Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2018-09-12
Jillepalli, A. A., Sheldon, F. T., Leon, D. C. de, Haney, M., Abercrombie, R. K..  2017.  Security management of cyber physical control systems using NIST SP 800-82r2. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1864–1870.

Cyber-attacks and intrusions in cyber-physical control systems are, currently, difficult to reliably prevent. Knowing a system's vulnerabilities and implementing static mitigations is not enough, since threats are advancing faster than the pace at which static cyber solutions can counteract. Accordingly, the practice of cybersecurity needs to ensure that intrusion and compromise do not result in system or environment damage or loss. In a previous paper [2], we described the Cyberspace Security Econometrics System (CSES), which is a stakeholder-aware and economics-based risk assessment method for cybersecurity. CSES allows an analyst to assess a system in terms of estimated loss resulting from security breakdowns. In this paper, we describe two new related contributions: 1) We map the Cyberspace Security Econometrics System (CSES) method to the evaluation and mitigation steps described by the NIST Guide to Industrial Control Systems (ICS) Security, Special Publication 800-82r2. Hence, presenting an economics-based and stakeholder-aware risk evaluation method for the implementation of the NIST-SP-800-82 guide; and 2) We describe the application of this tailored method through the use of a fictitious example of a critical infrastructure system of an electric and gas utility.

2018-06-11
Dong, D. S..  2017.  Security modalities on linear network code for randomized sources. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :1841–1845.

Today's major concern is not only maximizing the information rate through linear network coding scheme which is intelligent combination of information symbols at sending nodes but also secured transmission of information. Though cryptographic measure of security (computational security) gives secure transmission of information, it results system complexity and consequent reduction in efficiency of the communication system. This problem leads to alternative way of optimally secure and maximized information transmission. The alternative solution is secure network coding which is information theoretic approach. Depending up on applications, different security measures are needed during the transmission of information over wiretapped network with potential attack by the adversaries. In this research work, mathematical model for different security constraints with upper and lower boundaries were studied depending up on the randomness added to the source message and hence the security constraints on linear network code for randomized source messages depends both on randomness added and number of random source symbols. If the source generates large number random symbols, lesser number of random keys can give higher security to the information but information theoretic security bounds remain same. Hence maximizing randomness to the source is equivalent to adding security level.

2018-05-24
Lin, Han-Yu, Ting, Pei-Yih, Yang, Leo-Fan.  2017.  On the Security of a Provably Secure Certificateless Strong Designated Verifier Signature Scheme Based on Bilinear Pairings. Proceedings of the 2017 International Conference on Telecommunications and Communication Engineering. :61–65.

A strong designated verifier signature (SDVS) is a variation of traditional digital signatures, since it allows a signer to designate an intended receiver as the verifier rather than anyone. To do this, a signer must incorporate the verifier's public key with the signing procedure such that only the intended receiver could verify this signature with his/her private key. Such a signature further enables a designated verifier to simulate a computationally indistinguishable transcript intended for himself. Consequently, no one can identify the real signer's identity from a candidate signer and a designated verifier, which is referred to as the property of signer ambiguity. A strong notion of signer ambiguity states that no polynomial-time adversary can distinguish the real signer of a given SDVS that is not received by the designated verifier, even if the adversary has obtained the signer's private key. In 2013, Islam and Biswas proposed a provably secure certificateless strong designated verifier signature (CL-SDVS) scheme based on bilinear pairings. In this paper, we will demonstrate that their scheme fails to satisfy strong signer ambiguity and must assume a trusted private key generator (PKG). In other words, their CL-SDVS scheme is vulnerable to both key-compromise and malicious PKG attacks. Additionally, we present an improved variant to eliminate these weaknesses.

2018-02-21
Krit, S., Benaddy, M., Habil, B. E., Ouali, M. E., Meslouhi, O. E..  2017.  Security of hardware architecture, design and performance of low drop-out voltage regulator LDO to protect power mobile applications. 2017 International Conference on Engineering MIS (ICEMIS). :1–8.

