Biblio
We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive compositional protocol into an equivalent sequentially interactive protocol with a blowup in sample complexity linear in this compositionality. Next, we show that our reduction is tight by exhibiting a family of problems such that any sequentially interactive protocol requires this blowup in sample complexity over a fully interactive compositional protocol. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems - which include all simple hypothesis testing problems as a special case - a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests.
As data security has become one of the most crucial issues in modern storage system/application designs, the data sanitization techniques are regarded as the promising solution on 3D NAND flash-memory-based devices. Many excellent works had been proposed to exploit the in-place reprogramming, erasure and encryption techniques to achieve and implement the sanitization functionalities. However, existing sanitization approaches could lead to performance, disturbance overheads or even deciphered issues. Different from existing works, this work aims at exploring an instantaneous data sanitization scheme by taking advantage of programming disturbance properties. Our proposed design can not only achieve the instantaneous data sanitization by exploiting programming disturbance and error correction code properly, but also enhance the performance with the recycling programming design. The feasibility and capability of our proposed design are evaluated by a series of experiments on 3D NAND flash memory chips, for which we have very encouraging results. The experiment results show that the proposed design could achieve the instantaneous data sanitization with low overhead; besides, it improves the average response time and reduces the number of block erase count by up to 86.8% and 88.8%, respectively.
This paper focuses on the creation of information centric Cyber-Human Learning Frameworks involving Virtual Reality based mediums. A generalized framework is proposed, which is adapted for two educational domains: one to support education and training of residents in orthopedic surgery and the other focusing on science learning for children with autism. Users, experts and technology based mediums play a key role in the design of such a Cyber-Human framework. Virtual Reality based immersive and haptic mediums were two of the technologies explored in the implementation of the framework for these learning domains. The proposed framework emphasizes the importance of Information-Centric Systems Engineering (ICSE) principles which emphasizes a user centric approach along with formalizing understanding of target subjects or processes for which the learning environments are being created.
In recent years, various cloud-based services have been introduced in our daily lives, and information security is now an important topic for protecting the users. In the literature, many technologies have been proposed and incorporated into different services. Data hiding or steganography is a data protection technology, and images are often used as the cover data. On the other hand, steganalysis is an important tool to test the security strength of a steganography technique. So far, steganalysis has been used mainly for detecting the existence of secret data given an image, i.e., to classify if the given image is a normal or a stego image. In this paper, we investigate the possibility of identifying the locations of the embedded data if the a given image is suspected to be a stego image. The purpose is of two folds. First, we would like to confirm the decision made by the first level steganalysis; and the second is to provide a way to guess the size of the embedded data. Our experimental results show that in most cases the embedding positions can be detected. This result can be useful for developing more secure steganography technologies.
A spin-Hall nano-oscillator (SHNO) is a type of spintronic oscillator that shows promising performance as a nanoscale microwave source and for neuromorphic computing applications. Within such nanodevices, a non-ferromagnetic layer in the presence of an external magnetic field and a DC bias current generates an oscillating microwave voltage. For developing optimal nano-oscillators, accurate simulations of the device's complex behaviour are required before fabrication. This work simulates the key behaviour of a nanoconstriction SHNO as the applied DC bias current is varied. The current density and Oersted field of the device have been presented, the magnetisation oscillations have been clearly visualised in three dimensions and the spatial distribution of the active mode determined. These simulations allow designers a greater understanding and characterisation of the device's behaviour while also providing a means of comparison when experimental resultsO are generated.
Malicious software, known as malware, has become urgently serious threat for computer security, so automatic mal-ware classification techniques have received increasing attention. In recent years, deep learning (DL) techniques for computer vision have been successfully applied for malware classification by visualizing malware files and then using DL to classify visualized images. Although DL-based classification systems have been proven to be much more accurate than conventional ones, these systems have been shown to be vulnerable to adversarial attacks. However, there has been little research to consider the danger of adversarial attacks to visualized image-based malware classification systems. This paper proposes an adversarial attack method based on the gradient to attack image-based malware classification systems by introducing perturbations on resource section of PE files. The experimental results on the Malimg dataset show that by a small interference, the proposed method can achieve success attack rate when challenging convolutional neural network malware classifiers.
