Biblio

Found 2393 results

Filters: Keyword is human factors  [Clear All Filters]
2022-06-09
Cobb, Adam D., Jalaian, Brian A., Bastian, Nathaniel D., Russell, Stephen.  2021.  Robust Decision-Making in the Internet of Battlefield Things Using Bayesian Neural Networks. 2021 Winter Simulation Conference (WSC). :1–12.
The Internet of Battlefield Things (IoBT) is a dynamically composed network of intelligent sensors and actuators that operate as a command and control, communications, computers, and intelligence complex-system with the aim to enable multi-domain operations. The use of artificial intelligence can help transform the IoBT data into actionable insight to create information and decision advantage on the battlefield. In this work, we focus on how accounting for uncertainty in IoBT systems can result in more robust and safer systems. Human trust in these systems requires the ability to understand and interpret how machines make decisions. Most real-world applications currently use deterministic machine learning techniques that cannot incorporate uncertainty. In this work, we focus on the machine learning task of classifying vehicles from their audio recordings, comparing deterministic convolutional neural networks (CNNs) with Bayesian CNNs to show that correctly estimating the uncertainty can help lead to robust decision-making in IoBT.
2022-08-26
Elumar, Eray Can, Yagan, Osman.  2021.  Robustness of Random K-out Graphs. 2021 60th IEEE Conference on Decision and Control (CDC). :5526—5531.
We consider a graph property known as r-robustness of the random K-out graphs. Random K-out graphs, denoted as \$\textbackslashtextbackslashmathbbH(n;K)\$, are constructed as follows. Each of the n nodes select K distinct nodes uniformly at random, and then an edge is formed between these nodes. The orientation of the edges is ignored, resulting in an undirected graph. Random K-out graphs have been used in many applications including random (pairwise) key predistribution in wireless sensor networks, anonymous message routing in crypto-currency networks, and differentially-private federated averaging. r-robustness is an important metric in many applications where robustness of networks to disruptions is of practical interest, and r-robustness is especially useful in analyzing consensus dynamics. It was previously shown that consensus can be reached in an r-robust network for sufficiently large r even in the presence of some adversarial nodes. r-robustness is also useful for resilience against adversarial attacks or node failures since it is a stronger property than r-connectivity and thus can provide guarantees on the connectivity of the graph when up to r – 1 nodes in the graph are removed. In this paper, we provide a set of conditions for Kn and n that ensure, with high probability (whp), the r-robustness of the random K-out graph.
2022-11-25
Li, Qiqi, Wu, Peng, Han, Ling, Bi, Danyang, Zeng, Zheng.  2021.  A Study of Identifier Resolution Security Strategy Based on Security Domains. 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). :359—362.
The widespread application of industrial Internet identifiers has increased the security risks of industrial Internet and identifier resolution system. In order to improve the security capabilities of identifier resolution system, this paper analyzes the security challenges faced by identifier resolution system at this stage, and in line with the concept of layered security defense in depth, divides the security domains of identifier resolution system and proposes a multi-level security strategy based on security domains by deploying appropriate protective measures in each security domain.
2022-09-29
Rohan, Rohani, Funilkul, Suree, Pal, Debajyoti, Chutimaskul, Wichian.  2021.  Understanding of Human Factors in Cybersecurity: A Systematic Literature Review. 2021 International Conference on Computational Performance Evaluation (ComPE). :133–140.
Cybersecurity is paramount for all public and private sectors for protecting their information systems, data, and digital assets from cyber-attacks; thus, relying on technology-based protections alone will not achieve this goal. This work examines the role of human factors in cybersecurity by looking at the top-tier conference on Human Factors in Cybersecurity over the past 6 years. A total of 24 articles were selected for the final analysis. Findings show that most of the authors used a quantitative method, where survey was the most used tool for collecting the data, and less attention has been paid to the theoretical research. Besides, three types of users were identified: university-level users, organizational-level users, and unspecified users. Culture is another less investigated aspect, and the samples were biased towards the western community. Moreover, 17 human factors are identified; human awareness, privacy perception, trust perception, behavior, and capability are the top five among them. Also, new insights and recommendations are presented.