This paper present a new Low Drop-Out Voltage Regulator (LDO) and highlight the topologies and the advantages of the LDO for hardware security protection of Wireless Sensor Networks (WSNs), this integrated circuits are considered as an ideal solution in low power System on-chip applications (SOC) for their compact sizes and low cost. The advancement in low-power design makes it possible that ubiquitous device can be powered by low-power energy source such as ambient energy or small size batteries. In many well supplied devices the problem related to power is essentially related to cost. However for low-powered devices the problem of power is not only economics but also becomes very essential in terms of functionality. Due to the usual very small amount of energy or unstable energy available the way the engineer manages power becomes a key point in this area. Therefore, another focus of this dissertation is to try finding ways to improve the security of power management problems. Complementary metal oxide-semiconductor (CMOS) has become the predominant technology in integrated circuit design due to its high density, power savings and low manufacturing costs. The whole integrated circuit industry will still continue to benefit from the geometric downsizing that comes with every new generation of semiconductor manufacturing processes. Therefore, only several CMOS analog integrated circuit design techniques are proposed for low-powered ubiquitous device in this dissertation. This paper reviews the basics of LDO regulators and discusses the technology advances in the latest generation of LDOs that make them the preferred solution for many points of load power requirements. The paper will also introduce characteristics of CMOS LDO regulators and discuss their unique benefits in portable electronics applications. these new device offer a real advantages for the power management security of new applications mobile. Power efficiency and some practical issues for the CMOS im- lementation of these LDO structures are discussed.

2018-02-27
Valente, Junia, Cardenas, Alvaro A..  2017.  Security & Privacy in Smart Toys. Proceedings of the 2017 Workshop on Internet of Things Security and Privacy. :19–24.

We analyze the security practices of three smart toys that communicate with children through voice commands. We show the general communication architecture, and some general security and privacy practices by each of the devices. Then we focus on the analysis of one particular toy, and show how attackers can decrypt communications to and from a target device, and perhaps more worryingly, the attackers can also inject audio into the toy so the children listens to any arbitrary audio file the attacker sends to the toy. This last attack raises new safety concerns that manufacturers of smart toys should prevent.

2018-06-11
Yang, J., Zhou, C., Zhao, Y..  2017.  A security protection approach based on software defined network for inter-area communication in industrial control systems. 12th International Conference on System Safety and Cyber-Security 2017 (SCSS). :1–6.

Currently, security protection in Industrial Control Systems has become a hot topic, and a great number of defense techniques have sprung up. As one of the most effective approaches, area isolation has the exceptional advantages and is widely used to prevent attacks or hazards propagating. However, most existing methods for inter-area communication protection present some limitations, i.e., excessively depending on the analyzing rules, affecting original communication. Additionally, the network architecture and data flow direction can hardly be adjusted after being deployed. To address these problems, a dynamical and customized communication protection technology is proposed in this paper. In detail, a security inter-area communication architecture based on Software Defined Network is designed firstly, where devices or subsystems can be dynamically added into or removed from the communication link. And then, a security inspection method based on information entropy is presented for deep network behaviors analysis. According to the security analysis results, the communications in the network can be adjusted in time. Finally, simulations are constructed, and the results indicate that the proposed approach is sensitive and effective for cyber-attacks detection.

2018-02-28
Ma, G., Li, X., Pei, Q., Li, Z..  2017.  A Security Routing Protocol for Internet of Things Based on RPL. 2017 International Conference on Networking and Network Applications (NaNA). :209–213.

RPL is a lightweight IPv6 network routing protocol specifically designed by IETF, which can make full use of the energy of intelligent devices and compute the resource to build the flexible topological structure. This paper analyzes the security problems of RPL, sets up a test network to test RPL network security, proposes a RPL based security routing protocol M-RPL. The routing protocol establishes a hierarchical clustering network topology, the intelligent device of the network establishes the backup path in different clusters during the route discovery phase, enable backup paths to ensure data routing when a network is compromised. Setting up a test prototype network, simulating some attacks against the routing protocols in the network. The test results show that the M-RPL network can effectively resist the routing attacks. M-RPL provides a solution to ensure the Internet of Things (IoT) security.

