Biblio

Found 369 results

Filters: Keyword is science of security  [Clear All Filters]
2020-03-18
Promyslov, Vitaly, Jharko, Elena, Semenkov, Kirill.  2019.  Principles of Physical and Information Model Integration for Cybersecurity Provision to a Nuclear Power Plant. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1–3.
For complex technical objects the research of cybersecurity problems should take into account both physical and information properties of the object. The paper considers a hybrid model that unifies information and physical models and may be used as a tool for countering cyber threats and for cybersecurity risk assessment at the design and operational stage of an object's lifecycle.
2020-07-09
Dawei Chu, Jingqiang Lin, Fengjun Li, Xiaokun Zhang, Qiongxiao Wang, Guangqi Liu.  2019.  Ticket Transparency: Accountable Single Sign-On with Privacy-Preserving Public Logs. International Conference on Security and Privacy in Communication Systems (SecureComm).

Single sign-on (SSO) is becoming more and more popular in the Internet. An SSO ticket issued by the identity provider (IdP) allows an entity to sign onto a relying party (RP) on behalf of the account enclosed in the ticket. To ensure its authenticity, an SSO ticket is digitally signed by the IdP and verified by the RP. However, recent security incidents indicate that a signing system (e.g., certification authority) might be compromised to sign fraudulent messages, even when it is well protected in accredited commercial systems. Compared with certification authorities, the online signing components of IdPs are even more exposed to adversaries and thus more vulnerable to such threats in practice. This paper proposes ticket transparency to provide accountable SSO services with privacy-preserving public logs against potentially fraudulent tickets issued by a compromised IdP. With this scheme, an IdP-signed ticket is accepted by the RP only if it is recorded in the public logs. It enables a user to check all his tickets in the public logs and detect any fraudulent ticket issued without his participation or authorization. We integrate blind signatures, identity-based encryption and Bloom filters in the design, to balance transparency, privacy and efficiency in these security-enhanced SSO services. To the best of our knowledge, this is the first attempt to solve the security problems caused by potentially intruded or compromised IdPs in the SSO services.

2020-01-27
Cesar, Pablo, Zwitser, Robert, Webb, Andrew, Ashby, Liam, Ali, Abdallah.  2019.  Uncovering Perceived Identification Accuracy of In-Vehicle Biometric Sensing | Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings. AutomotiveUI '19: Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings.

Biometric techniques can help make vehicles safer to drive, authenticate users, and provide personalized in-car experiences. However, it is unclear to what extent users are willing to trade their personal biometric data for such benefits. In this early work, we conducted an open card sorting study (N=11) to better understand how well users perceive their physical, behavioral and physiological features can personally identify them. Findings showed that on average participants clustered features into six groups, and helped us revise ambiguous cards and better understand users' clustering. These findings provide the basis for a follow up online closed card sorting study to more fully understand perceived identification accuracy of (in-vehicle) biometric sensing. By uncovering this at a larger scale, we can then further study the privacy and user experience trade-off in (automated) vehicles.

2019-10-30
Redmiles, Elissa M., Zhu, Ziyun, Kross, Sean, Kuchhal, Dhruv, Dumitras, Tudor, Mazurek, Michelle L..  2018.  Asking for a Friend: Evaluating Response Biases in Security User Studies. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1238-1255.

The security field relies on user studies, often including survey questions, to query end users' general security behavior and experiences, or hypothetical responses to new messages or tools. Self-report data has many benefits – ease of collection, control, and depth of understanding – but also many well-known biases stemming from people's difficulty remembering prior events or predicting how they might behave, as well as their tendency to shape their answers to a perceived audience. Prior work in fields like public health has focused on measuring these biases and developing effective mitigations; however, there is limited evidence as to whether and how these biases and mitigations apply specifically in a computer-security context. In this work, we systematically compare real-world measurement data to survey results, focusing on an exemplar, well-studied security behavior: software updating. We align field measurements about specific software updates (n=517,932) with survey results in which participants respond to the update messages that were used when those versions were released (n=2,092). This allows us to examine differences in self-reported and observed update speeds, as well as examining self-reported responses to particular message features that may correlate with these results. The results indicate that for the most part, self-reported data varies consistently and systematically with measured data. However, this systematic relationship breaks down when survey respondents are required to notice and act on minor details of experimental manipulations. Our results suggest that many insights from self-report security data can, when used with care, translate to real-world environments; however, insights about specific variations in message texts or other details may be more difficult to assess with surveys.

