03
Gillen, R. E., Anderson, L. A., Craig, C., Johnson, J., Columbia, A., Anderson, R., Craig, A., Scott, S. L..  2020.  Design and Implementation of Full-Scale Industrial Control System Test Bed for Assessing Cyber-Security Defenses. 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :341—346.
In response to the increasing awareness of the Ethernet-based threat surface of industrial control systems (ICS), both the research and commercial communities are responding with ICS-specific security solutions. Unfortunately, many of the properties of ICS environments that contribute to the extent of this threat surface (e.g. age of devices, inability or unwillingness to patch, criticality of the system) similarly prevent the proper testing and evaluation of these security solutions. Production environments are often too fragile to introduce unvetted technology and most organizations lack test environments that are sufficiently consistent with production to yield actionable results. Cost and space requirements prevent the creation of mirrored physical environments leading many to look towards simulation or virtualization. Examples in literature provide various approaches to building ICS test beds, though most of these suffer from a lack of realism due to contrived scenarios, synthetic data and other compromises. In this paper, we provide a design methodology for building highly realistic ICS test beds for validating cybersecurity defenses. We then apply that methodology to the design and building of a specific test bed and describe the results and experimental use cases.
2020-12-28
Wang, A., Yuan, Z., He, B..  2020.  Design and Realization of Smart Home Security System Based on AWS. 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS). :291—295.
With the popularization and application of Internet of Things technology, the degree of intelligence of the home system is getting higher and higher. As an important part of the smart home, the security system plays an important role in protecting against accidents such as flammable gas leakage, fire, and burglary that may occur in the home environment. This design focuses on sensor signal acquisition and processing, wireless access, and cloud applications, and integrates Cypress’s new generation of PSoC 6 MCU, CYW4343W Wi-Fi and Bluetooth dual-module chips, and Amazon’s AWS cloud into smart home security System designing. First, through the designed air conditioning and refrigeration module, fire warning processing module, lighting control module, ventilation fan control module, combustible gas and smoke detection and warning module, important parameter information in the home environment is obtained. Then, the hardware system is connected to the AWS cloud platform through Wi-Fi; finally, a WEB interface is built in the AWS cloud to realize remote monitoring of the smart home environment. This design has a good reference for the design of future smart home security systems.
2021-11-08
Gayatri, R, Gayatri, Yendamury.  2020.  Detection of Trojan Based DoS Attacks on RSA Cryptosystem Using Hybrid Supervised Learning Models. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1–5.
Privacy and security have become the most important aspects in any sphere of technology today from embedded systems to VLS I circuits. One such an attack compromising the privacy, security and trust of a networked control system by making them vulnerable to unauthorized access is the Hardware Trojan Horses. Even cryptographic algorithms whose purpose is to safeguard information are susceptible to these Trojan attacks. This paper discusses hybrid supervised machine learning models that predict with great accuracy whether the RSA asymmetric cryptosystem implemented in Atmel XMega microcontroller is Trojan-free (Golden) or Trojan-infected by analyzing the power profiles of the golden algorithm and trojan-infected algorithm. The power profiles are obtained using the ChipWhisperer Lite Board. The features selected from the power profiles are used to create datasets for the proposed hybrid models and train the proposed models using the 70/30 rule. The proposed hybrid models can be concluded that it has an accuracy of more than 88% irrespective of the Trojan types and size of the datasets.
2021-09-30
Latif, Shahid, Idrees, Zeba, Zou, Zhuo, Ahmad, Jawad.  2020.  DRaNN: A Deep Random Neural Network Model for Intrusion Detection in Industrial IoT. 2020 International Conference on UK-China Emerging Technologies (UCET). :1–4.
Industrial Internet of Things (IIoT) has arisen as an emerging trend in the industrial sector. Millions of sensors present in IIoT networks generate a massive amount of data that can open the doors for several cyber-attacks. An intrusion detection system (IDS) monitors real-time internet traffic and identify the behavior and type of network attacks. In this paper, we presented a deep random neural (DRaNN) based scheme for intrusion detection in IIoT. The proposed scheme is evaluated by using a new generation IIoT security dataset UNSW-NB15. Experimental results prove that the proposed model successfully classified nine different types of attacks with a low false-positive rate and great accuracy of 99.54%. To validate the feasibility of the proposed scheme, experimental results are also compared with state-of-the-art deep learning-based intrusion detection schemes. The proposed model achieved a higher attack detection rate of 99.41%.
2021-10-04
Abbas Hamdani, Syed Wasif, Waheed Khan, Abdul, Iltaf, Naima, Iqbal, Waseem.  2020.  DTMSim-IoT: A Distributed Trust Management Simulator for IoT Networks. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :491–498.
