Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2019-04-01
Milton, Richard, Buyuklieva, Boyana, Hay, Duncan, Hudson-Smith, Andy, Gray, Steven.  2018.  Talking to GNOMEs: Exploring Privacy and Trust Around Internet of Things Devices in a Public Space. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. :LBW632:1–LBW632:6.
Privacy issues can be difficult for end-users to understand and are therefore a key concern for information-sharing systems. This paper describes a deployment of fifteen Bluetooth-beacon-enabled 'creatures' spread across London's Queen Elizabeth Olympic Park, which initiate conversations on mobile phones in their vicinity via push notifications. Playing on the common assumption that neutral public settings promote anonymity, users' willingness to converse with personified chatbots is used as a proxy for understanding their inclination to share personal and potentially disclosing information. Each creature is linked to a conversational agent that asks for users' memories and their responses are then shared with other creatures in the network. This paper presents the design of an interactive device used to test users' awareness of how their information propagates to others.
2020-09-28
Gawanmeh, Amjad, Alomari, Ahmad.  2018.  Taxonomy Analysis of Security Aspects in Cyber Physical Systems Applications. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The notion of Cyber Physical Systems is based on using recent computing, communication, and control methods to design and operate intelligent and autonomous systems that can provide using innovative technologies. The existence of several critical applications within the scope of cyber physical systems results in many security and privacy concerns. On the other hand, the distributive nature of these CPS increases security risks. In addition, certain CPS, such as medical ones, generate and process sensitive data regularly, hence, this data must be protected at all levels of generation, processing, and transmission. In this paper, we present a taxonomy based analysis for the state of the art work on security issues in CPS. We identify four types of analysis for security issues in CPS: Modeling, Detection, Prevention, and Response. In addition, we identified six applications of CPS where security is relevant: eHealth and medical, smart grid and power related, vehicular technologies, industrial control and manufacturing, autonomous systems and UAVs, and finally IoT related issues. Then we mapped existing works in the literature into these categories.
2019-01-16
Lowens, Byron M..  2018.  Toward Privacy Enhanced Solutions For Granular Control Over Health Data Collected by Wearable Devices. Proceedings of the 2018 Workshop on MobiSys 2018 Ph.D. Forum. :5–6.
The advent of wearable technologies has engendered novel ways to understand human behavior as it relates to personalized healthcare and health management. As the availability of these technologies expand and proliferate among users, concerns about threats to data privacy have been raised, specifically, regarding the collection and dissemination of data from wearable devices. These factors point to the urgency to better understand user sharing preferences to formulate personalized solutions that give users granular control of the data collected by their wearable devices. The goal of my dissertation is to design and build human-centered solutions that address the need for granular privacy control over data generated by wearable devices.
2019-03-15
Jourdan, Théo, Boutet, Antoine, Frindel, Carole.  2018.  Toward Privacy in IoT Mobile Devices for Activity Recognition. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :155-165.
Recent advances in wireless sensors for personal healthcare allow to recognise human real-time activities with mobile devices. While the analysis of those datastream can have many benefits from a health point of view, it can also lead to privacy threats by exposing highly sensitive information. In this paper, we propose a privacy-preserving framework for activity recognition. This framework relies on a machine learning technique to efficiently recognise the user activity pattern, useful for personal healthcare monitoring, while limiting the risk of re-identification of users from biometric patterns that characterizes each individual. To achieve that, we first deeply analysed different features extraction schemes in both temporal and frequency domain. We show that features in temporal domain are useful to discriminate user activity while features in frequency domain lead to distinguish the user identity. On the basis of this observation, we second design a novel protection mechanism that processes the raw signal on the user's smartphone and transfers to the application server only the relevant features unlinked to the identity of users. In addition, a generalisation-based approach is also applied on features in frequency domain before to be transmitted to the server in order to limit the risk of re-identification. We extensively evaluate our framework with a reference dataset: results show an accurate activity recognition (87%) while limiting the re-identifation rate (33%). This represents a slightly decrease of utility (9%) against a large privacy improvement (53%) compared to state-of-the-art baselines.
2020-04-20
Hu, Boyang, Yan, Qiben, Zheng, Yao.  2018.  Tracking location privacy leakage of mobile ad networks at scale. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
The online advertising ecosystem is built upon the massive data collection of ad networks to learn the properties of users for targeted ad deliveries. Existing efforts have investigated the privacy leakage behaviors of mobile ad networks. However, there lacks a large-scale measurement study to evaluate the scale of privacy leakage through mobile ads. In this work, we present a study of the potential privacy leakage in location-based mobile advertising services based on a large-scale measurement. We first introduce a threat model in the mobile ad ecosystem, and then design a measurement system to perform extensive threat measurements and assessments. To counteract the privacy leakage threats, we design and implement an adaptive location obfuscation mechanism, which can be used to obfuscate location data in real-time while minimizing the impact to mobile ad businesses.
Hu, Boyang, Yan, Qiben, Zheng, Yao.  2018.  Tracking location privacy leakage of mobile ad networks at scale. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
The online advertising ecosystem is built upon the massive data collection of ad networks to learn the properties of users for targeted ad deliveries. Existing efforts have investigated the privacy leakage behaviors of mobile ad networks. However, there lacks a large-scale measurement study to evaluate the scale of privacy leakage through mobile ads. In this work, we present a study of the potential privacy leakage in location-based mobile advertising services based on a large-scale measurement. We first introduce a threat model in the mobile ad ecosystem, and then design a measurement system to perform extensive threat measurements and assessments. To counteract the privacy leakage threats, we design and implement an adaptive location obfuscation mechanism, which can be used to obfuscate location data in real-time while minimizing the impact to mobile ad businesses.
2019-01-16
Dao, Ha, Mazel, Johan, Fukuda, Kensuke.  2018.  Understanding Abusive Web Resources: Characteristics and Counter-measures of Malicious Web Resources and Cryptocurrency Mining. Proceedings of the Asian Internet Engineering Conference. :54–61.
Web security is a big concern in the current Internet; users may visit websites that automatically download malicious codes for leaking user's privacy information, or even mildly their web browser may help for someone's cryptomining. In this paper, we analyze abusive web resources (i.e. malicious resources and cryptomining) crawled from the Alexa Top 150,000 sites. We highlight the abusive web resources on Alexa ranking, TLD usage, website geolocation, and domain lifetime. Our results show that abusive resources are spread in the Alexa ranking, websites particularly generic Top Level Domain (TLD) and their recently registered domains. In addition, websites with malicious resources are mainly located in China while cryptomining is located in USA. We further evaluate possible counter-measures against abusive web resources. We observe that ad or privacy block lists are ineffective to block against malicious resources while coin-blocking lists are powerful enough to mitigate in-browser cryptomining. Our observations shed light on a little studied, yet important, aspect of abusive resources, and can help increase user awareness about the malicious resources and drive-by mining on web browsers.
2019-06-17
Noroozi, Hamid, Khodaei, Mohammad, Papadimitratos, Panos.  2018.  VPKIaaS: A Highly-Available and Dynamically-Scalable Vehicular Public-Key Infrastructure. Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :302–304.
The central building block of secure and privacy-preserving Vehicular Communication (VC) systems is a Vehicular Public-Key Infrastructure (VPKI), which provides vehicles with multiple anonymized credentials, termed pseudonyms. These pseudonyms are used to ensure message authenticity and integrity while preserving vehicle (and thus passenger) privacy. In the light of emerging large-scale multi-domain VC environments, the efficiency of the VPKI and, more broadly, its scalability are paramount. In this extended abstract, we leverage the state-of-the-art VPKI system and enhance its functionality towards a highly-available and dynamically-scalable design; this ensures that the system remains operational in the presence of benign failures or any resource depletion attack, and that it dynamically scales out, or possibly scales in, according to the requests' arrival rate. Our full-blown implementation on the Google Cloud Platform shows that deploying a VPKI for a large-scale scenario can be cost-effective, while efficiently issuing pseudonyms for the requesters.
2019-04-05
Acar, Gunes, Huang, Danny Yuxing, Li, Frank, Narayanan, Arvind, Feamster, Nick.  2018.  Web-Based Attacks to Discover and Control Local IoT Devices. Proceedings of the 2018 Workshop on IoT Security and Privacy. :29-35.
In this paper, we present two web-based attacks against local IoT devices that any malicious web page or third-party script can perform, even when the devices are behind NATs. In our attack scenario, a victim visits the attacker's website, which contains a malicious script that communicates with IoT devices on the local network that have open HTTP servers. We show how the malicious script can circumvent the same-origin policy by exploiting error messages on the HTML5 MediaError interface or by carrying out DNS rebinding attacks. We demonstrate that the attacker can gather sensitive information from the devices (e.g., unique device identifiers and precise geolocation), track and profile the owners to serve ads, or control the devices by playing arbitrary videos and rebooting. We propose potential countermeasures to our attacks that users, browsers, DNS providers, and IoT vendors can implement.
2019-01-21
Alshehri, Asma, Benson, James, Patwa, Farhan, Sandhu, Ravi.  2018.  Access Control Model for Virtual Objects (Shadows) Communication for AWS Internet of Things. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :175–185.