Belkin, Maxim, Haas, Roland, Arnold, Galen Wesley, Leong, Hon Wai, Huerta, Eliu A., Lesny, David, Neubauer, Mark.  2018.  Container Solutions for HPC Systems: A Case Study of Using Shifter on Blue Waters. Proceedings of the Practice and Experience on Advanced Research Computing. :43:1-43:8.

Software container solutions have revolutionized application development approaches by enabling lightweight platform abstractions within the so-called "containers." Several solutions are being actively developed in attempts to bring the benefits of containers to high-performance computing systems with their stringent security demands on the one hand and fundamental resource sharing requirements on the other. In this paper, we discuss the benefits and short-comings of such solutions when deployed on real HPC systems and applied to production scientific applications. We highlight use cases that are either enabled by or significantly benefit from such solutions. We discuss the efforts by HPC system administrators and support staff to support users of these type of workloads on HPC systems not initially designed with these workloads in mind focusing on NCSA's Blue Waters system.

Demoulin, Henri Maxime, Vaidya, Tavish, Pedisich, Isaac, DiMaiolo, Bob, Qian, Jingyu, Shah, Chirag, Zhang, Yuankai, Chen, Ang, Haeberlen, Andreas, Loo, Boon Thau et al..  2018.  DeDoS: Defusing DoS with Dispersion Oriented Software. Proceedings of the 34th Annual Computer Security Applications Conference. :712-722.

This paper presents DeDoS, a novel platform for mitigating asymmetric DoS attacks. These attacks are particularly challenging since even attackers with limited resources can exhaust the resources of well-provisioned servers. DeDoS offers a framework to deploy code in a highly modular fashion. If part of the application stack is experiencing a DoS attack, DeDoS can massively replicate only the affected component, potentially across many machines. This allows scaling of the impacted resource separately from the rest of the application stack, so that resources can be precisely added where needed to combat the attack. Our evaluation results show that DeDoS incurs reasonable overheads in normal operations, and that it significantly outperforms standard replication techniques when defending against a range of asymmetric attacks.

2018-07-13
Uttam Thakore, University of Illinois at Urbana-Champaign, Ahmed Fawaz, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign.  2018.  Detecting Monitor Compromise using Evidential Reasoning.

Stealthy attackers often disable or tamper with system monitors to hide their tracks and evade detection. In this poster, we present a data-driven technique to detect such monitor compromise using evidential reasoning. Leveraging the fact that hiding from multiple, redundant monitors is difficult for an attacker, to identify potential monitor compromise, we combine alerts from different sets of monitors by using Dempster-Shafer theory, and compare the results to find outliers. We describe our ongoing work in this area.

2018-07-09
Symons, John.  2018.  Metaphysical and scientific accounts of emergence: varieties of fundamentality and theoretical completeness. Emergent Behavior in Complex Systems Engineering. :pp.2-20.

Fundamentality is the central conceptual component of discussions concerning the emergence. Most obviously, contemporary uses of the term "emergence" vary according to their users' views of fundamentality. This chapter provides a general characterization of fundamentality, explaining the challenges faced by the anti‐emergentist versions of fundamentalism. It discusses the limitations of one prominent account of ontological fundamentality, physicalism. Although physicalism does not present a viable alternative to emergentism, this does not mean that emergentists can declare victory. Completeness is essential to arguments against the possibility of strongly emergent properties. Three interlocking concepts: causation, completeness, and reality, are not straightforwardly scientific in nature, but are, instead, metaphysical, or at least conceptual. Scientific models are intended to provide guidance with respect to explanations and predictions of emergent properties or to offer possible interventions that would allow control over those properties.

2022-03-08
Nazli Choucri, Gaurav Agarwal, Xenofon Koutsoukos.  2018.  Policy-Governed Secure Collaboration: Toward Analytics for Cybersecurity of Cyber-Physical Systems.
Mounting concerns about safety and security have resulted in an intricate ecosystem of guidelines, compliance measures, directives and policy reports for cybersecurity of all critical infrastructure. By definition, such guidelines and policies are written in linear sequential text form that makes them difficult to integrate, or to understand the policy-technology-security interactions, thus limiting their relevance for science of security. We propose to develop text-to-analytics methods and tools focusing on CPS domains such as smart grids
2019-10-30
Jansen, Rob, Traudt, Matthew, Hopper, Nicholas.  2018.  Privacy-Preserving Dynamic Learning of Tor Network Traffic. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1944-1961.