In recent years, several trust management frame-works and models have been proposed for the Internet of Things (IoT). Focusing primarily on distributed trust management schemes; testing and validation of these models is still a challenging task. It requires the implementation of the proposed trust model for verification and validation of expected outcomes. Nevertheless, a stand-alone and standard IoT network simulator for testing of distributed trust management scheme is not yet available. In this paper, a .NET-based Distributed Trust Management Simulator for IoT Networks (DTMSim-IoT) is presented which enables the researcher to implement any static/dynamic trust management model to compute the trust value of a node. The trust computation will be calculated based on the direct-observation and trust value is updated after every transaction. Transaction history and logs of each event are maintained which can be viewed and exported as .csv file for future use. In addition to that, the simulator can also draw a graph based on the .csv file. Moreover, the simulator also offers to incorporate the feature of identification and mitigation of the On-Off Attack (OOA) in the IoT domain. Furthermore, after identifying any malicious activity by any node in the networks, the malevolent node is added to the malicious list and disseminated in the network to prevent potential On-Off attacks.
2021-04-08
Ameer, S., Benson, J., Sandhu, R..  2020.  The EGRBAC Model for Smart Home IoT. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :457–462.
The Internet of Things (IoT) is enabling smart houses, where multiple users with complex social relationships interact with smart devices. This requires sophisticated access control specification and enforcement models, that are currently lacking. In this paper, we introduce the extended generalized role based access control (EGRBAC) model for smart home IoT. We provide a formal definition for EGRBAC and illustrate its features with a use case. A proof-of-concept demonstration utilizing AWS-IoT Greengrass is discussed in the appendix. EGRBAC is a first step in developing a comprehensive family of access control models for smart home IoT.
Walia, K. S., Shenoy, S., Cheng, Y..  2020.  An Empirical Analysis on the Usability and Security of Passwords. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :1–8.
Security and usability are two essential aspects of a system, but they usually move in opposite directions. Sometimes, to achieve security, usability has to be compromised, and vice versa. Password-based authentication systems require both security and usability. However, to increase password security, absurd rules are introduced, which often drive users to compromise the usability of their passwords. Users tend to forget complex passwords and use techniques such as writing them down, reusing them, and storing them in vulnerable ways. Enhancing the strength while maintaining the usability of a password has become one of the biggest challenges for users and security experts. In this paper, we define the pronounceability of a password as a means to measure how easy it is to memorize - an aspect we associate with usability. We examine a dataset of more than 7 million passwords to determine whether the usergenerated passwords are secure. Moreover, we convert the usergenerated passwords into phonemes and measure the pronounceability of the phoneme-based representations. We then establish a relationship between the two and suggest how password creation strategies can be adapted to better align with both security and usability.
2021-11-30
Xiao, Hu, Wen, Jiang.  2020.  A Highly Integrated E-Band Radar. 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP). :1–2.
In this paper, an E-band MIMO radar with 1 transmit and 4 receive channels is designed. The signal bandwidth is 2GHz at 77GHz, the max power of transmitted signal which is Frequency-modulated continuous-wave (FMCW) is 13dBm. This radar consists of two cascade parts: RF frond-end and digital signal process block. The RF front-end part includes antenna array, millimeter wave transceiver chips, and the digital signal process part includes FPGA, DSP and power supply circuits. It could be used in foreign object detection (FOD), landing assistance of helicopter and security checking.
2021-04-08
Ayub, M. A., Continella, A., Siraj, A..  2020.  An I/O Request Packet (IRP) Driven Effective Ransomware Detection Scheme using Artificial Neural Network. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :319–324.
In recent times, there has been a global surge of ransomware attacks targeted at industries of various types and sizes from retail to critical infrastructure. Ransomware researchers are constantly coming across new kinds of ransomware samples every day and discovering novel ransomware families out in the wild. To mitigate this ever-growing menace, academia and industry-based security researchers have been utilizing unique ways to defend against this type of cyber-attacks. I/O Request Packet (IRP), a low-level file system I/O log, is a newly found research paradigm for defense against ransomware that is being explored frequently. As such in this study, to learn granular level, actionable insights of ransomware behavior, we analyze the IRP logs of 272 ransomware samples belonging to 18 different ransomware families captured during individual execution. We further our analysis by building an effective Artificial Neural Network (ANN) structure for successful ransomware detection by learning the underlying patterns of the IRP logs. We evaluate the ANN model with three different experimental settings to prove the effectiveness of our approach. The model demonstrates outstanding performance in terms of accuracy, precision score, recall score, and F1 score, i.e., in the range of 99.7%±0.2%.