2018-05-01
Dofe, Jaya, Gu, Peng, Stow, Dylan, Yu, Qiaoyan, Kursun, Eren, Xie, Yuan.  2017.  Security Threats and Countermeasures in Three-Dimensional Integrated Circuits. Proceedings of the on Great Lakes Symposium on VLSI 2017. :321–326.

Existing works on Three-dimensional (3D) hardware security focus on leveraging the unique 3D characteristics to address the supply chain attacks that exist in 2D design. However, 3D ICs introduce specific and unexplored challenges as well as new opportunities for managing hardware security. In this paper, we analyze new security threats unique to 3D ICs. The corresponding attack models are summarized for future research. Furthermore, existing representative countermeasures, including split manufacturing, camouflaging, transistor locking, techniques against thermal signal based side-channel attacks, and network-on-chip based shielding plane (NoCSIP) for different hardware threats are reviewed and categorized. Moreover, preliminary countermeasures are proposed to thwart TSV-based hardware Trojan insertion attacks.

2018-08-23
Pandey, S. B., Rawat, M. D., Rathod, H. B., Chauhan, J. M..  2017.  Security throwbot. 2017 International Conference on Inventive Systems and Control (ICISC). :1–6.

We all are very much aware of IoT that is Internet of Things which is emerging technology in today's world. The new and advanced field of technology and inventions make use of IoT for better facility. The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Our project is based on IoT and other supporting techniques which can bring out required output. Security issues are everywhere now-a-days which we are trying to deal with by our project. Our security throwbot (a throwable device) will be tossed into a room after activating it and it will capture 360 degree panaromic video from a single IP camera, by using two end connectivity that is, robot end and another is user end, will bring more features to this project. Shape of the robot will be shperical so that problem of retrieving back can be solved. Easy to use and cheap to buy is one of our goal which will be helpful to police and soldiers who get stuck in situations where they have to question oneself before entering to dangerous condition/room. Our project will help them to handle and verify any area before entering by just throwing this robot and getting the sufficient results.

2017-12-12
Ghourab, E. M., Azab, M., Rizk, M., Mokhtar, A..  2017.  Security versus reliability study for power-limited mobile IoT devices. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :430–438.

Internet of Things (IoT) depicts an intelligent future, where any IoT-based devices having a sensorial and computing capabilities to interact with each other. Recently, we are living in the area of internet and rapidly moving towards a smart planet where devices are capable to be connected to each other. Cooperative ad-hoc vehicle systems are the main driving force for the actualization of IoT-based concept. Vehicular Ad-hoc Network (VANET) is considered as a promising platform for the intelligent wireless communication system. This paper presents and analyzes the tradeoffs between the security and reliability of the IoT-based VANET system in the presence of eavesdropping attacks using smart vehicle relays based on opportunistic relay selection (ORS) scheme. Then, the optimization of the distance between the source (S), destination (D), and Eavesdropper (E) is illustrated in details, showing the effect of this parameter on the IoT-based network. In order to improve the SRT, we quantify the attainable SRT improvement with variable distances between IoT-based nodes. It is shown that given the maximum tolerable Intercept Probability (IP), the Outage Probability (OP) of our proposed model approaches zero for Ge → ∞, where Ge is distance ratio between S — E via the vehicle relay (R).

2017-12-20
Salameh, H. B., Almajali, S., Ayyash, M., Elgala, H..  2017.  Security-aware channel assignment in IoT-based cognitive radio networks for time-critical applications. 2017 Fourth International Conference on Software Defined Systems (SDS). :43–47.

Cognitive radio networks (CRNs) have a great potential in supporting time-critical data delivery among the Internet of Things (IoT) devices and for emerging applications such as smart cities. However, the unique characteristics of different technologies and shared radio operating environment can significantly impact network availability. Hence, in this paper, we study the channel assignment problem in time-critical IoT-based CRNs under proactive jamming attacks. Specifically, we propose a probabilistic spectrum assignment algorithm that aims at minimizing the packet invalidity ratio of each cognitive radio (CR) transmission subject to delay constrains. We exploit the statistical information of licensed users' activities, fading conditions, and jamming attacks over idle channels. Simulation results indicate that network performance can be significantly improved by using a security- availability- and quality-aware channel assignment that provides communicating CR pair with the most secured channel of the lowest invalidity ratio.

