Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-09-09
Sangeetha, A. S., Shunmugan, S., Murugan, G..  2020.  Blockchain for IoT Enabled Supply Chain Management - A Systematic Review. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :48—52.
Blockchain will increase supply chains' productivity and accountability, and have a positive effect on anything from warehousing to distribution to payment. To bridge the supply chain visibility gap, blockchain is being deployed because of its security features like immutability, tamper-resistant and hash proof. Blockchain integration with IoT increases the traceability and verifiability of the supply chain management and drastically eradicates the fraudulent activities including bribery, money laundering, forged checks, sanction violations, misrepresentation of goods and services. Blockchain can help to cross-check the verification, identification and authenticity of IoT devices to reduce the frequency and ramifications of fraud in supply chain management. The epidemic outbreak of SARS-CoV-2 has disrupted many global supply chains. The Geneva-based World Economic Forum declared that SARS-CoV-2 exposed supply chain failures can be tackled by blockchain technology. This paper explores the modern methodologies of supply chain management with integration of blockchain and IoT.
2021-08-11
Masuduzzaman, Md, Islam, Anik, Rahim, Tariq, Young Shin, Soo.  2020.  Blockchain-Assisted UAV-Employed Casualty Detection Scheme in Search and Rescue Mission in the Internet of Battlefield Things. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :412–416.
As the unmanned aerial vehicle (UAV) can play a vital role to collect information remotely in a military battlefield, researchers have shown great interest to reveal the domain of internet of battlefield Things (IoBT). In a rescue mission on a battlefield, UAV can collect data from different regions to identify the casualty of a soldier. One of the major challenges in IoBT is to identify the soldier in a complex environment. Image processing algorithm can be helpful if proper methodology can be applied to identify the victims. However, due to the limited hardware resources of a UAV, processing task can be handover to the nearby edge computing server for offloading the task as every second is very crucial in a battlefield. Furthermore, to avoid any third-party interaction in the network and to store the data securely, blockchain can help to create a trusted network as it forms a distributed ledger among the participants. This paper proposes a UAV assisted casualty detection scheme based on image processing algorithm where data is protected using blockchain technology. Result analysis has been conducted to identify the victims on the battlefield successfully using image processing algorithm and network issues like throughput and delay has been analyzed in details using public-key cryptography.
2021-03-15
Chowdhuryy, M. H. Islam, Liu, H., Yao, F..  2020.  BranchSpec: Information Leakage Attacks Exploiting Speculative Branch Instruction Executions. 2020 IEEE 38th International Conference on Computer Design (ICCD). :529–536.
Recent studies on attacks exploiting processor hardware vulnerabilities have raised significant concern for information security. Particularly, transient execution attacks such as Spectre augment microarchitectural side channels with speculative executions that lead to exfiltration of secretive data not intended to be accessed. Many prior works have demonstrated the manipulation of branch predictors for triggering speculative executions, and thereafter leaking sensitive information through processor microarchitectural components. In this paper, we present a new class of microarchitectural attack, called BranchSpec, that performs information leakage by exploiting state changes of branch predictors in speculative path. Our key observation is that, branch instruction executions in speculative path alter the states of branch pattern history, which are not restored even after the speculatively executed branches are eventually squashed. Unfortunately, this enables adversaries to harness branch predictors as the transmitting medium in transient execution attacks. More importantly, as compared to existing speculative attacks (e.g., Spectre), BranchSpec can take advantage of much simpler code patterns in victim's code base, making the impact of such exploitation potentially even more severe. To demonstrate this security vulnerability, we have implemented two variants of BranchSpec attacks: a side channel where a malicious spy process infers cross-boundary secrets via victim's speculatively executed nested branches, and a covert channel that communicates secrets through intentionally perturbing the branch pattern history structure via speculative branch executions. Our evaluation on Intel Skylake- and Coffee Lake-based processors reveals that these information leakage attacks are highly accurate and successful. To the best of our knowledge, this is the first work to reveal the information leakage threat due to speculative state update in branch predictor. Our studies further broaden the attack surface of processor microarchitecture, and highlight the needs for branch prediction mechanisms that are secure in transient executions.
2022-09-09
Asyrofi, Rakha, Zulfa, Nafa.  2020.  CLOUDITY: Cloud Supply Chain Framework Design based on JUGO and Blockchain. 2020 6th Information Technology International Seminar (ITIS). :19—23.