2022-03-23
Karimi, A., Ahmadi, A., Shahbazi, Z., Shafiee, Q., Bevrani, H..  2021.  A Resilient Control Method Against False Data Injection Attack in DC Microgrids. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). :1—6.

The expression of cyber-attacks on communication links in smart grids has emerged recently. In microgrids, cooperation between agents through communication links is required, thus, microgrids can be considered as cyber-physical-systems and they are vulnerable to cyber-attack threats. Cyber-attacks can cause damages in control systems, therefore, the resilient control methods are necessary. In this paper, a resilient control approach against false data injection attack is proposed for secondary control of DC microgrids. In the proposed framework, a PI controller with an adjustable gain is utilized to eliminate the injected false data. The proposed control method is employed for both sensor and link attacks. Convergence analysis of the measurement sensors and the secondary control objectives under the studied control method is performed. Finally, a DC microgrid with four units is built in Matlab/Simulink environment to verify the proposed approach.

2022-06-09
Thom, Jay, Shah, Yash, Sengupta, Shamik.  2021.  Correlation of Cyber Threat Intelligence Data Across Global Honeypots. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0766–0772.
Today's global network is filled with attackers both live and automated seeking to identify and compromise vulnerable devices, with initial scanning and attack activity occurring within minutes or even seconds of being connected to the Internet. To better understand these events, honeypots can be deployed to monitor and log activity by simulating actual Internet facing services such as SSH, Telnet, HTTP, or FTP, and malicious activity can be logged as attempts are made to compromise them. In this study six multi-service honeypots are deployed in locations around the globe to collect and catalog traffic over a period of several months between March and December, 2020. Analysis is performed on various characteristics including source and destination IP addresses and port numbers, usernames and passwords utilized, commands executed, and types of files downloaded. In addition, Cowrie log data is restructured to observe individual attacker sessions, study command sequences, and monitor tunneling activity. This data is then correlated across honeypots to compare attack and traffic patterns with the goal of learning more about the tactics being employed. By gathering data gathered from geographically separate zones over a long period of time a greater understanding can be developed regarding attacker intent and methodology, can aid in the development of effective approaches to identifying malicious behavior and attack sources, and can serve as a cyber-threat intelligence feed.
Shyla, Shyla, Bhatnagar, Vishal.  2021.  The Geo-Spatial Distribution of Targeted Attacks sources using Honeypot Networks. 2021 11th International Conference on Cloud Computing, Data Science Engineering (Confluence). :600–604.
The extensive utilization of network by smart devices, computers and servers makes it vulnerable to malicious activities where intruders and attackers tends to violate system security policies and authenticity to slither essential information. Honeypots are designed to create a virtual trap against hackers. The trap is to attract intruders and gather information about attackers and attack features. Honeypots mimics as a computer application, billing systems, webpages and client server-based applications to understand attackers behavior by gathering attack features and common foot prints used by hackers to forge information. In this papers, authors analyse amazon web services honeypot (AWSH) data to determine geo-spatial distribution of targeted attacks originated from different locations. The categorization of attacks is made on the basis of internet protocols and frequency of attack occurrences worldwide.
2022-05-10
Chen, Liming, Suo, Siliang, Kuang, Xiaoyun, Cao, Yang, Tao, Wenwei.  2021.  Secure Ubiquitous Wireless Communication Solution for Power Distribution Internet of Things in Smart Grid. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :780–784.
With rapid advancement of Smart Grid as well as Internet of Things (IoT), current power distribution communication network faces the challenges of satisfying the emerging data transmission requirements of ubiquitous secure coverage for distributed power services. This paper focuses on secure ubiquitous wireless communication solution for power distribution Internet of Things (PDİoT) in Smart Grid. Detailed secure ubiquitous wireless communication networking topology is presented, and integrated encryption and communication device is developed. The proposed solution supports several State Secret cryptographic algorithm including SM1/SM2/SM3/SM4 as well as forward and reverse isolation functions, thus achieving secure wireless communication for PDİoT services.
2022-03-23
Jena, Prasanta Kumar, Ghosh, Subhojit, Koley, Ebha.  2021.  An Optimal PMU Placement Scheme for Detection of Malicious Attacks in Smart Grid. 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). :1—6.