2018-10-26
Arya, D., Dave, M..  2017.  Security-based service broker policy for FOG computing environment. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

With the evolution of computing from using personal computers to use of online Internet of Things (IoT) services and applications, security risks have also evolved as a major concern. The use of Fog computing enhances reliability and availability of the online services due to enhanced heterogeneity and increased number of computing servers. However, security remains an open challenge. Various trust models have been proposed to measure the security strength of available service providers. We utilize the quantized security of Datacenters and propose a new security-based service broker policy(SbSBP) for Fog computing environment to allocate the optimal Datacenter(s) to serve users' requests based on users' requirements of cost, time and security. Further, considering the dynamic nature of Fog computing, the concept of dynamic reconfiguration has been added. Comparative analysis of simulation results shows the effectiveness of proposed policy to incorporate users' requirements in the decision-making process.

2018-02-21
Wiest, P., Groß, D., Rudion, K., Probst, A..  2017.  Security-constrained dynamic curtailment method for renewable energy sources in grid planning. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1–6.

This paper presents a new approach for a dynamic curtailment method for renewable energy sources that guarantees fulfilling of (n-1)-security criteria of the system. Therefore, it is applicable to high voltage distribution grids and has compliance to their planning guidelines. The proposed dynamic curtailment method specifically reduces the power feed-in of renewable energy sources up to a level, where no thermal constraint is exceeded in the (n-1)-state of the system. Based on AC distribution factors, a new formulation of line outage distribution factors is presented that is applicable for outages consisting of a single line or multiple segment lines. The proposed method is tested using a planning study of a real German high voltage distribution grid. The results show that any thermal loading limits are exceeded by using the dynamic curtailment approach. Therefore, a significant reduction of the grid reinforcement can be achieved by using a small amount of curtailed annual energy from renewable energy sources.

2018-08-23
Crooks, Natacha, Pu, Youer, Alvisi, Lorenzo, Clement, Allen.  2017.  Seeing is Believing: A Client-Centric Specification of Database Isolation. Proceedings of the ACM Symposium on Principles of Distributed Computing. :73–82.

This paper introduces the first state-based formalization of isolation guarantees. Our approach is premised on a simple observation: applications view storage systems as black-boxes that transition through a series of states, a subset of which are observed by applications. Defining isolation guarantees in terms of these states frees definitions from implementation-specific assumptions. It makes immediately clear what anomalies, if any, applications can expect to observe, thus bridging the gap that exists today between how isolation guarantees are defined and how they are perceived. The clarity that results from definitions based on client-observable states brings forth several benefits. First, it allows us to easily compare the guarantees of distinct, but semantically close, isolation guarantees. We find that several well-known guarantees, previously thought to be distinct, are in fact equivalent, and that many previously incomparable flavors of snapshot isolation can be organized in a clean hierarchy. Second, freeing definitions from implementation-specific artefacts can suggest more efficient implementations of the same isolation guarantee. We show how a client-centric implementation of parallel snapshot isolation can be more resilient to slowdown cascades, a common phenomenon in large-scale datacenters.

2018-03-05
Birbeck, Nataly, Lawson, Shaun, Morrissey, Kellie, Rapley, Tim, Olivier, Patrick.  2017.  Self Harmony: Rethinking Hackathons to Design and Critique Digital Technologies for Those Affected by Self-Harm. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. :146–157.

In this paper we explore the opportunities, challenges and best practices around designing technologies for those affected by self-harm. Our work contributes to a growing HCI literature on mental health and wellbeing, as well as understandings of how to imbue appropriate value-sensitivity within the digital design process in these contexts. The first phase of our study was centred upon a hackathon during which teams of designers were asked to conceptualise and prototype digital products or services for those affected by self-harm. We discuss how value-sensitive actions and activities, including engagements with those with lived experiences of self-harm, were used to scaffold the conventional hackathon format in such a challenging context. Our approach was then extended through a series of critical engagements with clinicians and charity workers who provided appraisal of the prototypes and designs. Through analysis of these engagements we expose a number of design challenges for future HCI work that considers self-harm; moreover we offer insight into the role of stakeholder critiques in extending and rethinking hackathons as a design method in sensitive contexts.