The low attention to security and privacy causes some problems on data and information that can lead to a lack of public trust in e-Gov service. Security threats are not only included in technical issues but also non-technical issues and therefore, it needs the implementation of inclusive security. The application of inclusive security to e-Gov needs to develop a model involving security and privacy requirements as a trusted security solution. The method used is the elicitation of security and privacy requirements in a security perspective. Identification is carried out on security and privacy properties, then security and privacy relationships are determined. The next step is developing the design of an inclusive security model on e-Gov. The last step is doing an analysis of e-Gov service activities and the role of inclusive security. The results of this study identified security and privacy requirements for building inclusive security. Identification of security requirements involves properties such as confidentiality (C), integrity (I), availability (A). Meanwhile, privacy requirement involves authentication (Au), authorization (Az), and Non-repudiation (Nr) properties. Furthermore, an inclusive security design model on e-Gov requires trust of internet (ToI) and trust of government (ToG) as an e-Gov service provider. Access control is needed to provide solutions to e-Gov service activities.
Over the past few years, virtual and mixed reality systems have evolved significantly yielding high immersive experiences. Most of the metaphors used for interaction with the virtual environment do not provide the same meaningful feedback, to which the users are used to in the real world. This paper proposes a cyber-glove to improve the immersive sensation and the degree of embodiment in virtual and mixed reality interaction tasks. In particular, we are proposing a cyber-glove system that tracks wrist movements, hand orientation and finger movements. It provides a decoupled position of the wrist and hand, which can contribute to a better embodiment in interaction and manipulation tasks. Additionally, the detection of the curvature of the fingers aims to improve the proprioceptive perception of the grasping/releasing gestures more consistent to visual feedback. The cyber-glove system is being developed for VR applications related to real estate promotion, where users have to go through divisions of the house and interact with objects and furniture. This work aims to assess if glove-based systems can contribute to a higher sense of immersion, embodiment and usability when compared to standard VR hand controller devices (typically button-based). Twenty-two participants tested the cyber-glove system against the HTC Vive controller in a 3D manipulation task, specifically the opening of a virtual door. Metric results showed that 83% of the users performed faster door pushes, and described shorter paths with their hands wearing the cyber-glove. Subjective results showed that all participants rated the cyber-glove based interactions as equally or more natural, and 90% of users experienced an equal or a significant increase in the sense of embodiment.
In this research project, we are interested by finding solutions to the problem of image analysis and processing in the encrypted domain. For security reasons, more and more digital data are transferred or stored in the encrypted domain. However, during the transmission or the archiving of encrypted images, it is often necessary to analyze or process them, without knowing the original content or the secret key used during the encryption phase. We propose to work on this problem, by associating theoretical aspects with numerous applications. Our main contributions concern: data hiding in encrypted images, correction of noisy encrypted images, recompression of crypto-compressed images and secret image sharing.
{Static characteristic extraction method Control flow-based features proposed by Ding has the ability to detect malicious code with higher accuracy than traditional Text-based methods. However, this method resolved NP-hard problem in a graph, therefore it is not feasible with the large-size and high-complexity programs. So, we propose the C500-CFG algorithm in Control flow-based features based on the idea of dynamic programming, solving Ding's NP-hard problem in O(N2) time complexity, where N is the number of basic blocks in decom-piled executable codes. Our algorithm is more efficient and more outstanding in detecting malware than Ding's algorithm: fast processing time, allowing processing large files, using less memory and extracting more feature information. Applying our algorithms with IoT data sets gives outstanding results on 2 measures: Accuracy = 99.34%
There has been growing concern about privacy and security risks towards electronic-government (e-government) services adoption. Though there are positive results of e- government, there are still other contestable challenges that hamper success of e-government services. While many of the challenges have received considerable attention, there is still little to no firm research on others such as privacy and security risks, effects of infrastructure both in urban and rural settings. Other concerns that have received little consideration are how for instance; e-government serves as a function of perceived usefulness, ease of use, perceived benefit, as well as cultural dimensions and demographic constructs in South Africa. Guided by technology acceptance model, privacy calculus, Hofstede cultural theory and institutional logic theory, the current research sought to examine determinants of e- government use in developing countries. Anchored upon the aforementioned theories and background, the current study proposed three recommendations as potential value chain, derived from e-government service in response to citizens (end- user) support, government and community of stakeholders.