State estimation is the core operation performed within the energy management system (EMS) of smart grid. Hence, the reliability and integrity of a smart grid relies heavily on the performance of sensor measurement dependent state estimation process. The increasing penetration of cyber control into the smart grid operations has raised severe concern for executing a secured state estimation process. The limitation with regard to monitoring large number of sensors allows an intruder to manipulate sensor information, as one of the soft targets for disrupting power system operations. Phasor measurement unit (PMU) can be adopted as an alternative to immunize the state estimation from corrupted conventional sensor measurements. However, the high installation cost of PMUs restricts its installation throughout the network. In this paper a graphical approach is proposed to identify minimum PMU placement locations, so as to detect any intrusion of malicious activity within the smart grid. The high speed synchronized PMU information ensures processing of secured set of sensor measurements to the control center. The results of PMU information based linear state estimation is compared with the conventional non-linear state estimation to detect any attack within the system. The effectiveness of the proposed scheme has been validated on IEEE 14 bus test system.

2021-12-21
Xiaojian, Zhang, Liandong, Chen, Jie, Fan, Xiangqun, Wang, Qi, Wang.  2021.  Power IoT Security Protection Architecture Based on Zero Trust Framework. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :166–170.
The construction of the power Internet of Things has led various terminals to access the corporate network on a large scale. The internal and external business interaction and data exchange are more extensive. The current security protection system is based on border isolation protection. This is difficult to meet the needs of the power Internet of Things connection and open shared services. This paper studies the application scheme of the ``zero trust'' typical business scenario of the power Internet of Things with ``Continuous Identity Authentication and Dynamic Access Control'' as the core, and designs the power internet security protection architecture based on zero trust.
2022-05-23
Chang, Xinyu, Wu, Bian.  2021.  Effects of Immersive Spherical Video-based Virtual Reality on Cognition and Affect Outcomes of Learning: A Meta-analysis. 2021 International Conference on Advanced Learning Technologies (ICALT). :389–391.
With the advancement of portable head-mounted displays, interest in educational application of immersive spherical video-based virtual reality (SVVR) has been emerging. However, it remains unclear regarding the effects of immersive SVVR on cognitive and affective outcomes. In this study, we retrieved 58 learning outcomes from 16 studies. A meta-analysis was performed using the random effects model to calculate the effect size. Several important moderators were also examined such as control group treatment, learning outcome type, interaction functionality, content instruction, learning domain, and learner's stage. The results show that immersive SVVR is more effective than other instructional conditions with a medium effect size. The key findings of the moderator analysis are that immersive SVVR has a greater impact on affective outcomes, as well as under the conditions that learning system provides interaction functionality or integrates with content instruction before virtual exploratory learning.
2022-02-22
Ramalingam, M., Saranya, D., ShankarRam, R..  2021.  An Efficient and Effective Blockchain-based Data Aggregation for Voting System. 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—4.
Blockchain is opening up new avenues for the development of new sorts of digital services. In this article, we'll employ the transparent Blockchain method to propose a system for collecting data from many sources and databases for use in local and national elections. The Blockchain-based system will be safe, trustworthy, and private. It will assist to know the overall count of the candidates who participated and it functions in the same way as people's faith in their governments does. Blockchain technology is the one that handles the actual vote. We use the secure hash algorithm for resolving this problem and tried to bring a solution through the usage of this booming technology. A centralized database in a blockchain system keeps track of the secure electronic interactions of users in a peer-to-peer network.
2022-05-23
Abdul Manaf, Marlina Bt, Bt Sulaiman, Suziah, Bt Awang Rambli, Dayang Rohaya.  2021.  Immersive and Non-Immersive VR Display using Nature Theme as Therapy in Reducing Work Stress. 2021 International Conference on Computer Information Sciences (ICCOINS). :276–281.