The concept of Internet of Things (IoT) has received considerable attention and development in recent years. There have been significant studies on access control models for IoT in academia, while companies have already deployed several cloud-enabled IoT platforms. However, there is no consensus on a formal access control model for cloud-enabled IoT. The access-control oriented (ACO) architecture was recently proposed for cloud-enabled IoT, with virtual objects (VOs) and cloud services in the middle layers. Building upon ACO, operational and administrative access control models have been published for virtual object communication in cloud-enabled IoT illustrated by a use case of sensing speeding cars as a running example. In this paper, we study AWS IoT as a major commercial cloud-IoT platform and investigate its suitability for implementing the afore-mentioned academic models of ACO and VO communication control. While AWS IoT has a notion of digital shadows closely analogous to VOs, it lacks explicit capability for VO communication and thereby for VO communication control. Thus there is a significant mismatch between AWS IoT and these academic models. The principal contribution of this paper is to reconcile this mismatch by showing how to use the mechanisms of AWS IoT to effectively implement VO communication models. To this end, we develop an access control model for virtual objects (shadows) communication in AWS IoT called AWS-IoT-ACMVO. We develop a proof-of-concept implementation of the speeding cars use case in AWS IoT under guidance of this model, and provide selected performance measurements. We conclude with a discussion of possible alternate implementations of this use case in AWS IoT.