Experimentation tools facilitate exploration of Tor performance and security research problems and allow researchers to safely and privately conduct Tor experiments without risking harm to real Tor users. However, researchers using these tools configure them to generate network traffic based on simplifying assumptions and outdated measurements and without understanding the efficacy of their configuration choices. In this work, we design a novel technique for dynamically learning Tor network traffic models using hidden Markov modeling and privacy-preserving measurement techniques. We conduct a safe but detailed measurement study of Tor using 17 relays (\textasciitilde2% of Tor bandwidth) over the course of 6 months, measuring general statistics and models that can be used to generate a sequence of streams and packets. We show how our measurement results and traffic models can be used to generate traffic flows in private Tor networks and how our models are more realistic than standard and alternative network traffic generation\textasciitildemethods.

2019-05-01
Chen, Huashan, Cho, Jin-Hee, Xu, Shouhuai.  2018.  Quantifying the Security Effectiveness of Firewalls and DMZs. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :9:1–9:11.

Firewalls and Demilitarized Zones (DMZs) are two mechanisms that have been widely employed to secure enterprise networks. Despite this, their security effectiveness has not been systematically quantified. In this paper, we make a first step towards filling this void by presenting a representational framework for investigating their security effectiveness in protecting enterprise networks. Through simulation experiments, we draw useful insights into the security effectiveness of firewalls and DMZs. To the best of our knowledge, these insights were not reported in the literature until now.

2019-10-30
Jenkins, Ira Ray, Bratus, Sergey, Smith, Sean, Koo, Maxwell.  2018.  Reinventing the Privilege Drop: How Principled Preservation of Programmer Intent Would Prevent Security Bugs. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :3:1-3:9.

The principle of least privilege requires that components of a program have access to only those resources necessary for their proper function. Defining proper function is a difficult task. Existing methods of privilege separation, like Control Flow Integrity and Software Fault Isolation, attempt to infer proper function by bridging the gaps between language abstractions and hardware capabilities. However, it is programmer intent that defines proper function, as the programmer writes the code that becomes law. Codifying programmer intent into policy is a promising way to capture proper function; however, often onerous policy creation can unnecessarily delay development and adoption. In this paper, we demonstrate the use of our ELF-based access control (ELFbac), a novel technique for policy definition and enforcement. ELFbac leverages the common programmer's existing mental model of scope, and allows for policy definition at the Application Binary Interface (ABI) level. We consider the roaming vulnerability found in OpenSSH, and demonstrate how using ELFbac would have provided strong mitigation with minimal program modification. This serves to illustrate the effectiveness of ELFbac as a means of privilege separation in further applications, and the intuitive, yet robust nature of our general approach to policy creation.

Madani, Pooria, Vlajic, Natalija.  2018.  Robustness of Deep Autoencoder in Intrusion Detection Under Adversarial Contamination. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :1:1-1:8.

The existing state-of-the-art in the field of intrusion detection systems (IDSs) generally involves some use of machine learning algorithms. However, the computer security community is growing increasingly aware that a sophisticated adversary could target the learning module of these IDSs in order to circumvent future detections. Consequently, going forward, robustness of machine-learning based IDSs against adversarial manipulation (i.e., poisoning) will be the key factor for the overall success of these systems in the real world. In our work, we focus on adaptive IDSs that use anomaly-based detection to identify malicious activities in an information system. To be able to evaluate the susceptibility of these IDSs to deliberate adversarial poisoning, we have developed a novel framework for their performance testing under adversarial contamination. We have also studied the viability of using deep autoencoders in the detection of anomalies in adaptive IDSs, as well as their overall robustness against adversarial poisoning. Our experimental results show that our proposed autoencoder-based IDS outperforms a generic PCA-based counterpart by more than 15% in terms of detection accuracy. The obtained results concerning the detection ability of the deep autoencoder IDS under adversarial contamination, compared to that of the PCA-based IDS, are also encouraging, with the deep autoencoder IDS maintaining a more stable detection in parallel to limiting the contamination of its training dataset to just bellow 2%.

Dean, Andrew, Agyeman, Michael Opoku.  2018.  A Study of the Advances in IoT Security. Proceedings of the 2Nd International Symposium on Computer Science and Intelligent Control. :15:1-15:5.