Stress-related disorders are increasing because of work load, forces in teamwork, surroundings pressures and health related conditions. Thus, to avoid people living under heavy stress and develop more severe stress-related disorders, different internet and applications of stress management interventions are offered. Mobile applications with self-assessed health, burnout-scores and well-being are commonly used as outcome measures. Few studies have used sickleave to compare effects of stress interventions. A new approach is to use nature and garden in a multimodal stress management context. This study aimed to explore the effects of immersive and non-immersive games application by using nature theme virtual stress therapy in reducing stress level. Two weeks’ of experiments had involved 18 participants. Nine (9) of them were invited to join the first experiment which focused on immersive virtual reality (VR) experience. Their Blood Volume Pulse with Heart Rate (BVP+HR) and Skin Conductance (SC) were recorded using BioGraph Infiniti Biofeedback System that comes with three (3) sensors attached to the fingers. The second experiment were joined by another nine (9) participants. This experiment was testing on non-immersive desktop control experience. The same protocol measurements were taken which are BVP+HR and SC. Participants were given the experience to feel and get carried into the virtual nature as a therapy so that they will reduce stress. The result of this study points to whether immersive or non-immersive VR display using nature theme virtual therapy would reduce individuals stress level. After conducted series of experiments, results showed that both immersive and non-immersive VR display reduced stress level. However, participants were satisfied of using the immersive version as it provided a 360 degree of viewing, immersed experiences and feeling engaged. Thus, this showed and proved that applications developed with nature theme affect successfully reduce stress level no matter it is put in immersive or non-immersive display.
2022-06-09
Lin, Hua Yi, Hsieh, Meng-Yen, Li, Kuan-Ching.  2021.  A Multi-level Security Key Management Protocol Based on Dynamic M-tree Structures for Internet of Vehicles. 2021 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). :1–5.
With the gradually popular high-speed wireless networks and 5G environments, the quality and reliability of network services will be suited for mobile vehicles. In addition to communicating information between vehicles, they can also communicate information with surrounding roadside equipment, pedestrians or traffic signs, and thus improve the road safety of passers-by.Recently, various countries have continuously invested in research on autonomous driving and unmanned vehicles. The open communication environment of the Internet of Vehicles in 5G will expose all personal information in the field of wireless networks. This research is based on the consideration of information security and personal data protection. We will focus on how to protect the real-time transmission of information between mobile vehicles to prevent from imbedding or altering important transmission information by unauthorized vehicles, drivers or passers-by participating in communications. Moreover, this research proposes a multi-level security key management agreement based on a dynamic M-tree structure for Internet of Vehicles to achieve flexible and scalable key management on large-scale Internet of Vehicles.
2022-03-08
Bhuiyan, Erphan, Sarker, Yeahia, Fahim, Shahriar, Mannan, Mohammad Abdul, Sarker, Subrata, Das, Sajal.  2021.  A Reliable Open-Switch Fault Diagnosis Strategy for Grid-tied Photovoltaic Inverter Topology. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–4.
In order to increase the availability and reliability of photovoltaic (PV) systems, fault diagnosis and condition monitoring of inverters are of crucial means to meet the goals. Numerous methods are implemented for fault diagnosis of PV inverters, providing robust features and handling massive amount of data. However, existing methods rely on simplistic frameworks that are incapable of inspecting a wide range of intrinsic and explicit features, as well as being time-consuming. In this paper, a novel method based on a multilayer deep belief network (DBN) is suggested for fault diagnosis, which allows the framework to discover the probabilistic reconstruction across its inputs. This approach equips a robust hierarchical generative model for exploiting features associated with faults, interprets functions that are highly variable, and needs lesser prior information. Moreover, the method instantaneously categorizes the fault conditions, which eventually strengthens the adaptability of applying it on a variety of diagnostic problems in an inverter domain. The proposed method is evaluated using multiple input signals at different sampling frequencies. To evaluate the efficacy of DBN, a test model based on a three-phase 2-level grid-tied PV inverter was used. The results show that the method is capable of achieving precise diagnosis operations.
2022-11-18
Tanimoto, Shigeaki, Matsumoto, Mari, Endo, Teruo, Sato, Hiroyuki, Kanai, Atsushi.  2021.  Risk Management of Fog Computing for Improving IoT Security. 2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI). :703—709.
