Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2020-11-04
Sharevski, F., Trowbridge, A., Westbrook, J..  2018.  Novel approach for cybersecurity workforce development: A course in secure design. 2018 IEEE Integrated STEM Education Conference (ISEC). :175—180.

Training the future cybersecurity workforce to respond to emerging threats requires introduction of novel educational interventions into the cybersecurity curriculum. To be effective, these interventions have to incorporate trending knowledge from cybersecurity and other related domains while allowing for experiential learning through hands-on experimentation. To date, the traditional interdisciplinary approach for cybersecurity training has infused political science, law, economics or linguistics knowledge into the cybersecurity curriculum, allowing for limited experimentation. Cybersecurity students were left with little opportunity to acquire knowledge, skills, and abilities in domains outside of these. Also, students in outside majors had no options to get into cybersecurity. With this in mind, we developed an interdisciplinary course for experiential learning in the fields of cybersecurity and interaction design. The inaugural course teaches students from cybersecurity, user interaction design, and visual design the principles of designing for secure use - or secure design - and allows them to apply them for prototyping of Internet-of-Things (IoT) products for smart homes. This paper elaborates on the concepts of secure design and how our approach enhances the training of the future cybersecurity workforce.

2019-02-22
Hu, D., Wang, L., Jiang, W., Zheng, S., Li, B..  2018.  A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks. IEEE Access. 6:38303-38314.

The security of image steganography is an important basis for evaluating steganography algorithms. Steganography has recently made great progress in the long-term confrontation with steganalysis. To improve the security of image steganography, steganography must have the ability to resist detection by steganalysis algorithms. Traditional embedding-based steganography embeds the secret information into the content of an image, which unavoidably leaves a trace of the modification that can be detected by increasingly advanced machine-learning-based steganalysis algorithms. The concept of steganography without embedding (SWE), which does not need to modify the data of the carrier image, appeared to overcome the detection of machine-learning-based steganalysis algorithms. In this paper, we propose a novel image SWE method based on deep convolutional generative adversarial networks. We map the secret information into a noise vector and use the trained generator neural network model to generate the carrier image based on the noise vector. No modification or embedding operations are required during the process of image generation, and the information contained in the image can be extracted successfully by another neural network, called the extractor, after training. The experimental results show that this method has the advantages of highly accurate information extraction and a strong ability to resist detection by state-of-the-art image steganalysis algorithms.

2020-04-24
Makhoul, Rawad, Maynard, Xavier, Perichon, Pierre, Frey, David, Jeannin, Pierre-Olivier, Lembeye, Yves.  2018.  A Novel Self Oscillating Class Phi2 Inverter Topology. 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS). :7—10.

The class φ2 is a single transistor, fast transient inverter topology often associated with power conversion at very high frequency (VHF: 30MHz-300MHz). At VHF, gate drivers available on the market fail to provide the adequate transistor switching signal. Hence, there is a need for new power topologies that do no make use of gate drivers but are still suitable for power conversion at VHF. In This paper, we introduce a new class φ;2 topology that incorporates an oscillator, which takes the drain signal through a feedback circuit in order to force the transistor switching. A design methodology is provided and a 1MHz 20V input prototype is built in order to validate the topology behaviour.

2019-06-10
Su, Fang-Hsiang, Bell, Jonathan, Kaiser, Gail, Ray, Baishakhi.  2018.  Obfuscation Resilient Search Through Executable Classification. Proceedings of the 2Nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. :20-30.

Android applications are usually obfuscated before release, making it difficult to analyze them for malware presence or intellectual property violations. Obfuscators might hide the true intent of code by renaming variables and/or modifying program structures. It is challenging to search for executables relevant to an obfuscated application for developers to analyze efficiently. Prior approaches toward obfuscation resilient search have relied on certain structural parts of apps remaining as landmarks, un-touched by obfuscation. For instance, some prior approaches have assumed that the structural relationships between identifiers are not broken by obfuscators; others have assumed that control flow graphs maintain their structures. Both approaches can be easily defeated by a motivated obfuscator. We present a new approach, MACNETO, to search for programs relevant to obfuscated executables leveraging deep learning and principal components on instructions. MACNETO makes few assumptions about the kinds of modifications that an obfuscator might perform. We show that it has high search precision for executables obfuscated by a state-of-the-art obfuscator that changes control flow. Further, we also demonstrate the potential of MACNETO to help developers understand executables, where MACNETO infers keywords (which are from relevant un-obfuscated programs) for obfuscated executables.