2020-01-02
Harris, Albert, Snader, Robin, Kravets, Robin.  2018.  Aggio: A Coupon Safe for Privacy-Preserving Smart Retail Environments. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :174–186.

Researchers and industry experts are looking at how to improve a shopper's experience and a store's revenue by leveraging and integrating technologies at the edges of the network, such as Internet-of-Things (IoT) devices, cloud-based systems, and mobile applications. The integration of IoT technology can now be used to improve purchasing incentives through the use of electronic coupons. Research has shown that targeted electronic coupons are the most effective and coupons presented to the shopper when they are near the products capture the most shoppers' dollars. Although it is easy to imagine coupons being broadcast to a shopper's mobile device over a low-power wireless channel, such a solution must be able to advertise many products, target many individual shoppers, and at the same time, provide shoppers with their desired level of privacy. To support this type of IoT-enabled shopping experience, we have designed Aggio, an electronic coupon distribution system that enables the distribution of localized, targeted coupons while supporting user privacy and security. Aggio uses cryptographic mechanisms to not only provide security but also to manage shopper groups e.g., bronze, silver, and gold reward programs) and minimize resource usage, including bandwidth and energy. The novel use of cryptographic management of coupons and groups allows Aggio to reduce bandwidth use, as well as reduce the computing and energy resources needed to process incoming coupons. Through the use of local coupon storage on the shopper's mobile device, the shopper does not need to query the cloud and so does not need to expose all of the details of their shopping decisions. Finally, the use of privacy preserving communication between the shopper's mobile device and the CouponHubs that are distributed throughout the retail environment allows the shopper to expose their location to the store without divulging their location to all other shoppers present in the store.