With the spread of the Internet, various devices are now connected to it and the number of IoT devices is increasing. Data generated by IoT devices has traditionally been aggregated in the cloud and processed over time. However, there are two issues with using the cloud. The first is the response delay caused by the long distance between the IoT device and the cloud, and the second is the difficulty of implementing sufficient security measures on the IoT device side due to the limited resources of the IoT device at the end. To address these issues, fog computing, which is located in the middle between IoT devices and the cloud, has been attracting attention as a new network component. However, the risks associated with the introduction of fog computing have not yet been fully investigated. In this study, we conducted a risk assessment of fog computing, which is newly established to promote the use of IoT devices, and identified 24 risk factors. The main countermeasures include the gradual introduction of connected IoT connection protocols and security policy matching. We also demonstrated the effectiveness of the proposed risk measures by evaluating the risk values. The proposed risk countermeasures for fog computing should help us to utilize IoT devices in a safe and secure manner.
Mishina, Ryuya, Tanimoto, Shigeaki, Goromaru, Hideki, Sato, Hiroyuki, Kanai, Atsushi.  2021.  Risk Management of Silent Cyber Risks in Consideration of Emerging Risks. 2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI). :710—716.
In recent years, new cyber attacks such as targeted attacks have caused extensive damage. With the continuing development of the IoT society, various devices are now connected to the network and are being used for various purposes. The Internet of Things has the potential to link cyber risks to actual property damage, as cyberspace risks are connected to physical space. With this increase in unknown cyber risks, the demand for cyber insurance is increasing. One of the most serious emerging risks is the silent cyber risk, and it is likely to increase in the future. However, at present, security measures against silent cyber risks are insufficient. In this study, we conducted a risk management of silent cyber risk for organizations with the objective of contributing to the development of risk management methods for new cyber risks that are expected to increase in the future. Specifically, we modeled silent cyber risk by focusing on state transitions to different risks. We newly defined two types of silent cyber risk, namely, Alteration risk and Combination risk, and conducted risk assessment. Our assessment identified 23 risk factors, and after analyzing them, we found that all of them were classified as Risk Transference. We clarified that the most effective risk countermeasure for Alteration risk was insurance and for Combination risk was measures to reduce the impact of the risk factors themselves. Our evaluation showed that the silent cyber risk could be reduced by about 50%, thus demonstrating the effectiveness of the proposed countermeasures.
2022-04-25
Khichi, Manish, Kumar Yadav, Rajesh.  2021.  A Threat of Deepfakes as a Weapon on Digital Platform and their Detection Methods. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :01–08.
Advances in machine learning, deep learning, and Artificial Intelligence(AI) allows people to exchange other people's faces and voices in videos to make it look like what they did or say whatever you want to say. These videos and photos are called “deepfake” and are getting more complicated every day and this has lawmakers worried. This technology uses machine learning technology to provide computers with real data about images, so that we can make forgeries. The creators of Deepfake use artificial intelligence and machine learning algorithms to mimic the work and characteristics of real humans. It differs from counterfeit traditional media because it is difficult to identify. As In the 2020 elections loomed, AI-generated deepfakes were hit the news cycle. DeepFakes threatens facial recognition and online content. This deception can be dangerous, because if used incorrectly, this technique can be abused. Fake video, voice, and audio clips can do enormous damage. This paper examines the algorithms used to generate deepfakes as well as the methods proposed to detect them. We go through the threats, research patterns, and future directions for deepfake technologies in detail. This research provides a detailed description of deep imitation technology and encourages the creation of new and more powerful methods to deal with increasingly severe deep imitation by studying the history of deep imitation.
2022-06-09
Xu, Qichao, Zhao, Lifeng, Su, Zhou.  2021.  UAV-assisted Abnormal Vehicle Behavior Detection in Internet of Vehicles. 2021 40th Chinese Control Conference (CCC). :7500–7505.
With advantages of low cost, high mobility, and flexible deployment, unmanned aerial vehicle (UAVs) are employed to efficiently detect abnormal vehicle behaviors (AVBs) in the internet of vehicles (IoVs). However, due to limited resources including battery, computing, and communication, UAVs are selfish to work cooperatively. To solve the above problem, in this paper, a game theoretical UAV incentive scheme in IoVs is proposed. Specifically, the abnormal behavior model is first constructed, where three model categories are defined: velocity abnormality, distance abnormality, and overtaking abnormality. Then, the barging pricing framework is designed to model the interactions between UAVs and IoVs, where the transaction prices are determined with the abnormal behavior category detected by UAVs. At last, simulations are conducted to verify the feasibility and effectiveness of our proposed scheme.