2021-03-29
Olaimat, M. Al, Lee, D., Kim, Y., Kim, J., Kim, J..  2020.  A Learning-based Data Augmentation for Network Anomaly Detection. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–10.
While machine learning technologies have been remarkably advanced over the past several years, one of the fundamental requirements for the success of learning-based approaches would be the availability of high-quality data that thoroughly represent individual classes in a problem space. Unfortunately, it is not uncommon to observe a significant degree of class imbalance with only a few instances for minority classes in many datasets, including network traffic traces highly skewed toward a large number of normal connections while very small in quantity for attack instances. A well-known approach to addressing the class imbalance problem is data augmentation that generates synthetic instances belonging to minority classes. However, traditional statistical techniques may be limited since the extended data through statistical sampling should have the same density as original data instances with a minor degree of variation. This paper takes a learning-based approach to data augmentation to enable effective network anomaly detection. One of the critical challenges for the learning-based approach is the mode collapse problem resulting in a limited diversity of samples, which was also observed from our preliminary experimental result. To this end, we present a novel "Divide-Augment-Combine" (DAC) strategy, which groups the instances based on their characteristics and augments data on a group basis to represent a subset independently using a generative adversarial model. Our experimental results conducted with two recently collected public network datasets (UNSW-NB15 and IDS-2017) show that the proposed technique enhances performances up to 21.5% for identifying network anomalies.
2021-02-08
Liu, S., Kosuru, R., Mugombozi, C. F..  2020.  A Moving Target Approach for Securing Secondary Frequency Control in Microgrids. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1–6.
Microgrids' dependency on communication links exposes the control systems to cyber attack threats. In this work, instead of designing reactive defense approaches, a proacitve moving target defense mechanism is proposed for securing microgrid secondary frequency control from denial of service (DoS) attack. The sensor data is transmitted by following a Markov process, not in a deterministic way. This uncertainty will increase the difficulty for attacker's decision making and thus significantly reduce the attack space. As the system parameters are constantly changing, a gain scheduling based secondary frequency controller is designed to sustain the system performance. Case studies of a microgrid with four inverter-based DGs show the proposed moving target mechanism can enhance the resiliency of the microgrid control systems against DoS attacks.
2021-04-27
Rashid, N. A. M., Zukri, N. H. A., Zulkifli, Z. A., Awang, N., Buja, A. G..  2020.  A Multi Agent-Based Security Protocol for Securing Password Management Application. 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE). :42—45.
Password-based authentication is the most common authentication method for either online or offline system. Password composition policies become too burdensome and put the user in a state of struggle to remember their password. Thus, most of the user save their password on the browser or even list it down in their personal gadgets. Therefore, a multi agent-based password management application have been developed to helps user in keeping their password safely. However, multi-agent system facing security issues such as man in the middle attack, data modification and eavesdropping. This paper proposed a security protocol for multi agent-based architecture in order to reduce potential threats. The security protocol focuess on the authentication of mobile agents, data transmission and the data local protection. The communication channels are secured using cryptography techniques.
2021-11-30
Yao, Li, Liu, Youjiang.  2020.  A Novel Optimization Scheme for the Beamforming Method Selection in Artificial-Noise-Aid MU-MISOME Broadcast Secure Communication System. 2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). :175–179.
This article investigates the beamforming method selection in artificial-noise-aid (AN-aid) multiuser multiple-input-single-output (MU-MISO) broadcast wiretap systems in slow fading channel environment. We adopt beamforming pre-coding matrix with artificial noise to achieve secure multiuser communication and optimize system performance, and compare the secure transmission performance of two beamforming methods. To overcome the complexity of this model, a novel optimization scheme expressed using semi-closed-form expressions and Monte Carlo method is employed to derive the relationship between transmission parameters and secure transmission performance. This scheme would help us to analyses performance of different beamforming methods.
2021-10-04
Zheng, Xiaoyu, Liu, Dongmei, Zhu, Hong, Bayley, Ian.  2020.  Pattern-Based Approach to Modelling and Verifying System Security. 2020 IEEE International Conference on Service Oriented Systems Engineering (SOSE). :92–102.
Security is one of the most important problems in the engineering of online service-oriented systems. The current best practice in security design is a pattern-oriented approach. A large number of security design patterns have been identified, categorised and documented in the literature. The design of a security solution for a system starts with identification of security requirements and selection of appropriate security design patterns; these are then composed together. It is crucial to verify that the composition of security design patterns is valid in the sense that it preserves the features, semantics and soundness of the patterns and correct in the sense that the security requirements are met by the design. This paper proposes a methodology that employs the algebraic specification language SOFIA to specify security design patterns and their compositions. The specifications are then translated into the Alloy formalism and their validity and correctness are verified using the Alloy model checker. A tool that translates SOFIA into Alloy is presented. A case study with the method and the tool is also reported.
