Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2021-11-08
Vasilyev, Vladimir, Shamsutdinov, Rinat.  2020.  Security Analysis of Wireless Sensor Networks Using SIEM and Multi-Agent Approach. 2020 Global Smart Industry Conference (GloSIC). :291–296.
The paper addresses the issue of providing information security to wireless sensor networks using Security Information and Event Management (SIEM) methodology along with multi-agent approach. The concept of wireless sensor networks and providing their information security, including construction of SIEM system architecture, SIEM analysis methodologies and its main features, are considered. The proposed approach is to integrate SIEM system methodology with a multi-agent architecture which includes data collecting agents, coordinating agent (supervisor) and local Intrusion Detection Systems (IDSs) based on artificial immune system mechanisms. Each IDS is used as an agent that performs a primary analysis and sends information about suspicious activity to the server. The server performs correlation analysis, identifies the most significant incidents, and helps to prioritize the incident response. The presented results of computational experiments confirm the effectiveness of the proposed approach.
2021-03-17
Fu, T., Zhen, W., Qian, X. Z..  2020.  A Study of Evaluation Methods of WEB Security Threats Based on Multi-stage Attack. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:1457—1461.
Web application services have gradually become an important support of Internet services, but are also facing increasingly serious security problems. It is extremely necessary to evaluate the security of Web application services to deal with attacks against them effectively. In this paper, in view of the characteristics of the current attack of Web application services, a Web security analysis model based on the kill chain is established, and the possible attacks against Web application services are analyzed in depth from the perspective of the kill chain. Then, the security of Web application services is evaluated in a quantitative manner. In this way, it can make up the defects of insufficient inspection by the existing security vulnerability model and the security specification of the tracking of Web application services, so as to realize the objective and scientific evaluation of the security state of Web application services.
2021-03-01
Xiao, R., Li, X., Pan, M., Zhao, N., Jiang, F., Wang, X..  2020.  Traffic Off-Loading over Uncertain Shared Spectrums with End-to-End Session Guarantee. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–5.
As a promising solution of spectrum shortage, spectrum sharing has received tremendous interests recently. However, under different sharing policies of different licensees, the shared spectrum is heterogeneous both temporally and spatially, and is usually uncertain due to the unpredictable activities of incumbent users. In this paper, considering the spectrum uncertainty, we propose a spectrum sharing based delay-tolerant traffic off-loading (SDTO) scheme. To capture the available heterogeneous shared bands, we adopt a mesh cognitive radio network and employ the multi-hop transmission mode. To statistically guarantee the end-to-end (E2E) session request under the uncertain spectrum supply, we formulate the SDTO scheme into a stochastic optimization problem, which is transformed into a mixed integer nonlinear programming (MINLP) problem. Then, a coarse-fine search based iterative heuristic algorithm is proposed to solve the MINLP problem. Simulation results demonstrate that the proposed SDTO scheme can well schedule the network resource with an E2E session guarantee.
2021-03-29
Dorri, A., Jurdak, R..  2020.  Tree-Chain: A Fast Lightweight Consensus Algorithm for IoT Applications. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :369–372.
Blockchain has received tremendous attention in non-monetary applications including the Internet of Things (IoT) due to its salient features including decentralization, security, auditability, and anonymity. Most conventional blockchains rely on computationally expensive validator selection and consensus algorithms, have limited throughput, and high transaction delays. In this paper, we propose tree-chain a scalable fast blockchain instantiation that introduces two levels of randomization among the validators: i) transaction level where the validator of each transaction is selected randomly based on the most significant characters of the hash function output (known as consensus code), and ii) blockchain level where validator is randomly allocated to a particular consensus code based on the hash of their public key. Tree-chain introduces parallel chain branches where each validator commits the corresponding transactions in a unique ledger.
2021-04-27