2019-11-04
Li, Teng, Ma, Jianfeng, Pei, Qingqi, Shen, Yulong, Sun, Cong.  2018.  Anomalies Detection of Routers Based on Multiple Information Learning. 2018 International Conference on Networking and Network Applications (NaNA). :206-211.

Routers are important devices in the networks that carry the burden of transmitting information among the communication devices on the Internet. If a malicious adversary wants to intercept the information or paralyze the network, it can directly attack the routers and then achieve the suspicious goals. Thus, preventing router security is of great importance. However, router systems are notoriously difficult to understand or diagnose for their inaccessibility and heterogeneity. The common way of gaining access to the router system and detecting the anomaly behaviors is to inspect the router syslogs or monitor the packets of information flowing to the routers. These approaches just diagnose the routers from one aspect but do not consider them from multiple views. In this paper, we propose an approach to detect the anomalies and faults of the routers with multiple information learning. We try to use the routers' information not from the developer's view but from the user' s view, which does not need any expert knowledge. First, we do the offline learning to transform the benign or corrupted user actions into the syslogs. Then, we try to decide whether the input routers' conditions are poor or not with clustering. During the detection phase, we use the distance between the event and the cluster to decide if it is the anomaly event and we can provide the corresponding solutions. We have applied our approach in a university network which contains Cisco, Huawei and Dlink routers for three months. We aligned our experiment with former work as a baseline for comparison. Our approach can gain 89.6% accuracy in detecting the attacks which is 5.1% higher than the former work. The results show that our approach performs in limited time as well as memory usages and has high detection and low false positives.

2019-03-15
Salman, Muhammad, Husna, Diyanatul, Apriliani, Stella Gabriella, Pinem, Josua Geovani.  2018.  Anomaly Based Detection Analysis for Intrusion Detection System Using Big Data Technique with Learning Vector Quantization (LVQ) and Principal Component Analysis (PCA). Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality. :20-23.

Data security has become a very serious parf of any organizational information system. More and more threats across the Internet has evolved and capable to deceive firewall as well as antivirus software. In addition, the number of attacks become larger and become more dificult to be processed by the firewall or antivirus software. To improve the security of the system is usually done by adding Intrusion Detection System(IDS), which divided into anomaly-based detection and signature-based detection. In this research to process a huge amount of data, Big Data technique is used. Anomaly-based detection is proposed using Learning Vector Quantization Algorithm to detect the attacks. Learning Vector Quantization is a neural network technique that learn the input itself and then give the appropriate output according to the input. Modifications were made to improve test accuracy by varying the test parameters that present in LVQ. Varying the learning rate, epoch and k-fold cross validation resulted in a more efficient output. The output is obtained by calculating the value of information retrieval from the confusion matrix table from each attack classes. Principal Component Analysis technique is used along with Learning Vector Quantization to improve system performance by reducing the data dimensionality. By using 18-Principal Component, dataset successfully reduced by 47.3%, with the best Recognition Rate of 96.52% and time efficiency improvement up to 43.16%.

2019-01-31
Das, D., Meiser, S., Mohammadi, E., Kate, A..  2018.  Anonymity Trilemma: Strong Anonymity, Low Bandwidth Overhead, Low Latency - Choose Two. 2018 IEEE Symposium on Security and Privacy (SP). :108–126.