2021-02-22
Rivera, S., Fei, Z., Griffioen, J..  2020.  POLANCO: Enforcing Natural Language Network Policies. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–9.
Network policies govern the use of an institution's networks, and are usually written in a high-level human-readable natural language. Normally these policies are enforced by low-level, technically detailed network configurations. The translation from network policies into network configurations is a tedious, manual and error-prone process. To address this issue, we propose a new intermediate language called POlicy LANguage for Campus Operations (POLANCO), which is a human-readable network policy definition language intended to approximate natural language. Because POLANCO is a high-level language, the translation from natural language policies to POLANCO is straightforward. Despite being a high-level human readable language, POLANCO can be used to express network policies in a technically precise way so that policies written in POLANCO can be automatically translated into a set of software defined networking (SDN) rules and actions that enforce the policies. Moreover, POLANCO is capable of incorporating information about the current network state, reacting to changes in the network and adjusting SDN rules to ensure network policies continue to be enforced correctly. We present policy examples found on various public university websites and show how they can be written as simplified human-readable statements using POLANCO and how they can be automatically translated into SDN rules that correctly enforce these policies.
2021-02-15
Rabieh, K., Mercan, S., Akkaya, K., Baboolal, V., Aygun, R. S..  2020.  Privacy-Preserving and Efficient Sharing of Drone Videos in Public Safety Scenarios using Proxy Re-encryption. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :45–52.
Unmanned Aerial Vehicles (UAVs) also known as drones are being used in many applications where they can record or stream videos. One interesting application is the Intelligent Transportation Systems (ITS) and public safety applications where drones record videos and send them to a control center for further analysis. These videos are shared by various clients such as law enforcement or emergency personnel. In such cases, the recording might include faces of civilians or other sensitive information that might pose privacy concerns. While the video can be encrypted and stored in the cloud that way, it can still be accessed once the keys are exposed to third parties which is completely insecure. To prevent such insecurity, in this paper, we propose proxy re-encryption based sharing scheme to enable third parties to access only limited videos without having the original encryption key. The costly pairing operations in proxy re-encryption are not used to allow rapid access and delivery of the surveillance videos to third parties. The key management is handled by a trusted control center, which acts as the proxy to re-encrypt the data. We implemented and tested the approach in a realistic simulation environment using different resolutions under ns-3. The implementation results and comparisons indicate that there is an acceptable overhead while it can still preserve the privacy of drivers and passengers.
2021-03-29
John, A., MC, A., Ajayan, A. S., Sanoop, S., Kumar, V. R..  2020.  Real-Time Facial Emotion Recognition System With Improved Preprocessing and Feature Extraction. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :1328—1333.

Human emotion recognition plays a vital role in interpersonal communication and human-machine interaction domain. Emotions are expressed through speech, hand gestures and by the movements of other body parts and through facial expression. Facial emotions are one of the most important factors in human communication that help us to understand, what the other person is trying to communicate. People understand only one-third of the message verbally, and two-third of it is through non-verbal means. There are many face emotion recognition (FER) systems present right now, but in real-life scenarios, they do not perform efficiently. Though there are many which claim to be a near-perfect system and to achieve the results in favourable and optimal conditions. The wide variety of expressions shown by people and the diversity in facial features of different people will not aid in the process of coming up with a system that is definite in nature. Hence developing a reliable system without any flaws showed by the existing systems is a challenging task. This paper aims to build an enhanced system that can analyse the exact facial expression of a user at that particular time and generate the corresponding emotion. Datasets like JAFFE and FER2013 were used for performance analysis. Pre-processing methods like facial landmark and HOG were incorporated into a convolutional neural network (CNN), and this has achieved good accuracy when compared with the already existing models.

2021-04-08
Westland, T., Niu, N., Jha, R., Kapp, D., Kebede, T..  2020.  Relating the Empirical Foundations of Attack Generation and Vulnerability Discovery. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :37–44.
Automatically generating exploits for attacks receives much attention in security testing and auditing. However, little is known about the continuous effect of automatic attack generation and detection. In this paper, we develop an analytic model to understand the cost-benefit tradeoffs in light of the process of vulnerability discovery. We develop a three-phased model, suggesting that the cumulative malware detection has a productive period before the rate of gain flattens. As the detection mechanisms co-evolve, the gain will likely increase. We evaluate our analytic model by using an anti-virus tool to detect the thousands of Trojans automatically created. The anti-virus scanning results over five months show the validity of the model and point out future research directions.