Supply chain management (SCM) system is a main requirement for manufacturers and companies to cooperate. There are many management techniques to manage supply chains, such as using Excel sheets. However, that technique is ineffective, insecure, and sensitive to human errors. In this paper, we propose CLOUDITY, a cloud-based SCM system using SELAT (Selective Market) and Blockchain system. We modify JUGO architecture to develop SELAT as a connector between users and cloud service providers. Also, we apply the Blockchain concept to make more secure system. CLOUDITY system can solve several cases: resource provisioning, service selection, authentication, and access control. Also, it improves the data security by checking every data changes of the supply chain management system using Blockchain system.
2021-02-08
Noel, M. D., Waziri, O. V., Abdulhamid, M. S., Ojeniyi, A. J., Okoro, M. U..  2020.  Comparative Analysis of Classical and Post-quantum Digital Signature Algorithms used in Bitcoin Transactions. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). :1–6.

The use of public key cryptosystems ranges from securely encrypting bitcoin transactions and creating digital signatures for non-repudiation. The cryptographic systems security of public key depends on the complexity in solving mathematical problems. Quantum computers pose a threat to the current day algorithms used. This research presents analysis of two Hash-based Signature Schemes (MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation takes 0.0187s, and verification time for the signature is 0.0164s. The W-OTS key generation is 0.002s. To generate a signature in W-OTS, it takes 0.001s and verification time for the signature is 0.0002s. Lastly MSS Key generation, signature generation and verification has high values which are 16.290s, 17.474s, and 13.494s respectively. Based on the results, W-OTS is recommended for bitcoin transaction security because of its efficiency and ability to resist quantum computer attacks on the bitcoin network.

2021-09-30
Wang, Wei, Liu, Tieyuan, Chang, Liang, Gu, Tianlong, Zhao, Xuemei.  2020.  Convolutional Recurrent Neural Networks for Knowledge Tracing. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :287–290.
Knowledge Tracing (KT) is a task that aims to assess students' mastery level of knowledge and predict their performance over questions, which has attracted widespread attention over the years. Recently, an increasing number of researches have applied deep learning techniques to knowledge tracing and have made a huge success over traditional Bayesian Knowledge Tracing methods. Most existing deep learning-based methods utilized either Recurrent Neural Networks (RNNs) or Convolutional Neural Networks (CNNs). However, it is worth noticing that these two sorts of models are complementary in modeling abilities. Thus, in this paper, we propose a novel knowledge tracing model by taking advantage of both two models via combining them into a single integrated model, named Convolutional Recurrent Knowledge Tracing (CRKT). Extensive experiments show that our model outperforms the state-of-the-art models in multiple KT datasets.
2021-06-28
Lee, Hyunjun, Bere, Gomanth, Kim, Kyungtak, Ochoa, Justin J., Park, Joung-hu, Kim, Taesic.  2020.  Deep Learning-Based False Sensor Data Detection for Battery Energy Storage Systems. 2020 IEEE CyberPELS (CyberPELS). :1–6.
Battery energy storage systems are facing risks of unreliable battery sensor data which might be caused by sensor faults in an embedded battery management system, communication failures, and even cyber-attacks. It is crucial to evaluate the trustworthiness of battery sensor data since inaccurate sensor data could lead to not only serious damages to battery energy storage systems, but also threaten the overall reliability of their applications (e.g., electric vehicles or power grids). This paper introduces a battery sensor data trust framework enabling detecting unreliable data using a deep learning algorithm. The proposed sensor data trust mechanism could potentially improve safety and reliability of the battery energy storage systems. The proposed deep learning-based battery sensor fault detection algorithm is validated by simulation studies using a convolutional neural network.
2021-03-29
Peng, Y., Fu, G., Luo, Y., Hu, J., Li, B., Yan, Q..  2020.  Detecting Adversarial Examples for Network Intrusion Detection System with GAN. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :6–10.
With the increasing scale of network, attacks against network emerge one after another, and security problems become increasingly prominent. Network intrusion detection system is a widely used and effective security means at present. In addition, with the development of machine learning technology, various intelligent intrusion detection algorithms also start to sprout. By flexibly combining these intelligent methods with intrusion detection technology, the comprehensive performance of intrusion detection can be improved, but the vulnerability of machine learning model in the adversarial environment can not be ignored. In this paper, we study the defense problem of network intrusion detection system against adversarial samples. More specifically, we design a defense algorithm for NIDS against adversarial samples by using bidirectional generative adversarial network. The generator learns the data distribution of normal samples during training, which is an implicit model reflecting the normal data distribution. After training, the adversarial sample detection module calculates the reconstruction error and the discriminator matching error of sample. Then, the adversarial samples are removed, which improves the robustness and accuracy of NIDS in the adversarial environment.