This work investigates the fundamental constraints of anonymous communication (AC) protocols. We analyze the relationship between bandwidth overhead, latency overhead, and sender anonymity or recipient anonymity against the global passive (network-level) adversary. We confirm the trilemma that an AC protocol can only achieve two out of the following three properties: strong anonymity (i.e., anonymity up to a negligible chance), low bandwidth overhead, and low latency overhead. We further study anonymity against a stronger global passive adversary that can additionally passively compromise some of the AC protocol nodes. For a given number of compromised nodes, we derive necessary constraints between bandwidth and latency overhead whose violation make it impossible for an AC protocol to achieve strong anonymity. We analyze prominent AC protocols from the literature and depict to which extent those satisfy our necessary constraints. Our fundamental necessary constraints offer a guideline not only for improving existing AC systems but also for designing novel AC protocols with non-traditional bandwidth and latency overhead choices.

2019-02-22
Rustagi, Taru, Yoo, Kyungjin.  2018.  AR Navigation Solution Using Vector Tiles. Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology. :71:1-71:2.

This study discusses the results and findings of an augmented reality navigation app that was created using vector data uploaded to an online mapping software for indoor navigation. The main objective of this research is to determine the current issues with a solution of indoor navigation that relies on the use of GPS signals, as these signals are sparse in buildings. The data was uploaded in the form of GeoJSON files to MapBox which relayed the data to the app using an API in the form of Tilesets. The application converted the tilesets to a miniaturized map and calculated the navigation path, and then overlaid that navigation line onto the floor via the camera. Once the project setup was completed, multiple navigation paths have been tested numerous times between the different sync points and destination rooms. At the end, their accuracy, ease of access and several other factors, along with their issues, were recorded. The testing revealed that the navigation system was not only accurate despite the lack of GPS signal, but it also detected the device motion precisely. Furthermore, the navigation system did not take much time to generate the navigation path, as the app processed the data tile by tile. The application was also able to accurately measure the ground plane along with the walls, perfectly overlaying the navigation line. However, a few observations indicated various factors affected the accuracy of the navigation, and testing revealed areas where major improvements can be made to improve both accuracy and ease of access.

2019-01-31
Abou-Zahra, Shadi, Brewer, Judy, Cooper, Michael.  2018.  Artificial Intelligence (AI) for Web Accessibility: Is Conformance Evaluation a Way Forward? Proceedings of the Internet of Accessible Things. :20:1–20:4.

The term "artificial intelligence" is a buzzword today and is heavily used to market products, services, research, conferences, and more. It is scientifically disputed which types of products and services do actually qualify as "artificial intelligence" versus simply advanced computer technologies mimicking aspects of natural intelligence. Yet it is undisputed that, despite often inflationary use of the term, there are mainstream products and services today that for decades were only thought to be science fiction. They range from industrial automation, to self-driving cars, robotics, and consumer electronics for smart homes, workspaces, education, and many more contexts. Several technological advances enable what is commonly referred to as "artificial intelligence". It includes connected computers and the Internet of Things (IoT), open and big data, low cost computing and storage, and many more. Yet regardless of the definition of the term artificial intelligence, technological advancements in this area provide immense potential, especially for people with disabilities. In this paper we explore some of these potential in the context of web accessibility. We review some existing products and services, and their support for web accessibility. We propose accessibility conformance evaluation as one potential way forward, to accelerate the uptake of artificial intelligence, to improve web accessibility.

2019-03-15
Noor, U., Anwar, Z., Noor, U., Anwar, Z., Rashid, Z..  2018.  An Association Rule Mining-Based Framework for Profiling Regularities in Tactics Techniques and Procedures of Cyber Threat Actors. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1-6.