Khalil, K., Eldash, O., Bayoumi, M..  2017.  Self-Healing Router Architecture for Reliable Network-on-Chips. 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :330–333.

NoCs are a well established research topic and several Implementations have been proposed for Self-healing. Self-healing refers to the ability of a system to detect faults or failures and fix them through healing or repairing. The main problems in current self-healing approaches are area overhead and scalability for complex structure since they are based on redundancy and spare blocks. Also, faulty router can isolate PE from other router nodes which can reduce the overall performance of the system. This paper presents a self-healing for a router to avoid denied fault PE function and isolation PE from other nodes. In the proposed design, the neighbor routers receive signal from a faulty router which keeps them to send the data packet which has only faulted router destination to a faulty router. Control unite turns on switches to connect four input ports to local ports successively to send coming packets to PE. The reliability of the proposed technique is studied and compared to conventional system with different failure rates. This approach is capable of healing 50% of the router. The area overhead is 14% for the proposed approach which is much lower compared to other approaches using redundancy.

2018-01-16
Rukavitsyn, A., Borisenko, K., Shorov, A..  2017.  Self-learning method for DDoS detection model in cloud computing. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :544–547.

Cloud Computing has many significant benefits like the provision of computing resources and virtual networks on demand. However, there is the problem to assure the security of these networks against Distributed Denial-of-Service (DDoS) attack. Over the past few decades, the development of protection method based on data mining has attracted many researchers because of its effectiveness and practical significance. Most commonly these detection methods use prelearned models or models based on rules. Because of this the proposed DDoS detection methods often failure in dynamically changing cloud virtual networks. In this paper, we purposed self-learning method allows to adapt a detection model to network changes. This is minimized the false detection and reduce the possibility to mark legitimate users as malicious and vice versa. The developed method consists of two steps: collecting data about the network traffic by Netflow protocol and relearning the detection model with the new data. During the data collection we separate the traffic on legitimate and malicious. The separated traffic is labeled and sent to the relearning pool. The detection model is relearned by a data from the pool of current traffic. The experiment results show that proposed method could increase efficiency of DDoS detection systems is using data mining.

2018-02-06
MüUller, W., Kuwertz, A., Mühlenberg, D., Sander, J..  2017.  Semantic Information Fusion to Enhance Situational Awareness in Surveillance Scenarios. 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). :397–402.

In recent years, the usage of unmanned aircraft systems (UAS) for security-related purposes has increased, ranging from military applications to different areas of civil protection. The deployment of UAS can support security forces in achieving an enhanced situational awareness. However, in order to provide useful input to a situational picture, sensor data provided by UAS has to be integrated with information about the area and objects of interest from other sources. The aim of this study is to design a high-level data fusion component combining probabilistic information processing with logical and probabilistic reasoning, to support human operators in their situational awareness and improving their capabilities for making efficient and effective decisions. To this end, a fusion component based on the ISR (Intelligence, Surveillance and Reconnaissance) Analytics Architecture (ISR-AA) [1] is presented, incorporating an object-oriented world model (OOWM) for information integration, an expressive knowledge model and a reasoning component for detection of critical events. Approaches for translating the information contained in the OOWM into either an ontology for logical reasoning or a Markov logic network for probabilistic reasoning are presented.

Joshi, M., Mittal, S., Joshi, K. P., Finin, T..  2017.  Semantically Rich, Oblivious Access Control Using ABAC for Secure Cloud Storage. 2017 IEEE International Conference on Edge Computing (EDGE). :142–149.