2021-05-13
Chen, Ziyu, Zhu, Jizhong, Li, Shenglin, Luo, Tengyan.  2020.  Detection of False Data Injection Attack in Automatic Generation Control System with Wind Energy based on Fuzzy Support Vector Machine. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :3523—3528.
False data injection attack (FDIA) destroys the automatic generation control (AGC) system and leads to unstable operation of the power system. Fast and accurate detection can help prevent and disrupt malicious attacks. This paper proposes an improved detection method, which is combined with fuzzy theory and support vector machine (SVM) to identify various types of attacks. The impacts of different types of FDIAs on the AGC system are analyzed, and the reliability of the method is proved by a large number of experimental data. This experiment is simulated on a single-area LFC system and the effects of adding a wind storage system were compared in a dynamic model. Simulation studies also show a higher accuracy of fuzzy support vector machine (FSVM) than traditional SVM and fuzzy pattern trees (FPTs).
2021-05-05
Hossain, Md. Turab, Hossain, Md. Shohrab, Narman, Husnu S..  2020.  Detection of Undesired Events on Real-World SCADA Power System through Process Monitoring. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0779—0785.
A Supervisory Control and Data Acquisition (SCADA) system used in controlling or monitoring purpose in industrial process automation system is the process of collecting data from instruments and sensors located at remote sites and transmitting data at a central site. Most of the existing works on SCADA system focused on simulation-based study which cannot always mimic the real world situations. We propose a novel methodology that analyzes SCADA logs on offline basis and helps to detect process-related threats. This threat takes place when an attacker performs malicious actions after gaining user access. We conduct our experiments on a real-life SCADA system of a Power transmission utility. Our proposed methodology will automate the analysis of SCADA logs and systemically identify undesired events. Moreover, it will help to analyse process-related threats caused by user activity. Several test study suggest that our approach is powerful in detecting undesired events that might caused by possible malicious occurrence.
2021-02-10
Banerjee, R., Baksi, A., Singh, N., Bishnu, S. K..  2020.  Detection of XSS in web applications using Machine Learning Classifiers. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1—5.
Considering the amount of time we spend on the internet, web pages have evolved over a period of time with rapid progression and momentum. With such advancement, we find ourselves fronting a few hostile ideologies, breaching the security levels of webpages as such. The most hazardous of them all is XSS, known as Cross-Site Scripting, is one of the attacks which frequently occur in website-based applications. Cross-Site Scripting (XSS) attacks happen when malicious data enters a web application through an untrusted source. The spam attacks happen in the form of Wall posts, News feed, Message spam and mostly when a user is open to download content of webpages. This paper investigates the use of machine learning to build classifiers to allow the detection of XSS. Establishing our approach, we target the detection modus operandi of XSS attack via two features: URLs and JavaScript. To predict the level of XSS threat, we will be using four machine learning algorithms (SVM, KNN, Random forest and Logistic Regression). Proposing these classified algorithms, webpages will be branded as malicious or benign. After assessing and calculating the dataset features, we concluded that the Random Forest Classifier performed most accurately with the lowest False Positive Rate of 0.34. This precision will ensure a method much efficient to evaluate threatening XSS for the smooth functioning of the system.
2022-10-16
Adamenko, Yu.V., Medvedev, A.A., Karpunin, D.A..  2020.  Development of a System for Static Analysis of C ++ Language Code. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
The main goal of the system is to make it easier to standardize the style of program code written in C++. Based on the results of the review of existing static analyzers, in addition to the main requirements, requirements for the structure of stylistic rules were identified. Based on the results obtained, a system for static analysis of the C++ language has been developed, consisting of a set of modules. The system is implemented using the Python 3.7 programming language. HTML and CSS markup languages were used to generate html reports. To ensure that rules can be stored in the database, the MongoDB database management system and the pymongo driver module were used.
2021-01-28
Fan, M., Yu, L., Chen, S., Zhou, H., Luo, X., Li, S., Liu, Y., Liu, J., Liu, T..  2020.  An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). :253—264.

The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named HPDROID, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on HPDROID, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.