Chen, Q., Chen, D., Gong, J..  2020.  Weighted Predictive Coding Methods for Block-Based Compressive Sensing of Images. 2020 3rd International Conference on Unmanned Systems (ICUS). :587–591.
Compressive sensing (CS) is beneficial for unmanned reconnaissance systems to obtain high-quality images with limited resources. The existing prediction methods for block-based compressive sensing of images can be regarded as the particular coefficients of weighted predictive coding. To find better prediction coefficients for BCS, this paper proposes two weighted prediction methods. The first method converts the prediction model of measurements into a prediction model of image blocks. The prediction weights are obtained by training the prediction model of image blocks offline, which avoiding the influence of the sampling rates on the prediction model of measurements. Another method is to calculate the prediction coefficients adaptively based on the average energy of measurements, which can adjust the weights based on the measurements. Compared with existing methods, the proposed prediction methods for BCS of images can further improve the reconstruction image quality.
2021-05-05
Konwar, Kishori M., Kumar, Saptaparni, Tseng, Lewis.  2020.  Semi-Fast Byzantine-tolerant Shared Register without Reliable Broadcast. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :743—753.
Shared register emulations on top of message-passing systems provide an illusion of a simpler shared memory system which can make the task of a system designer easier. Numerous shared register applications have a considerably high read-to-write ratio. Thus, having algorithms that make reads more efficient than writes is a fair trade-off.Typically, such algorithms for reads and writes are asymmetric and sacrifice the stringent consistency condition atomicity, as it is impossible to have fast reads for multi-writer atomicity. Safety is a consistency condition that has has gathered interest from both the systems and theory community as it is weaker than atomicity yet provides strong enough guarantees like "strong consistency" or read-my-write consistency. One requirement that is assumed by many researchers is that of the reliable broadcast (RB) primitive, which ensures the "all or none" property during a broadcast. One drawback is that such a primitive takes 1.5 rounds to complete and requires server-to-server communication.This paper implements an efficient multi-writer multi-reader safe register without using a reliable broadcast primitive. Moreover, we provide fast reads or one-shot reads – our read operations can be completed in one round of client-to-server communication. Of course, this comes with the price of requiring more servers when compared to prior solutions assuming reliable broadcast. However, we show that this increased number of servers is indeed necessary as we prove a tight bound on the number of servers required to implement Byzantine-fault tolerant safe registers in a system without reliable broadcast.We extend our results to data stored using erasure coding as well. We present an emulation of single-writer multi-reader safe register based on MDS codes. The usage of MDS codes reduces storage and communication costs. On the negative side, we also show that to use MDS codes and at the same time achieve one-shot reads, we need even more servers.
2021-09-07
Huang, Weiqing, Peng, Xiao, Shi, Zhixin, Ma, Yuru.  2020.  Adversarial Attack against LSTM-Based DDoS Intrusion Detection System. 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI). :686–693.
Nowadays, machine learning is a popular method for DDoS detection. However, machine learning algorithms are very vulnerable under the attacks of adversarial samples. Up to now, multiple methods of generating adversarial samples have been proposed. However, they cannot be applied to LSTM-based DDoS detection directly because of the discrete property and the utility requirement of its input samples. In this paper, we propose two methods to generate DDoS adversarial samples, named Genetic Attack (GA) and Probability Weighted Packet Saliency Attack (PWPSA) respectively. Both methods modify original input sample by inserting or replacing partial packets. In GA, we evolve a set of modified samples with genetic algorithm and find the evasive variant from it. In PWPSA, we modify original sample iteratively and use the position saliency as well as the packet score to determine insertion or replacement order at each step. Experimental results on CICIDS2017 dataset show that both methods can bypass DDoS detectors with high success rate.
2021-03-30
Pyatnisky, I. A., Sokolov, A. N..  2020.  Assessment of the Applicability of Autoencoders in the Problem of Detecting Anomalies in the Work of Industrial Control Systems.. 2020 Global Smart Industry Conference (GloSIC). :234—239.

Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.

2021-01-25
Oesch, S., Bridges, R., Smith, J., Beaver, J., Goodall, J., Huffer, K., Miles, C., Scofield, D..  2020.  An Assessment of the Usability of Machine Learning Based Tools for the Security Operations Center. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :634—641.

Gartner, a large research and advisory company, anticipates that by 2024 80% of security operation centers (SOCs) will use machine learning (ML) based solutions to enhance their operations.11https://www.ciodive.com/news/how-data-science-tools-can-lighten-the-load-for-cybersecurity-teams/572209/ In light of such widespread adoption, it is vital for the research community to identify and address usability concerns. This work presents the results of the first in situ usability assessment of ML-based tools. With the support of the US Navy, we leveraged the national cyber range-a large, air-gapped cyber testbed equipped with state-of-the-art network and user emulation capabilities-to study six US Naval SOC analysts' usage of two tools. Our analysis identified several serious usability issues, including multiple violations of established usability heuristics for user interface design. We also discovered that analysts lacked a clear mental model of how these tools generate scores, resulting in mistrust \$a\$ and/or misuse of the tools themselves. Surprisingly, we found no correlation between analysts' level of education or years of experience and their performance with either tool, suggesting that other factors such as prior background knowledge or personality play a significant role in ML-based tool usage. Our findings demonstrate that ML-based security tool vendors must put a renewed focus on working with analysts, both experienced and inexperienced, to ensure that their systems are usable and useful in real-world security operations settings.

2021-09-07
Zhang, Yaofang, Wang, Bailing, Wu, Chenrui, Wei, Xiaojie, Wang, Zibo, Yin, Guohua.  2020.  Attack Graph-Based Quantitative Assessment for Industrial Control System Security. 2020 Chinese Automation Congress (CAC). :1748–1753.
Industrial control systems (ICSs) are facing serious security challenges due to their inherent flaws, and emergence of vulnerabilities from the integration with commercial components and networks. To that end, assessing the security plays a vital role for current industrial enterprises which are responsible for critical infrastructure. This paper accomplishes a complex task of quantitative assessment based on attack graphs in order to look forward critical paths. For the purpose of application to a large-scale heterogeneous ICSs, we propose a flexible attack graph generation algorithm is proposed with the help of the graph data model. Hereafter, our quantitative assessment takes a consideration of graph indicators on specific nodes and edges to get the security metrics. In order to improve results of obtaining the critical attack path, we introduced a formulating selection rule, considering the asset value of industrial control devices. The experimental results show validation and verification of the proposed method.
2021-01-28
Bhattacharya, A., Ramachandran, T., Banik, S., Dowling, C. P., Bopardikar, S. D..  2020.  Automated Adversary Emulation for Cyber-Physical Systems via Reinforcement Learning. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

Adversary emulation is an offensive exercise that provides a comprehensive assessment of a system’s resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical systems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.

2021-03-04
Amadori, A., Michiels, W., Roelse, P..  2020.  Automating the BGE Attack on White-Box Implementations of AES with External Encodings. 2020 IEEE 10th International Conference on Consumer Electronics (ICCE-Berlin). :1—6.

Cloud-based payments, virtual car keys, and digital rights management are examples of consumer electronics applications that use secure software. White-box implementations of the Advanced Encryption Standard (AES) are important building blocks of secure software systems, and the attack of Billet, Gilbert, and Ech-Chatbi (BGE) is a well-known attack on such implementations. A drawback from the adversary’s or security tester’s perspective is that manual reverse engineering of the implementation is required before the BGE attack can be applied. This paper presents a method to automate the BGE attack on a class of white-box AES implementations with a specific type of external encoding. The new method was implemented and applied successfully to a CHES 2016 capture the flag challenge.

2021-06-30
Mershad, Khaleel, Said, Bilal.  2020.  A Blockchain Model for Secure Communications in Internet of Vehicles. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—6.
The wide expansion of the Internet of Things is pushing the growth of vehicular ad-hoc networks (VANETs) into the Internet of Vehicles (IoV). Secure data communication is vital to the success and stability of the IoV and should be integrated into its various operations and aspects. In this paper, we present a framework for secure IoV communications by utilizing the High Performance Blockchain Consensus (HPBC) algorithm. Based on a previously published communication model for VANETs that uses an efficient routing protocol for transmitting packets between vehicles, we describe in this paper how to integrate a blockchain model on top of the IoV communications system. We illustrate the method that we used to implement HPBC within the IoV nodes. In order to prove the efficiency of the proposed model, we carry out extensive simulations that test the proposed model and study its overhead on the IoV network. The simulation results demonstrated the good performance of the HPBC algorithm when implemented within the IoV environment.
2021-04-27
Giannoutakis, K. M., Spathoulas, G., Filelis-Papadopoulos, C. K., Collen, A., Anagnostopoulos, M., Votis, K., Nijdam, N. A..  2020.  A Blockchain Solution for Enhancing Cybersecurity Defence of IoT. 2020 IEEE International Conference on Blockchain (Blockchain). :490—495.