Tactics Techniques and Procedures (TTPs) in cyber domain is an important threat information that describes the behavior and attack patterns of an adversary. Timely identification of associations between TTPs can lead to effective strategy for diagnosing the Cyber Threat Actors (CTAs) and their attack vectors. This study profiles the prevalence and regularities in the TTPs of CTAs. We developed a machine learning-based framework that takes as input Cyber Threat Intelligence (CTI) documents, selects the most prevalent TTPs with high information gain as features and based on them mine interesting regularities between TTPs using Association Rule Mining (ARM). We evaluated the proposed framework with publicly available TTPbased CTI documents. The results show that there are 28 TTPs more prevalent than the other TTPs. Our system identified 155 interesting association rules among the TTPs of CTAs. A summary of these rules is given to effectively investigate threats in the network.

2019-07-01
Ferreyra, N. E. Díaz, Meisy, R., Heiselz, M..  2018.  At Your Own Risk: Shaping Privacy Heuristics for Online Self-Disclosure. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-10.

Revealing private and sensitive information on Social Network Sites (SNSs) like Facebook is a common practice which sometimes results in unwanted incidents for the users. One approach for helping users to avoid regrettable scenarios is through awareness mechanisms which inform a priori about the potential privacy risks of a self-disclosure act. Privacy heuristics are instruments which describe recurrent regrettable scenarios and can support the generation of privacy awareness. One important component of a heuristic is the group of people who should not access specific private information under a certain privacy risk. However, specifying an exhaustive list of unwanted recipients for a given regrettable scenario can be a tedious task which necessarily demands the user's intervention. In this paper, we introduce an approach based on decision trees to instantiate the audience component of privacy heuristics with minor intervention from the users. We introduce Disclosure- Acceptance Trees, a data structure representative of the audience component of a heuristic and describe a method for their generation out of user-centred privacy preferences.

2018-11-19
Lee, K., Reardon, C., Fink, J..  2018.  Augmented Reality in Human-Robot Cooperative Search. 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :1–1.

Robots operating alongside humans in field environments have the potential to greatly increase the situational awareness of their human teammates. A significant challenge, however, is the efficient conveyance of what the robot perceives to the human in order to achieve improved situational awareness. We believe augmented reality (AR), which allows a human to simultaneously perceive the real world and digital information situated virtually in the real world, has the potential to address this issue. We propose to demonstrate that augmented reality can be used to enable human-robot cooperative search, where the robot can both share search results and assist the human teammate in navigating to a search target.

2019-01-31
Wagner, Alan R..  2018.  An Autonomous Architecture That Protects the Right to Privacy. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. :330–334.

The advent and widespread adoption of wearable cameras and autonomous robots raises important issues related to privacy. The mobile cameras on these systems record and may re-transmit enormous amounts of video data that can then be used to identify, track, and characterize the behavior of the general populous. This paper presents a preliminary computational architecture designed to preserve specific types of privacy over a video stream by identifying categories of individuals, places, and things that require higher than normal privacy protection. This paper describes the architecture as a whole as well as preliminary results testing aspects of the system. Our intention is to implement and test the system on ground robots and small UAVs and demonstrate that the system can provide selective low-level masking or deletion of data requiring higher privacy protection.

2019-02-22
Dudley, John J., Schuff, Hendrik, Kristensson, Per Ola.  2018.  Bare-Handed 3D Drawing in Augmented Reality. Proceedings of the 2018 Designing Interactive Systems Conference. :241-252.

Head-mounted augmented reality (AR) enables embodied in situ drawing in three dimensions (3D). We explore 3D drawing interactions based on uninstrumented, unencumbered (bare) hands that preserve the user's ability to freely navigate and interact with the physical environment. We derive three alternative interaction techniques supporting bare-handed drawing in AR from the literature and by analysing several envisaged use cases. The three interaction techniques are evaluated in a controlled user study examining three distinct drawing tasks: planar drawing, path description, and 3D object reconstruction. The results indicate that continuous freehand drawing supports faster line creation than the control point based alternatives, although with reduced accuracy. User preferences for the different techniques are mixed and vary considerably between the different tasks, highlighting the value of diverse and flexible interactions. The combined effectiveness of these three drawing techniques is illustrated in an example application of 3D AR drawing.

