Biblio
Based on the analysis of the difficulties and pain points of privacy protection in the opening and sharing of government data, this paper proposes a new method for intelligent discovery and protection of structured and unstructured privacy data. Based on the improvement of the existing government data masking process, this method introduces the technologies of NLP and machine learning, studies the intelligent discovery of sensitive data, the automatic recommendation of masking algorithm and the full automatic execution following the improved masking process. In addition, the dynamic masking and static masking prototype with text and database as data source are designed and implemented with agent-based intelligent masking middleware. The results show that the recognition range and protection efficiency of government privacy data, especially government unstructured text have been significantly improved.
Remote Attestation (RA) is a security service that detects malware presence on remote IoT devices by verifying their software integrity by a trusted party (verifier). There are three main types of RA: software (SW)-, hardware (HW)-, and hybrid (SW/HW)-based. Hybrid techniques obtain secure RA with minimal hardware requirements imposed on the architectures of existing microcontrollers units (MCUs). In recent years, considerable attention has been devoted to hybrid techniques since prior software-based ones lack concrete security guarantees in a remote setting, while hardware-based approaches are too costly for low-end MCUs. However, one key problem is that many already deployed IoT devices neither satisfy minimal hardware requirements nor support hardware modifications, needed for hybrid RA. This paper bridges the gap between software-based and hybrid RA by proposing a novel RA scheme based on software virtualization. In particular, it proposes a new scheme, called SIMPLE, which meets the minimal hardware requirements needed for secure RA via reliable software. SIMPLE depends on a formally-verified software-based memory isolation technique, called Security MicroVisor (Sμ V). Its reliability is achieved by extending the formally-verified safety and correctness properties to cover the entire software architecture of SIMPLE. Furthermore, SIMPLE is used to construct SIMPLE+, an efficient swarm attestation scheme for static and dynamic heterogeneous IoT networks. We implement and evaluate SIMPLE and SIMPLE+ on Atmel AVR architecture, a common MCU platform.
With the emergence of advanced technology, the user authentication methods have also been improved. Authenticating the user, several secure and efficient approaches have been introduced, but the biometric authentication method is considered much safer as compared to password-driven methods. In this paper, we explore the risks, concerns, and methods by installing well-known open-source software used in Unibiometric analysis by the partners of The National Institute of Standards and Technology (NIST). Not only are the algorithms used all open source but it comes with test data and several internal open source utilities necessary to process biometric data.
Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.
Enterprise networks are increasingly moving towards Software Defined Networking, which is becoming a major trend in the networking arena. With the increased popularity of SDN, there is a greater need for security measures for protecting the enterprise networks. This paper focuses on the design and implementation of an integrated security architecture for SDN based enterprise networks. The integrated security architecture uses a policy-based approach to coordinate different security mechanisms to detect and counteract a range of security attacks in the SDN. A distinguishing characteristic of the proposed architecture is its ability to deal with dynamic changes in the security attacks as well as changes in trust associated with the network devices in the infrastructure. The adaptability of the proposed architecture to dynamic changes is achieved by having feedback between the various security components/mechanisms in the architecture and managing them using a dynamic policy framework. The paper describes the prototype implementation of the proposed architecture and presents security and performance analysis for different attack scenarios. We believe that the proposed integrated security architecture provides a significant step towards achieving a secure SDN for enterprises.
Human emotion recognition plays a vital role in interpersonal communication and human-machine interaction domain. Emotions are expressed through speech, hand gestures and by the movements of other body parts and through facial expression. Facial emotions are one of the most important factors in human communication that help us to understand, what the other person is trying to communicate. People understand only one-third of the message verbally, and two-third of it is through non-verbal means. There are many face emotion recognition (FER) systems present right now, but in real-life scenarios, they do not perform efficiently. Though there are many which claim to be a near-perfect system and to achieve the results in favourable and optimal conditions. The wide variety of expressions shown by people and the diversity in facial features of different people will not aid in the process of coming up with a system that is definite in nature. Hence developing a reliable system without any flaws showed by the existing systems is a challenging task. This paper aims to build an enhanced system that can analyse the exact facial expression of a user at that particular time and generate the corresponding emotion. Datasets like JAFFE and FER2013 were used for performance analysis. Pre-processing methods like facial landmark and HOG were incorporated into a convolutional neural network (CNN), and this has achieved good accuracy when compared with the already existing models.