The Internet-of-things (IoT) holds a lot of benefits to our lives by removing menial tasks and improving efficiency of everyday objects. You are trusting your personal data and device control to the manufactures and you may not be aware of how much risk your putting your privacy at by sending your data over the internet. The internet-of-things may not be as secure as you think when the devices used are constrained by a lot of variables which attackers can exploit to gain access to your data / device and anything they connected to and as the internet-of-things is all about connecting devices together one weak point can be all it takes to gain full access. In this paper we have a look at the current advances in IoT security and the most efficient methods to protect IoT devices.

2020-11-02
Wu, Yuming, Liu, Yutao, Liu, Ruifeng, Chen, Haibo, Zang, Binyu, Guan, Haibing.  2018.  Comprehensive VM Protection Against Untrusted Hypervisor Through Retrofitted AMD Memory Encryption. 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA).

The confidentiality of tenant's data is confronted with high risk when facing hardware attacks and privileged malicious software. Hardware-based memory encryption is one of the promising means to provide strong guarantees of data security. Recently AMD has proposed its new memory encryption hardware called SME and SEV, which can selectively encrypt memory regions in a fine-grained manner, e.g., by setting the C-bits in the page table entries. More importantly, SEV further supports encrypted virtual machines. This, intuitively, has provided a new opportunity to protect data confidentiality in guest VMs against an untrusted hypervisor in the cloud environment. In this paper, we first provide a security analysis on the (in)security of SEV and uncover a set of security issues of using SEV as a means to defend against an untrusted hypervisor. Based on the study, we then propose a software-based extension to the SEV feature, namely Fidelius, to address those issues while retaining performance efficiency. Fidelius separates the management of critical resources from service provisioning and revokes the permissions of accessing specific resources from the un-trusted hypervisor. By adopting a sibling-based protection mechanism with non-bypassable memory isolation, Fidelius embraces both security and efficiency, as it introduces no new layer of abstraction. Meanwhile, Fidelius reuses the SEV API to provide a full VM life-cycle protection, including two sets of para-virtualized I/O interfaces to encode the I/O data, which is not considered in the SEV hardware design. A detailed and quantitative security analysis shows its effectiveness in protecting tenant's data from a variety of attack surfaces, and the performance evaluation confirms the performance efficiency of Fidelius.

2019-02-08
Zhang, Yiwei, Zhang, Weiming, Chen, Kejiang, Liu, Jiayang, Liu, Yujia, Yu, Nenghai.  2018.  Adversarial Examples Against Deep Neural Network Based Steganalysis. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :67-72.

Deep neural network based steganalysis has developed rapidly in recent years, which poses a challenge to the security of steganography. However, there is no steganography method that can effectively resist the neural networks for steganalysis at present. In this paper, we propose a new strategy that constructs enhanced covers against neural networks with the technique of adversarial examples. The enhanced covers and their corresponding stegos are most likely to be judged as covers by the networks. Besides, we use both deep neural network based steganalysis and high-dimensional feature classifiers to evaluate the performance of steganography and propose a new comprehensive security criterion. We also make a tradeoff between the two analysis systems and improve the comprehensive security. The effectiveness of the proposed scheme is verified with the evidence obtained from the experiments on the BOSSbase using the steganography algorithm of WOW and popular steganalyzers with rich models and three state-of-the-art neural networks.

2018-07-13
Yangfend Qu, Illinois Institute of Technology, Xin Liu, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Yuan Hong, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory.  2018.  Enabling a Resilient and Self-healing PMU Infrastructure Using Centralized Network Control. 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization.

Many of the emerging wide-area monitoring protection and control (WAMPAC) applications in modern electrical grids rely heavily on the availability and integrity of widespread phasor measurement unit (PMU) data. Therefore, it is critical to protect PMU networks against growing cyber-attacks and system faults. In this paper, we present a self-healing PMU network design that considers both power system observability and communication network characteristics. Our design utilizes centralized network control, such as the emerging software-defined networking (SDN) technology, to design resilient network self-healing algorithms against cyber-attacks. Upon detection of a cyber-attack, the PMU network can reconfigure itself to isolate compromised devices and re-route measurement
data with the goal of preserving the power system observability. We have developed a proof-of-concept system in a container-based network testbed using integer linear programming to solve a graphbased PMU system model.We also evaluate the system performance regarding the self-healing plan generation and installation using the IEEE 30-bus system.
 