Farooq, H. M., Otaibi, N. M..  2018.  Optimal Machine Learning Algorithms for Cyber Threat Detection. 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). :32-37.

With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.

2019-06-24
You, Y., Li, Z., Oechtering, T. J..  2018.  Optimal Privacy-Enhancing And Cost-Efficient Energy Management Strategies For Smart Grid Consumers. 2018 IEEE Statistical Signal Processing Workshop (SSP). :826–830.

The design of optimal energy management strategies that trade-off consumers' privacy and expected energy cost by using an energy storage is studied. The Kullback-Leibler divergence rate is used to assess the privacy risk of the unauthorized testing on consumers' behavior. We further show how this design problem can be formulated as a belief state Markov decision process problem so that standard tools of the Markov decision process framework can be utilized, and the optimal solution can be obtained by using Bellman dynamic programming. Finally, we illustrate the privacy-enhancement and cost-saving by numerical examples.

2020-01-02
Gallagher, Kevin, Patil, Sameer, Dolan-Gavitt, Brendan, McCoy, Damon, Memon, Nasir.  2018.  Peeling the Onion's User Experience Layer: Examining Naturalistic Use of the Tor Browser. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1290–1305.

The strength of an anonymity system depends on the number of users. Therefore, User eXperience (UX) and usability of these systems is of critical importance for boosting adoption and use. To this end, we carried out a study with 19 non-expert participants to investigate how users experience routine Web browsing via the Tor Browser, focusing particularly on encountered problems and frustrations. Using a mixed-methods quantitative and qualitative approach to study one week of naturalistic use of the Tor Browser, we uncovered a variety of UX issues, such as broken Web sites, latency, lack of common browsing conveniences, differential treatment of Tor traffic, incorrect geolocation, operational opacity, etc. We applied this insight to suggest a number of UX improvements that could mitigate the issues and reduce user frustration when using the Tor Browser.

2020-05-11
Tabiban, Azadeh, Majumdar, Suryadipta, Wang, Lingyu, Debbabi, Mourad.  2018.  PERMON: An OpenStack Middleware for Runtime Security Policy Enforcement in Clouds. 2018 IEEE Conference on Communications and Network Security (CNS). :1–7.

To ensure the accountability of a cloud environment, security policies may be provided as a set of properties to be enforced by cloud providers. However, due to the sheer size of clouds, it can be challenging to provide timely responses to all the requests coming from cloud users at runtime. In this paper, we design and implement a middleware, PERMON, as a pluggable interface to OpenStack for intercepting and verifying the legitimacy of user requests at runtime, while leveraging our previous work on proactive security verification to improve the efficiency. We describe detailed implementation of the middleware and demonstrate its usefulness through a use case.

2019-02-22
Zhou, Bing, Guven, Sinem, Tao, Shu, Ye, Fan.  2018.  Pose-Assisted Active Visual Recognition in Mobile Augmented Reality. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :756-758.

While existing visual recognition approaches, which rely on 2D images to train their underlying models, work well for object classification, recognizing the changing state of a 3D object requires addressing several additional challenges. This paper proposes an active visual recognition approach to this problem, leveraging camera pose data available on mobile devices. With this approach, the state of a 3D object, which captures its appearance changes, can be recognized in real time. Our novel approach selects informative video frames filtered by 6-DOF camera poses to train a deep learning model to recognize object state. We validate our approach through a prototype for Augmented Reality-assisted hardware maintenance.