The growth of IoT devices during the last decade has led to the development of smart ecosystems, such as smart homes, prone to cyberattacks. Traditional security methodologies support to some extend the requirement for preserving privacy and security of such deployments, but their centralized nature in conjunction with low computational capabilities of smart home gateways make such approaches not efficient. Last achievements on blockchain technologies allowed the use of such decentralized architectures to support cybersecurity defence mechanisms. In this work, a blockchain framework is presented to support the cybersecurity mechanisms of smart homes installations, focusing on the immutability of users and devices that constitute such environments. The proposed methodology provides also the appropriate smart contracts support for ensuring the integrity of the smart home gateway and IoT devices, as well as the dynamic and immutable management of blocked malicious IPs. The framework has been deployed on a real smart home environment demonstrating its applicability and efficiency.

Vishwakarma, L., Das, D..  2020.  BSS: Blockchain Enabled Security System for Internet of Things Applications. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—4.

In the Internet of Things (IoT), devices can interconnect and communicate autonomously, which requires devices to authenticate each other to exchange meaningful information. Otherwise, these things become vulnerable to various attacks. The conventional security protocols are not suitable for IoT applications due to the high computation and storage demand. Therefore, we proposed a blockchain-enabled secure storage and communication scheme for IoT applications, called BSS. The scheme ensures identification, authentication, and data integrity. Our scheme uses the security advantages of blockchain and helps to create safe zones (trust batch) where authenticated objects interconnect securely and do communication. A secure and robust trust mechanism is employed to build these batches, where each device has to authenticate itself before joining the trust batch. The obtained results satisfy the IoT security requirements with 60% reduced computation, storage and communication cost compared with state-of-the-art schemes. BSS also withstands various cyberattacks such as impersonation, message replay, man-in-the-middle, and botnet attacks.

2021-02-23
Aydeger, A., Saputro, N., Akkaya, K..  2020.  Cloud-based Deception against Network Reconnaissance Attacks using SDN and NFV. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :279—285.

An attacker's success crucially depends on the reconnaissance phase of Distributed Denial of Service (DDoS) attacks, which is the first step to gather intelligence. Although several solutions have been proposed against network reconnaissance attacks, they fail to address the needs of legitimate users' requests. Thus, we propose a cloud-based deception framework which aims to confuse the attacker with reconnaissance replies while allowing legitimate uses. The deception is based on for-warding the reconnaissance packets to a cloud infrastructure through tunneling and SDN so that the returned IP addresses to the attacker will not be genuine. For handling legitimate requests, we create a reflected virtual topology in the cloud to match any changes in the original physical network to the cloud topology using SDN. Through experimentations on GENI platform, we show that our framework can provide reconnaissance responses with negligible delays to the network clients while also reducing the management costs significantly.

2021-03-09
Le, T. V., Huan, T. T..  2020.  Computational Intelligence Towards Trusted Cloudlet Based Fog Computing. 2020 5th International Conference on Green Technology and Sustainable Development (GTSD). :141—147.