Securing their critical documents on the cloud from data threats is a major challenge faced by organizations today. Controlling and limiting access to such documents requires a robust and trustworthy access control mechanism. In this paper, we propose a semantically rich access control system that employs an access broker module to evaluate access decisions based on rules generated using the organizations confidentiality policies. The proposed system analyzes the multi-valued attributes of the user making the request and the requested document that is stored on a cloud service platform, before making an access decision. Furthermore, our system guarantees an end-to-end oblivious data transaction between the organization and the cloud service provider using oblivious storage techniques. Thus, an organization can use our system to secure their documents as well as obscure their access pattern details from an untrusted cloud service provider.

2018-03-26
You, Wei, Zong, Peiyuan, Chen, Kai, Wang, XiaoFeng, Liao, Xiaojing, Bian, Pan, Liang, Bin.  2017.  SemFuzz: Semantics-Based Automatic Generation of Proof-of-Concept Exploits. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2139–2154.

Patches and related information about software vulnerabilities are often made available to the public, aiming to facilitate timely fixes. Unfortunately, the slow paces of system updates (30 days on average) often present to the attackers enough time to recover hidden bugs for attacking the unpatched systems. Making things worse is the potential to automatically generate exploits on input-validation flaws through reverse-engineering patches, even though such vulnerabilities are relatively rare (e.g., 5% among all Linux kernel vulnerabilities in last few years). Less understood, however, are the implications of other bug-related information (e.g., bug descriptions in CVE), particularly whether utilization of such information can facilitate exploit generation, even on other vulnerability types that have never been automatically attacked. In this paper, we seek to use such information to generate proof-of-concept (PoC) exploits for the vulnerability types never automatically attacked. Unlike an input validation flaw that is often patched by adding missing sanitization checks, fixing other vulnerability types is more complicated, usually involving replacement of the whole chunk of code. Without understanding of the code changed, automatic exploit becomes less likely. To address this challenge, we present SemFuzz, a novel technique leveraging vulnerability-related text (e.g., CVE reports and Linux git logs) to guide automatic generation of PoC exploits. Such an end-to-end approach is made possible by natural-language processing (NLP) based information extraction and a semantics-based fuzzing process guided by such information. Running over 112 Linux kernel flaws reported in the past five years, SemFuzz successfully triggered 18 of them, and further discovered one zero-day and one undisclosed vulnerabilities. These flaws include use-after-free, memory corruption, information leak, etc., indicating that more complicated flaws can also be automatically attacked. This finding calls into question the way vulnerability-related information is shared today.

2018-05-24
Zheng, Yanan, Wen, Lijie, Wang, Jianmin, Yan, Jun, Ji, Lei.  2017.  Sequence Modeling with Hierarchical Deep Generative Models with Dual Memory. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :1369–1378.

Deep Generative Models (DGMs) are able to extract high-level representations from massive unlabeled data and are explainable from a probabilistic perspective. Such characteristics favor sequence modeling tasks. However, it still remains a huge challenge to model sequences with DGMs. Unlike real-valued data that can be directly fed into models, sequence data consist of discrete elements and require being transformed into certain representations first. This leads to the following two challenges. First, high-level features are sensitive to small variations of inputs as well as the way of representing data. Second, the models are more likely to lose long-term information during multiple transformations. In this paper, we propose a Hierarchical Deep Generative Model With Dual Memory to address the two challenges. Furthermore, we provide a method to efficiently perform inference and learning on the model. The proposed model extends basic DGMs with an improved hierarchically organized multi-layer architecture. Besides, our model incorporates memories along dual directions, respectively denoted as broad memory and deep memory. The model is trained end-to-end by optimizing a variational lower bound on data log-likelihood using the improved stochastic variational method. We perform experiments on several tasks with various datasets and obtain excellent results. The results of language modeling show our method significantly outperforms state-of-the-art results in terms of generative performance. Extended experiments including document modeling and sentiment analysis, prove the high-effectiveness of dual memory mechanism and latent representations. Text random generation provides a straightforward perception for advantages of our model.

2018-06-07
Ahmadon, M. A. B., Yamaguchi, S., Saon, S., Mahamad, A. K..  2017.  On service security analysis for event log of IoT system based on data Petri net. 2017 IEEE International Symposium on Consumer Electronics (ISCE). :4–8.