2019-06-10
Cao, Cheng, Chen, Zhengzhang, Caverlee, James, Tang, Lu-An, Luo, Chen, Li, Zhichun.  2018.  Behavior-Based Community Detection: Application to Host Assessment In Enterprise Information Networks. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. :1977-1985.

Community detection in complex networks is a fundamental problem that attracts much attention across various disciplines. Previous studies have been mostly focusing on external connections between nodes (i.e., topology structure) in the network whereas largely ignoring internal intricacies (i.e., local behavior) of each node. A pair of nodes without any interaction can still share similar internal behaviors. For example, in an enterprise information network, compromised computers controlled by the same intruder often demonstrate similar abnormal behaviors even if they do not connect with each other. In this paper, we study the problem of community detection in enterprise information networks, where large-scale internal events and external events coexist on each host. The discovered host communities, capturing behavioral affinity, can benefit many comparative analysis tasks such as host anomaly assessment. In particular, we propose a novel community detection framework to identify behavior-based host communities in enterprise information networks, purely based on large-scale heterogeneous event data. We continue proposing an efficient method for assessing host's anomaly level by leveraging the detected host communities. Experimental results on enterprise networks demonstrate the effectiveness of our model.

2019-02-22
Mutiarachim, A., Pranata, S. Felix, Ansor, B., Shidik, G. Faiar, Fanani, A. Zainul, Soeleman, A., Pramunendar, R. Anggi.  2018.  Bit Localization in Least Significant Bit Using Fuzzy C-Means. 2018 International Seminar on Application for Technology of Information and Communication. :290-294.

Least Significant Bit (LSB) as one of steganography methods that already exist today is really mainstream because easy to use, but has weakness that is too easy to decode the hidden message. It is because in LSB the message embedded evenly to all pixels of an image. This paper introduce a method of steganography that combine LSB with clustering method that is Fuzzy C-Means (FCM). It is abbreviated with LSB\_FCM, then compare the stegano result with LSB method. Each image will divided into two cluster, then the biggest cluster capacity will be choosen, finally save the cluster coordinate key as place for embedded message. The key as a reference when decode the message. Each image has their own cluster capacity key. LSB\_FCM has disadvantage that is limited place to embedded message, but it also has advantages compare with LSB that is LSB\_FCM have more difficulty level when decrypted the message than LSB method, because in LSB\_FCM the messages embedded randomly in the best cluster pixel of an image, so to decrypted people must have the cluster coordinate key of the image. Evaluation result show that the MSE and PSNR value of LSB\_FCM some similiar with the pure LSB, it means that LSB\_FCM can give imperceptible image as good as the pure LSB, but have better security from the embedding place.

2019-10-02
Wang, S., Zhu, S., Zhang, Y..  2018.  Blockchain-Based Mutual Authentication Security Protocol for Distributed RFID Systems. 2018 IEEE Symposium on Computers and Communications (ISCC). :00074–00077.

Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.

2019-12-17
Nguyen, Viet, Ibrahim, Mohamed, Truong, Hoang, Nguyen, Phuc, Gruteser, Marco, Howard, Richard, Vu, Tam.  2018.  Body-Guided Communications: A Low-Power, Highly-Confined Primitive to Track and Secure Every Touch. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :353-368.

The growing number of devices we interact with require a convenient yet secure solution for user identification, authorization and authentication. Current approaches are cumbersome, susceptible to eavesdropping and relay attacks, or energy inefficient. In this paper, we propose a body-guided communication mechanism to secure every touch when users interact with a variety of devices and objects. The method is implemented in a hardware token worn on user's body, for example in the form of a wristband, which interacts with a receiver embedded inside the touched device through a body-guided channel established when the user touches the device. Experiments show low-power (uJ/bit) operation while achieving superior resilience to attacks, with the received signal at the intended receiver through the body channel being at least 20dB higher than that of an adversary in cm range.