2021-05-20
Maung, Maung, Pyone, April, Kiya, Hitoshi.  2020.  Encryption Inspired Adversarial Defense For Visual Classification. 2020 IEEE International Conference on Image Processing (ICIP). :1681—1685.
Conventional adversarial defenses reduce classification accuracy whether or not a model is under attacks. Moreover, most of image processing based defenses are defeated due to the problem of obfuscated gradients. In this paper, we propose a new adversarial defense which is a defensive transform for both training and test images inspired by perceptual image encryption methods. The proposed method utilizes a block-wise pixel shuffling method with a secret key. The experiments are carried out on both adaptive and non-adaptive maximum-norm bounded white-box attacks while considering obfuscated gradients. The results show that the proposed defense achieves high accuracy (91.55%) on clean images and (89.66%) on adversarial examples with noise distance of 8/255 on CFAR-10 dataset. Thus, the proposed defense outperforms state-of-the-art adversarial defenses including latent adversarial training, adversarial training and thermometer encoding.
2021-03-22
Vimercati, S. de Capitani di, Foresti, S., Paraboschi, S., Samarati, P..  2020.  Enforcing Corporate Governance's Internal Controls and Audit in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :453–461.
More and more organizations are today using the cloud for their business as a quite convenient alternative to in-house solutions for storing, processing, and managing data. Cloud-based solutions are then permeating almost all aspects of business organizations, resulting appealing also for functions that, already in-house, may result sensitive or security critical, and whose enforcement in the cloud requires then particular care. In this paper, we provide an approach for securely relying on cloud-based services for the enforcement of Internal Controls and Audit (ICA) functions for corporate governance. Our approach is based on the use of selective encryption and of tags to provide a level of self-protection to data and for enabling only authorized parties to access data and perform operations on them, providing privacy and integrity guarantees, as well as accountability and non-repudiation.
2022-10-16
Özmat, Utku, Demirkol, Mehmet Fatih, Demirci, Nuran, Yazıcı, Mehmet Akif.  2020.  Enhancing Physical Layer Security with Coordinated Multi-Point Transmission in 5G and Beyond Networks. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
Physical layer security has gained importance with the widespread use of wireless communication systems. Multiantenna systems and multi-point transmission techniques in 5G and beyond are promising techniques not only for enhancing data rates, but also physical layer security. Coordinated multipoint transmission is used for enhancing the service quality and decreasing inter-cell interference especially for cell-edge users. In this study, analysis of physical layer security enhancement via multi-antenna technologies and coordinated multi-point for 5G and beyond networks is provided. The proposed scheme is evaluated on calculations from real-life mobile network topologies. As a figure of performance, the secure and successful detection probability is computed with varying antenna array size, number of coordinated transmission points, and different service requirements.
2021-01-28
Krasnov, A. N., Prakhova, M. Y., Novikova, U. V..  2020.  Ensuring Cybersecurity of Data Transmission in Limited Energy Consumption Networks. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—5.

In the northern gas fields, most data are transmitted via wireless networks, which requires special transmission security measures. Herewith, the gas field infrastructure dictates cybersecurity modules to not only meet standard requirements but also ensure reduced energy consumption. The paper discusses the issue of building such a module for a process control system based on the RTP-04M recorder operating in conjunction with an Android-based mobile device. The software options used for the RSA and Diffie-Hellman data encryption and decryption algorithms on both the RTP-04M and the Android-based mobile device sides in the Keil μVision4 and Android Studio software environments, respectively, have shown that the Diffie-Hellman algorithm is preferable. It provides significant savings in RAM and CPU resources and power consumption of the recorder. In terms of energy efficiency, the implemented programs have been analyzed in the Android Studio (Android Profiler) and Simplicity Studio (Advanced Energy Monitor) environments. The integration of this module into the existing software will improve the field's PCS cybersecurity level due to protecting data transmitted from third-party attacks.

2021-08-31
Castro-Coronado, Habib, Antonino-Daviu, Jose, Quijano-López, Alfredo, Fuster-Roig, Vicente, Llovera-Segovia, Pedro.  2020.  Evaluation of the Detectability of Damper Cage Damages in Synchronous Motors through the Advanced Analysis of the Stray Flux. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). :2058–2063.