The current trend of IoT user is toward the use of services and data externally due to voluminous processing, which demands resourceful machines. Instead of relying on the cloud of poor connectivity or a limited bandwidth, the IoT user prefers to use a cloudlet-based fog computing. However, the choice of cloudlet is solely dependent on its trust and reliability. In practice, even though a cloudlet possesses a required trusted platform module (TPM), we argue that the presence of a TPM is not enough to make the cloudlet trustworthy as the TPM supports only the primitive security of the bootstrap. Besides uncertainty in security, other uncertain conditions of the network (e.g. network bandwidth, latency and expectation time to complete a service request for cloud-based services) may also prevail for the cloudlets. Therefore, in order to evaluate the trust value of multiple cloudlets under uncertainty, this paper broadly proposes the empirical process for evaluation of trust. This will be followed by a measure of trust-based reputation of cloudlets through computational intelligence such as fuzzy logic and ant colony optimization (ACO). In the process, fuzzy logic-based inference and membership evaluation of trust are presented. In addition, ACO and its pheromone communication across different colonies are being modeled with multiple cloudlets. Finally, a measure of affinity or popular trust and reputation of the cloudlets is also proposed. Together with the context of application under multiple cloudlets, the computationally intelligent approaches have been investigated in terms of performance. Hence the contribution is subjected towards building a trusted cloudlet-based fog platform.

2021-08-11
Garcia-Luna-Aceves, J.J., Ali Albalawi, Abdulazaz.  2020.  Connection-Free Reliable and Efficient Transport Services in the IP Internet. 2020 16th International Conference on Network and Service Management (CNSM). :1—7.
The Internet Transport Protocol (ITP) is introduced to support reliable end-to-end transport services in the IP Internet without the need for end-to-end connections, changes to the Internet routing infrastructure, or modifications to name-resolution services. Results from simulation experiments show that ITP outperforms the Transmission Control Protocol (TCP) and the Named Data Networking (NDN) architecture, which requires replacing the Internet Protocol (IP). In addition, ITP allows transparent content caching while enforcing privacy.
2021-05-25
Segovia, Mariana, Rubio-Hernan, Jose, Cavalli, Ana R., Garcia-Alfaro, Joaquin.  2020.  Cyber-Resilience Evaluation of Cyber-Physical Systems. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—8.
Cyber-Physical Systems (CPS) use computational resources to control physical processes and provide critical services. For this reason, an attack in these systems may have dangerous consequences in the physical world. Hence, cyber- resilience is a fundamental property to ensure the safety of the people, the environment and the controlled physical processes. In this paper, we present metrics to quantify the cyber-resilience level based on the design, structure, stability, and performance under the attack of a given CPS. The metrics provide reference points to evaluate whether the system is better prepared or not to face the adversaries. This way, it is possible to quantify the ability to recover from an adversary using its mathematical model based on actuators saturation. Finally, we validate our approach using a numeric simulation on the Tennessee Eastman control challenge problem.
2021-07-08
Rao, Liting, Xie, Qingqing, Zhao, Hui.  2020.  Data Sharing for Multiple Groups with Privacy Preservation in the Cloud. 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). :1—5.
With almost unlimited storage capacity and low maintenance cost, cloud storage becomes a convenient and efficient way for data sharing among cloud users. However, this introduces the challenges of access control and privacy protection when data sharing for multiple groups, as each group usually has its own encryption and access control mechanism to protect data confidentiality. In this paper, we propose a multiple-group data sharing scheme with privacy preservation in the cloud. This scheme constructs a flexible access control framework by using group signature, ciphertext-policy attribute-based encryption and broadcast encryption, which supports both intra-group and cross-group data sharing with anonymous access. Furthermore, our scheme supports efficient user revocation. The security and efficiency of the scheme are proved thorough analysis and experiments.
2021-03-16
Li, M., Wang, F., Gupta, S..  2020.  Data-driven fault model development for superconducting logic. 2020 IEEE International Test Conference (ITC). :1—5.

Superconducting technology is being seriously explored for certain applications. We propose a new clean-slate method to derive fault models from large numbers of simulation results. For this technology, our method identifies completely new fault models – overflow, pulse-escape, and pattern-sensitive – in addition to the well-known stuck-at faults.