2018-11-14
Tajan, L., Kaumanns, M., Westhoff, D..  2018.  Pre-Computing Appropriate Parameters: How to Accelerate Somewhat Homomorphic Encryption for Cloud Auditing. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–6.

In a Semi-autonomic cloud auditing architecture we weaved in privacy enhancing mechanisms [15] by applying the public key version of the Somewhat homomorphic encryption (SHE) scheme from [4]. It turns out that the performance of the SHE can be significantly improved by carefully deriving relevant crypto parameters from the concrete cloud auditing use cases for which the scheme serves as a privacy enhancing approach. We provide a generic algorithm for finding good SHE parameters with respect to a given use case scenario by analyzing and taking into consideration security, correctness and performance of the scheme. Also, to show the relevance of our proposed algorithms we apply it to two predominant cloud auditing use cases.

2019-12-16
Palanisamy, Saravana Murthy, Dürr, Frank, Tariq, Muhammad Adnan, Rothermel, Kurt.  2018.  Preserving Privacy and Quality of Service in Complex Event Processing Through Event Reordering. Proceedings of the 12th ACM International Conference on Distributed and Event-Based Systems. :40-51.

The Internet of Things (IoT) envisions a huge number of networked sensors connected to the internet. These sensors collect large streams of data which serve as input to wide range of IoT applications and services such as e-health, e-commerce, and automotive services. Complex Event Processing (CEP) is a powerful tool that transforms streams of raw sensor data into meaningful information required by these IoT services. Often these streams of data collected by sensors carry privacy-sensitive information about the user. Thus, protecting privacy is of paramount importance in IoT services based on CEP. In this paper we present a novel pattern-level access control mechanism for CEP based services that conceals private information while minimizing the impact on useful non-sensitive information required by the services to provide a certain quality of service (QoS). The idea is to reorder events from the event stream to conceal privacy-sensitive event patterns while preserving non-privacy sensitive event patterns to maximize QoS. We propose two approaches, namely an ILP-based approach and a graph-based approach, calculating an optimal reordering of events. Our evaluation results show that these approaches are effective in concealing private patterns without significant loss of QoS.

2019-10-15
Pejo, Balazs, Tang, Qiang, Biczók, Gergely.  2018.  The Price of Privacy in Collaborative Learning. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :2261–2263.

Machine learning algorithms have reached mainstream status and are widely deployed in many applications. The accuracy of such algorithms depends significantly on the size of the underlying training dataset; in reality a small or medium sized organization often does not have enough data to train a reasonably accurate model. For such organizations, a realistic solution is to train machine learning models based on a joint dataset (which is a union of the individual ones). Unfortunately, privacy concerns prevent them from straightforwardly doing so. While a number of privacy-preserving solutions exist for collaborating organizations to securely aggregate the parameters in the process of training the models, we are not aware of any work that provides a rational framework for the participants to precisely balance the privacy loss and accuracy gain in their collaboration. In this paper, we model the collaborative training process as a two-player game where each player aims to achieve higher accuracy while preserving the privacy of its own dataset. We introduce the notion of Price of Privacy, a novel approach for measuring the impact of privacy protection on the accuracy in the proposed framework. Furthermore, we develop a game-theoretical model for different player types, and then either find or prove the existence of a Nash Equilibrium with regard to the strength of privacy protection for each player.

2019-06-24
Diamond, Lisa, Schrammel, Johann, Fröhlich, Peter, Regal, Georg, Tscheligi, Manfred.  2018.  Privacy in the Smart Grid: End-user Concerns and Requirements. Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. :189–196.

Mobile interfaces will be central in connecting end-users to the smart grid and enabling their active participation. Services and features supporting this participation do, however, rely on high-frequency collection and transmission of energy usage data by smart meters which is privacy-sensitive. The successful communication of privacy to end-users via consumer interfaces will therefore be crucial to ensure smart meter acceptance and consequently enable participation. Current understanding of user privacy concerns in this context is not very differentiated, and user privacy requirements have received little attention. A preliminary user questionnaire study was conducted to gain a more detailed understanding of the differing perceptions of various privacy risks and the relative importance of different privacy-ensuring measures. The results underline the significance of open communication, restraint in data collection and usage, user control, transparency, communication of security measures, and a good customer relationship.