The Internet of Things (IoT) has bridged our physical world to the cyber world which allows us to achieve our desired lifestyle. However, service security is an essential part to ensure that the designed service is not compromised. In this paper, we proposed a security analysis for IoT services. We focus on the context of detecting malicious operation from an event log of the designed IoT services. We utilized Petri nets with data to model IoT service which is logically correct. Then, we check the trace from an event log by tracking the captured process and data. Finally, we illustrated the approach with a smart home service and showed the effectiveness of our approach.

2018-09-12
Han, Juhyeng, Kim, Seongmin, Ha, Jaehyeong, Han, Dongsu.  2017.  SGX-Box: Enabling Visibility on Encrypted Traffic Using a Secure Middlebox Module. Proceedings of the First Asia-Pacific Workshop on Networking. :99–105.

A network middlebox benefits both users and network operators by offering a wide range of security-related in-network functions, such as web firewalls and intrusion detection systems (IDS). However, the wide usage of encryption protocol restricts functionalities of network middleboxes. This forces network operators and users to make a choice between end-to-end privacy and security. This paper presents SGX-Box, a secure middlebox system that enables visibility on encrypted traffic by leveraging Intel SGX technology. The entire process of SGX-Box ensures that the sensitive information, such as decrypted payloads and session keys, is securely protected within the SGX enclave. SGX-Box provides easy-to-use abstraction and a high-level programming language, called SB lang for handling encrypted traffic in middleboxes. It greatly enhances programmability by hiding details of the cryptographic operations and the implementation details in SGX enclave processing. We implement a proof-of-concept IDS using SB lang. Our preliminary evaluation shows that SGX-Box incurs acceptable performance overhead while it dramatically reduces middlebox developer's effort.

2018-05-09
Green, Benjamin, Krotofil, Marina, Abbasi, Ali.  2017.  On the Significance of Process Comprehension for Conducting Targeted ICS Attacks. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :57–67.

The exploitation of Industrial Control Systems (ICSs) has been described as both easy and impossible, where is the truth? PostStuxnet works have included a plethora of ICS focused cyber security research activities, with topics covering device maturity, network protocols, and overall cyber security culture. We often hear the notion of ICSs being highly vulnerable due to a lack of inbuilt security mechanisms, considered a low hanging fruit to a variety of low skilled threat actors. While there is substantial evidence to support such a notion, when considering targeted attacks on ICS, it is hard to believe an attacker with limited resources, such as a script kiddie or hacktivist, using publicly accessible tools and exploits alone, would have adequate knowledge and resources to achieve targeted operational process manipulation, while simultaneously evade detection. Through use of a testbed environment, this paper provides two practical examples based on a Man-In-The-Middle scenario, demonstrating the types of information an attacker would need obtain, collate, and comprehend, in order to begin targeted process manipulation and detection avoidance. This allows for a clearer view of associated challenges, and illustrate why targeted ICS exploitation might not be possible for every malicious actor.

2018-11-19
Duta, Ionut C., Ionescu, Bogdan, Aizawa, Kiyoharu, Sebe, Nicu.  2017.  Simple, Efficient and Effective Encodings of Local Deep Features for Video Action Recognition. Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval. :218–225.

For an action recognition system a decisive component is represented by the feature encoding part which builds the final representation that serves as input to a classifier. One of the shortcomings of the existing encoding approaches is the fact that they are built around hand-crafted features and they are not also highly competitive on encoding the current deep features, necessary in many practical scenarios. In this work we propose two solutions specifically designed for encoding local deep features, taking advantage of the nature of deep networks, focusing on capturing the highest feature response of the convolutional maps. The proposed approaches for deep feature encoding provide a solution to encapsulate the features extracted with a convolutional neural network over the entire video. In terms of accuracy our encodings outperform by a large margin the current most widely used and powerful encoding approaches, while being extremely efficient for the computational cost. Evaluated in the context of action recognition tasks, our pipeline obtains state-of-the-art results on three challenging datasets: HMDB51, UCF50 and UCF101.