2021-03-30
Ganfure, G. O., Wu, C.-F., Chang, Y.-H., Shih, W.-K..  2020.  DeepGuard: Deep Generative User-behavior Analytics for Ransomware Detection. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

In the last couple of years, the move to cyberspace provides a fertile environment for ransomware criminals like ever before. Notably, since the introduction of WannaCry, numerous ransomware detection solution has been proposed. However, the ransomware incidence report shows that most organizations impacted by ransomware are running state of the art ransomware detection tools. Hence, an alternative solution is an urgent requirement as the existing detection models are not sufficient to spot emerging ransomware treat. With this motivation, our work proposes "DeepGuard," a novel concept of modeling user behavior for ransomware detection. The main idea is to log the file-interaction pattern of typical user activity and pass it through deep generative autoencoder architecture to recreate the input. With sufficient training data, the model can learn how to reconstruct typical user activity (or input) with minimal reconstruction error. Hence, by applying the three-sigma limit rule on the model's output, DeepGuard can distinguish the ransomware activity from the user activity. The experiment result shows that DeepGuard effectively detects a variant class of ransomware with minimal false-positive rates. Overall, modeling the attack detection with user-behavior permits the proposed strategy to have deep visibility of various ransomware families.

2021-09-16
Liu, Zixuan, Yu, Jie.  2020.  Design and Analysis of a New RFID Security Protocol for Internet of Things. 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT). :16–18.
As the core of the third information revolution, the Internet of things plays an important role in the development of the times. According to the relevant investigation and research, we can find that the research on the Internet of things is still in the stage of LAN and private network, and its open advantages have not been fully utilized[1]. In this context, RFID technology as the core technology of the Internet of things, the security protocol plays an important role in the normal use of the technology. With the continuous development of Internet information technology, the disadvantages of security protocol become more and more obvious. These problems seriously affect the popularity of Internet of things technology. Therefore, in the future work, the relevant staff need to continue to strengthen research, according to the future development plan, effectively play the advantages of technology, and further promote its development.
2021-05-13
Yu, Chen, Chen, Liquan, Lu, Tianyu.  2020.  A Direct Anonymous Attestation Scheme Based on Mimic Defense Mechanism. 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). :1—5.

Machine-to-Machine (M2M) communication is a essential subset of the Internet of Things (IoT). Secure access to communication network systems by M2M devices requires the support of a secure and efficient anonymous authentication protocol. The Direct Anonymous Attestation (DAA) scheme in Trustworthy Computing is a verified security protocol. However, the existing defense system uses a static architecture. The “mimic defense” strategy is characterized by active defense, which is not effective against continuous detection and attack by the attacker. Therefore, in this paper, we propose a Mimic-DAA scheme that incorporates mimic defense to establish an active defense scheme. Multiple heterogeneous and redundant actuators are used to form a DAA verifier and optimization is scheduled so that the behavior of the DAA verifier unpredictable by analysis. The Mimic-DAA proposed in this paper is capable of forming a security mechanism for active defense. The Mimic-DAA scheme effectively safeguard the unpredictability, anonymity, security and system-wide security of M2M communication networks. In comparison with existing DAA schemes, the scheme proposed in this paper improves the safety while maintaining the computational complexity.

2021-03-04
Hashemi, M. J., Keller, E..  2020.  Enhancing Robustness Against Adversarial Examples in Network Intrusion Detection Systems. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :37—43.

The increase of cyber attacks in both the numbers and varieties in recent years demands to build a more sophisticated network intrusion detection system (NIDS). These NIDS perform better when they can monitor all the traffic traversing through the network like when being deployed on a Software-Defined Network (SDN). Because of the inability to detect zero-day attacks, signature-based NIDS which were traditionally used for detecting malicious traffic are beginning to get replaced by anomaly-based NIDS built on neural networks. However, recently it has been shown that such NIDS have their own drawback namely being vulnerable to the adversarial example attack. Moreover, they were mostly evaluated on the old datasets which don't represent the variety of attacks network systems might face these days. In this paper, we present Reconstruction from Partial Observation (RePO) as a new mechanism to build an NIDS with the help of denoising autoencoders capable of detecting different types of network attacks in a low false alert setting with an enhanced robustness against adversarial example attack. Our evaluation conducted on a dataset with a variety of network attacks shows denoising autoencoders can improve detection of malicious traffic by up to 29% in a normal setting and by up to 45% in an adversarial setting compared to other recently proposed anomaly detectors.