The determination of the damper cage health is a matter of great importance in those industries that use large synchronous motors in their processes. In the past, unexpected damages of that element implied economic losses amounting up to several million \$. The problem is that, in the technical literature, there is a lack of non-invasive techniques enabling the reliable condition monitoring of this element. This explains the fact that, in industry, rudimentary methods are still employed to determine its condition. This paper proposes the analysis of the stray flux as a way to determine the condition of the damper cage. The paper shows that the analysis of the stray flux under starting yields characteristic time-frequency signatures of the fault components that can be used to reliably determine the condition of the damper. Moreover, the analysis of the stray flux at steady-state operation under asynchronous mode could give useful information to this end. The paper also analyses the influence of the remanent magnetism in the rotor of some synchronous motors, which can make the damper cage diagnosis more difficult; some solutions to this problem are also suggested in the paper.
2021-06-24
Habib ur Rehman, Muhammad, Mukhtar Dirir, Ahmed, Salah, Khaled, Svetinovic, Davor.  2020.  FairFed: Cross-Device Fair Federated Learning. 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1–7.
Federated learning (FL) is the rapidly developing machine learning technique that is used to perform collaborative model training over decentralized datasets. FL enables privacy-preserving model development whereby the datasets are scattered over a large set of data producers (i.e., devices and/or systems). These data producers train the learning models, encapsulate the model updates with differential privacy techniques, and share them to centralized systems for global aggregation. However, these centralized models are always prone to adversarial attacks (such as data-poisoning and model poisoning attacks) due to a large number of data producers. Hence, FL methods need to ensure fairness and high-quality model availability across all the participants in the underlying AI systems. In this paper, we propose a novel FL framework, called FairFed, to meet fairness and high-quality data requirements. The FairFed provides a fairness mechanism to detect adversaries across the devices and datasets in the FL network and reject their model updates. We use a Python-simulated FL framework to enable large-scale training over MNIST dataset. We simulate a cross-device model training settings to detect adversaries in the training network. We used TensorFlow Federated and Python to implement the fairness protocol, the deep neural network, and the outlier detection algorithm. We thoroughly test the proposed FairFed framework with random and uniform data distributions across the training network and compare our initial results with the baseline fairness scheme. Our proposed work shows promising results in terms of model accuracy and loss.
2021-09-21
Ramadhan, Beno, Purwanto, Yudha, Ruriawan, Muhammad Faris.  2020.  Forensic Malware Identification Using Naive Bayes Method. 2020 International Conference on Information Technology Systems and Innovation (ICITSI). :1–7.
Malware is a kind of software that, if installed on a malware victim's device, might carry malicious actions. The malicious actions might be data theft, system failure, or denial of service. Malware analysis is a process to identify whether a piece of software is a malware or not. However, with the advancement of malware technologies, there are several evasion techniques that could be implemented by malware developers to prevent analysis, such as polymorphic and oligomorphic. Therefore, this research proposes an automatic malware detection system. In the system, the malware characteristics data were obtained through both static and dynamic analysis processes. Data from the analysis process were classified using Naive Bayes algorithm to identify whether the software is a malware or not. The process of identifying malware and benign files using the Naive Bayes machine learning method has an accuracy value of 93 percent for the detection process using static characteristics and 85 percent for detection through dynamic characteristics.
2021-09-16
Beg, Omar Ali, Yadav, Ajay P., Johnson, Taylor T., Davoudi, Ali.  2020.  Formal Online Resiliency Monitoring in Microgrids. 2020 Resilience Week (RWS). :99–105.
This work adopts an online resiliency monitoring framework employing metric temporal logic (MTL) under cyber-physical anomalies, namely false-data injection attacks, denial-of-service attacks, and physical faults. Such anomalies adversely affect the frequency synchronization, load sharing, and voltage regulation in microgrids. MTL formalism is adopted to monitor the outputs of inverters/converters against operational bounds, detect and quantify cyber-physical anomalies, monitor the microgrid's resiliency during runtime, and compare mitigation strategies. Since the proposed framework does not require system knowledge, it can be deployed on a complex microgrid. This is verified using an IEEE 34-bus feeder system and a DC microgrid cluster in a controller/hardware-in-the-loop environment.
2021-03-04
Matin, I. Muhamad Malik, Rahardjo, B..  2020.  A Framework for Collecting and Analysis PE Malware Using Modern Honey Network (MHN). 2020 8th International Conference on Cyber and IT Service Management (CITSM). :1—5.