2022-03-23
Shukla, Saurabh, Thakur, Subhasis, Breslin, John G..  2021.  Secure Communication in Smart Meters using Elliptic Curve Cryptography and Digital Signature Algorithm. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :261—266.
With the advancement in the growth of Internet-of-Things (IoT), its number of applications has also increased such as in healthcare, smart cities, vehicles, industries, household appliances, and Smart Grids (SG). One of the major applications of IoT is the SG and smart meter which consists of a large number of internet-connected sensors and can communicate bi-directionally in real-time. The SG network involves smart meters, data collectors, generators, and sensors connected with the internet. SG networks involve the generation, distribution, transmission, and consumption of electrical power supplies. It consists of Household Area Network (HAN), and Neighborhood Area Network (NAN) for communication. Smart meters can communicate bidirectionally with consumers and provide real-time information to utility offices. But this communication channel is a wide-open network for data transmission. Therefore, it makes the SG network and smart meter vulnerable to outside hacker and various Cyber-Physical System (CPS) attacks such as False Data Injection (FDI), inserting malicious data, erroneous data, manipulating the sensor reading values. Here cryptography techniques can play a major role along with the private blockchain model for secure data transmission in smart meters. Hence, to overcome these existing issues and challenges in smart meter communication we have proposed a blockchain-based system model for secure communication along with a novel Advanced Elliptic Curve Cryptography Digital Signature (AECCDS) algorithm in Fog Computing (FC) environment. Here FC nodes will work as miners at the edge of smart meters for secure and real-time communication. The algorithm is implemented using iFogSim, Geth version 1.9.25, Ganache, Truffle for compiling smart contracts, Anaconda (Python editor), and ATOM as language editor for the smart contracts.
2022-03-08
P, Charitha Reddy, K, SaiTulasi, J, Anuja T, R, Rajarajeswari, Mohan, Navya.  2021.  Automatic Test Pattern Generation of Multiple stuck-at faults using Test Patterns of Single stuck-at faults. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :71–75.
The fabricated circuitries are getting massive and denser with every passing year due to which a normal automatic test pattern generation technique to detect only the single stuck-at faults will overlook the multiple stuck-at faults. But generating test patterns that can detect all possible multiple stuck-at fault is practically not possible. Hence, this paper proposes a method, where multiple faults can be detected by using test vectors for detecting single stuck-at faults. Here, the patterns for detecting single faults are generated and their ability to detect multiple stuck-at faults is also analyzed. From the experimental results it was observed that, the generated vectors for single faults cover maximum number of the multiple faults and then new test vectors are generated for the undetermined faults. The generated vectors are optimized for the compact test patterns in order to reduce the test power.
2022-06-09
Nagai, Yuki, Watanabe, Hiroki, Kondo, Takao, Teraoka, Fumio.  2021.  LiONv2: An Experimental Network Construction Tool Considering Disaggregation of Network Configuration and Device Configuration. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :171–175.
An experimental network environment plays an important role to examine new systems and protocols. We have developed an experimental network construction tool called LiONv1 (Lightweight On-Demand Networking, ver.1). LiONv1 satisfies the following four requirements: programmer-friendly configuration file based on Infrastructure as Code, multiple virtualization technologies for virtual nodes, physical topology conscious virtual node placement, and L3 protocol agnostic virtual networks. None of existing experimental network environments satisfy all the four requirements. In this paper, we develop LiONv2 which satisfies three more requirements: diversity of available network devices, Internet-scale deployment, and disaggregation of network configuration and device configuration. LiONv2 employs NETCONF and YANG to achieve diversity of available network devices and Internet-scale deployment. LiONv2 also defines two YANG models which disaggregate network configuration and device configuration. LiONv2 is implemented in Go and C languages with public libraries for Go. Measurement results show that construction time of a virtual network is irrelevant to the number of virtual nodes if a single virtual node is created per physical node.