2018-09-28
van Oorschot, Paul C..  2017.  Science, Security and Academic Literature: Can We Learn from History? Proceedings of the 2017 Workshop on Moving Target Defense. :1–2.
A recent paper (Oakland 2017) discussed science and security research in the context of the government-funded Science of Security movement, and the history and prospects of security as a scientific pursuit. It drew on literature from within the security research community, and mature history and philosophy of science literature. The paper sparked debate in numerous organizations and the security community. Here we consider some of the main ideas, provide a summary list of relevant literature, and encourage discussion within the Moving Target Defense (MTD) sub-community1.
2017-12-28
Noureddine, M. A., Marturano, A., Keefe, K., Bashir, M., Sanders, W. H..  2017.  Accounting for the Human User in Predictive Security Models. 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC). :329–338.

Given the growing sophistication of cyber attacks, designing a perfectly secure system is not generally possible. Quantitative security metrics are thus needed to measure and compare the relative security of proposed security designs and policies. Since the investigation of security breaches has shown a strong impact of human errors, ignoring the human user in computing these metrics can lead to misleading results. Despite this, and although security researchers have long observed the impact of human behavior on system security, few improvements have been made in designing systems that are resilient to the uncertainties in how humans interact with a cyber system. In this work, we develop an approach for including models of user behavior, emanating from the fields of social sciences and psychology, in the modeling of systems intended to be secure. We then illustrate how one of these models, namely general deterrence theory, can be used to study the effectiveness of the password security requirements policy and the frequency of security audits in a typical organization. Finally, we discuss the many challenges that arise when adopting such a modeling approach, and then present our recommendations for future work.

2017-04-21
[Anonymous].  2017.  Anonymity in the Bitcoin Peer-to-Peer Network.

Presented at ITI Joint Trust and Security/Science of Security Seminar, February 21, 2017.

Giulia Fanti, University of Illinois at Urbana-Champaign.  2017.  Anonymity in the Bitcoin Peer-to-Peer Network.

Presented at NSA SoS Quarterly Meeting, February 2, 2017

2017-07-18
Haibing Zheng, Tencent, Inc., Dengfeng Li, University of Illinois at Urbana-Champaign, Xia Zeng, Tencent, Inc., Wujie Zheng, Tencent, Inc., Yuetang Deng, Tencent, Inc., Wing Lam, University of Illinois at Urbana-Champaign, Wei Yang, University of Illinois at Urbana-Champaign, Tao Xie, University of Illinois at Urbana-Champaign.  2017.  Automated Test Input Generation for Android: Towards Getting There in an Industrial Case. 39th International Conference on Software Engineering (ICSE 2017), Software Engineering in Practice (SEIP).

Monkey, a random testing tool from Google, has been popularly used in industrial practices for automatic test input generation for Android due to its applicability to a variety of application settings, e.g., ease of use and compatibility with different Android platforms. Recently, Monkey has been under the spotlight of the research community: recent studies found out that none of the studied tools from the academia were actually better than Monkey when applied on a set of open source Android apps. Our recent efforts performed the first case study of applying Monkey on WeChat, a popular messenger app with over 800 million monthly active users, and revealed many limitations of Monkey along with developing our improved approach to alleviate some of these limitations. In this paper, we explore two optimization techniques to improve the effectiveness and efficiency of our previous approach. We also conduct manual categorization of not-covered activities and two automatic coverage-analysis techniques to provide insightful information about the not-covered code entities. Lastly, we present findings of our empirical studies of conducting automatic random testing on WeChat with the preceding techniques.

2017-12-28
Tane, E., Fujigaki, Y..  2017.  Cross-Disciplinary Survey on \#34;Data Science \#34; Field Development: Historical Analysis from 1600s-2000s. 2017 Portland International Conference on Management of Engineering and Technology (PICMET). :1–10.

For the last several decades, the rapid development of information technology and computer performance accelerates generation, transportation and accumulation of digital data, it came to be called "Big Data". In this context, researchers and companies are eager to utilize the data to create new values or manage a wide range of issues, and much focus is being placed on "Data Science" to extract useful information (knowledge) from digital data. Data Science has been developed from several independent fields such as Mathematics/Operations Research, Computer Science, Data Engineering, Visualization and Statistics since 1800s. In addition, Artificial Intelligence converges on this stream recent years. On the other hand, the national projects have been established to utilize data for society with concerns surrounding the security and privacy. In this paper, through detailed analysis on history of this field, processes of development and integration among related fields are discussed as well as comparative aspects between Japan and the United States. This paper also includes a brief discussion of future directions.

2017-07-18