Nowadays, Windows is an operating system that is very popular among people, especially users who have limited knowledge of computers. But unconsciously, the security threat to the windows operating system is very high. Security threats can be in the form of illegal exploitation of the system. The most common attack is using malware. To determine the characteristics of malware using dynamic analysis techniques and static analysis is very dependent on the availability of malware samples. Honeypot is the most effective malware collection technique. But honeypot cannot determine the type of file format contained in malware. File format information is needed for the purpose of handling malware analysis that is focused on windows-based malware. For this reason, we propose a framework that can collect malware information as well as identify malware PE file type formats. In this study, we collected malware samples using a modern honey network. Next, we performed a feature extraction to determine the PE file format. Then, we classify types of malware using VirusTotal scanning. As the results of this study, we managed to get 1.222 malware samples. Out of 1.222 malware samples, we successfully extracted 945 PE malware. This study can help researchers in other research fields, such as machine learning and deep learning, for malware detection.

2021-02-08
Chen, J., Liao, S., Hou, J., Wang, K., Wen, J..  2020.  GST-GCN: A Geographic-Semantic-Temporal Graph Convolutional Network for Context-aware Traffic Flow Prediction on Graph Sequences. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1604–1609.
Traffic flow prediction is an important foundation for intelligent transportation systems. The traffic data are generated from a traffic network and evolved dynamically. So spatio-temporal relation exploration plays a support role on traffic data analysis. Most researches focus on spatio-temporal information fusion through a convolution operation. To the best of our knowledge, this is the first work to suggest that it is necessary to distinguish the two aspects of spatial correlations and propose the two types of spatial graphs, named as geographic graph and semantic graph. Then two novel stereo convolutions with irregular acceptive fields are proposed. The geographic-semantic-temporal contexts are dynamically jointly captured through performing the proposed convolutions on graph sequences. We propose a geographic-semantic-temporal graph convolutional network (GST-GCN) model that combines our graph convolutions and GRU units hierarchically in a unified end-to-end network. The experiment results on the Caltrans Performance Measurement System (PeMS) dataset show that our proposed model significantly outperforms other popular spatio-temporal deep learning models and suggest the effectiveness to explore geographic-semantic-temporal dependencies on deep learning models for traffic flow prediction.
2021-03-15
Khuchit, U., Wu, L., Zhang, X., Yin, Y., Batsukh, A., Mongolyn, B., Chinbat, M..  2020.  Hardware Design of Polynomial Multiplication for Byte-Level Ring-LWE Based Cryptosystem. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :86–89.
An ideal lattice is defined over a ring learning with errors (Ring-LWE) problem. Polynomial multiplication over the ring is the most computational and time-consuming block in lattice-based cryptography. This paper presents the first hardware design of the polynomial multiplication for LAC, one of the Round-2 candidates of the NIST PQC Standardization Process, which has byte-level modulus p=251. The proposed architecture supports polynomial multiplications for different degree n (n=512/1024/2048). For designing the scheme, we used the Vivado HLS compiler, a high-level synthesis based hardware design methodology, which is able to optimize software algorithms into actual hardware products. The design of the scheme takes 274/280/291 FFs and 204/217/208 LUTs on the Xilinx Artix-7 family FPGA, requested by NIST PQC competition for hardware implementation. Multiplication core uses only 1/1/2 pieces of 18Kb BRAMs, 1/1/1 DSPs, and 90/94/95 slices on the board. Our timing result achieved in an alternative degree n with 5.052/4.3985/5.133ns.
2021-07-07
Yang, Yuanyuan, Li, Hui, Cheng, Xiangdong, Yang, Xin, Huo, Yaoguang.  2020.  A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0176–0182.
The Representational State Transfer (REST) is a distributed application architecture style which adopted on providing various network services. The identity authentication protocol Kerberos has been used to guarantee the security identity authentication of many service platforms. However, the deployment of Kerberos protocol is limited by the defects such as password guessing attacks, data tampering, and replay attacks. In this paper, an optimized Kerberos protocol is proposed and applied in a REST-style Cloud Storage Architecture. Firstly, we propose a Lately Used Newly (LUN) key replacement method to resist the password guessing attacks in Kerberos protocol. Secondly, we propose a formatted signature algorithm and a combination of signature string and time stamp method to cope with the problems of tampering and replay attacks which in deploying Kerberos. Finally, we build a security protection module using the optimized Kerberos protocol to guarantee a secure identity authentication and the reliable data communication between the client and the server. Analyses show that the module significantly improves the security of Kerberos protocol in REST-style cloud storage services.