Mangino, Antonio, Bou-Harb, Elias.  2021.  A Multidimensional Network Forensics Investigation of a State-Sanctioned Internet Outage. 2021 International Wireless Communications and Mobile Computing (IWCMC). :813–818.
In November 2019, the government of Iran enforced a week-long total Internet blackout that prevented the majority of Internet connectivity into and within the nation. This work elaborates upon the Iranian Internet blackout by characterizing the event through Internet-scale, near realtime network traffic measurements. Beginning with an investigation of compromised machines scanning the Internet, nearly 50 TB of network traffic data was analyzed. This work discovers 856,625 compromised IP addresses, with 17,182 attributed to the Iranian Internet space. By the second day of the Internet shut down, these numbers dropped by 18.46% and 92.81%, respectively. Empirical analysis of the Internet-of-Things (IoT) paradigm revealed that over 90% of compromised Iranian hosts were fingerprinted as IoT devices, which saw a significant drop throughout the shutdown (96.17% decrease by the blackout's second day). Further examination correlates BGP reachability metrics and related data with geolocation databases to statistically evaluate the number of reachable Iranian ASNs (dropping from approximately 1100 to under 200 reachable networks). In-depth investigation reveals the top affected ASNs, providing network forensic evidence of the longitudinal unplugging of such key networks. Lastly, the impact's interruption of the Bitcoin cryptomining market is highlighted, disclosing a massive spike in unsuccessful (i.e., pending) transactions. When combined, these network traffic measurements provide a multidimensional perspective of the Iranian Internet shutdown.
2022-02-04
Biswas, Ananda, Dee, Timothy M., Guo, Yunxi, Li, Zelong, Tyagi, Akhilesh.  2021.  Multi-Granularity Control Flow Anomaly Detection with Hardware Counters. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :449—454.
Hardware counters are included in processors to count microarchitecture level events affecting performance. When control flow anomalies caused by attacks such as buffer overflow or return oriented programming (ROP) occur, they leave a microarchitectural footprint. Hardware counters reflect such footprints to flag control flow anomalies. This paper is geared towards buffer overflow and ROP control flow anomaly detection in embedded programs. The targeted program entities are main event loops and task/event handlers. Embedded systems also have enhanced need for variable anomaly detection time in order to meet the system response time requirements. We propose a novel repurposing of Patt-Yeh two level branch predictor data structure for abstracting/hashing HW counter signatures to support such variable anomaly detection times. The proposed anomaly detection mechanism is evaluated on some generic benchmark programs and ArduPilot - a popular autopilot software. Experimental evaluation encompasses both Intel X86 and ARM Cortex M processors. DWT within Cortex M provides sufficiently interesting program level event counts to capture these control flow anomalies. We are able to achieve 97-99%+ accuracy with 1-10 micro-second time overhead per anomaly check.
2022-11-18
Hariyanto, Budi, Ramli, Kalamullah, Suryanto, Yohan.  2021.  Risk Management System for Operational Services in Data Center : DC Papa Oscar Cikeas Case study. 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST). :118—123.
The presence of the Information Technology System (ITS) has become one of the components for basic needs that must be met in navigating through the ages. Organizational programs in responding to the industrial era 4.0 make the use of ITS is a must in order to facilitate all processes related to quality service in carrying out the main task of protecting and serving the community. The implementation of ITS is actually not easy forthe threat of challenges and disturbances in the form of risks haunts ITS's operations. These conditions must be able to be identified and analyzed and then action can be executed to reduce the negative impact, so the risks are acceptable. This research will study about ITS risk management using the the guideline of Information Technology Infrastructure Library (ITIL) to formulate an operational strategy in order ensure that STI services at the Papa Oscar Cikeas Data Center (DC) can run well in the form of recommendations. Based on a survey on the implementing elements of IT function, 82.18% of respondents considered that the IT services provided by DC were very important, 86.49% of respondents knew the importance of having an emergency plan to ensure their products and services were always available, and 67.17% of respondents believes that DC is well managed. The results of the study concludes that it is necessary to immediately form a structural DC organization to prepare a good path for the establishment of a professional data center in supporting public service information technology systems.