2019-01-31
Khodaei, Mohammad, Noroozi, Hamid, Papadimitratos, Panos.  2018.  Privacy Preservation Through Uniformity. Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :279–280.

Inter-vehicle communications disclose rich information about vehicle whereabouts. Pseudonymous authentication secures communication while enhancing user privacy thanks to a set of anonymized certificates, termed pseudonyms. Vehicles switch the pseudonyms (and the corresponding private key) frequently; we term this pseudonym transition process. However, exactly because vehicles can in principle change their pseudonyms asynchronously, an adversary that eavesdrops (pseudonymously) signed messages, could link pseudonyms based on the times of pseudonym transition processes. In this poster, we show how one can link pseudonyms of a given vehicle by simply looking at the timing information of pseudonym transition processes. We also propose "mix-zone everywhere": time-aligned pseudonyms are issued for all vehicles to facilitate synchronous pseudonym update; as a result, all vehicles update their pseudonyms simultaneously, thus achieving higher user privacy protection.

2019-01-21
Kittmann, T., Lambrecht, J., Horn, C..  2018.  A privacy-aware distributed software architecture for automation services in compliance with GDPR. 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). 1:1067–1070.

The recently applied General Data Protection Regulation (GDPR) aims to protect all EU citizens from privacy and data breaches in an increasingly data-driven world. Consequently, this deeply affects the factory domain and its human-centric automation paradigm. Especially collaboration of human and machines as well as individual support are enabled and enhanced by processing audio and video data, e.g. by using algorithms which re-identify humans or analyse human behaviour. We introduce most significant impacts of the recent legal regulation change towards the automations domain at a glance. Furthermore, we introduce a representative scenario from production, deduce its legal affections from GDPR resulting in a privacy-aware software architecture. This architecture covers modern virtualization techniques along with authorization and end-to-end encryption to ensure a secure communication between distributes services and databases for distinct purposes.

2019-01-31
Riazi, M. Sadegh, Koushanfar, Farinaz.  2018.  Privacy-Preserving Deep Learning and Inference. Proceedings of the International Conference on Computer-Aided Design. :18:1–18:4.

We provide a systemization of knowledge of the recent progress made in addressing the crucial problem of deep learning on encrypted data. The problem is important due to the prevalence of deep learning models across various applications, and privacy concerns over the exposure of deep learning IP and user's data. Our focus is on provably secure methodologies that rely on cryptographic primitives and not trusted third parties/platforms. Computational intensity of the learning models, together with the complexity of realization of the cryptography algorithms hinder the practical implementation a challenge. We provide a summary of the state-of-the-art, comparison of the existing solutions, as well as future challenges and opportunities.

Zhao, Jianxin, Mortier, Richard, Crowcroft, Jon, Wang, Liang.  2018.  Privacy-Preserving Machine Learning Based Data Analytics on Edge Devices. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. :341–346.

Emerging Machine Learning (ML) techniques, such as Deep Neural Network, are widely used in today's applications and services. However, with social awareness of privacy and personal data rapidly rising, it becomes a pressing and challenging societal issue to both keep personal data private and benefit from the data analytics power of ML techniques at the same time. In this paper, we argue that to avoid those costs, reduce latency in data processing, and minimise the raw data revealed to service providers, many future AI and ML services could be deployed on users' devices at the Internet edge rather than putting everything on the cloud. Moving ML-based data analytics from cloud to edge devices brings a series of challenges. We make three contributions in this paper. First, besides the widely discussed resource limitation on edge devices, we further identify two other challenges that are not yet recognised in existing literature: lack of suitable models for users, and difficulties in deploying services for users. Second, we present preliminary work of the first systematic solution, i.e. Zoo, to fully support the construction, composing, and deployment of ML models on edge and local devices. Third, in the deployment example, ML service are proved to be easy to compose and deploy with Zoo. Evaluation shows its superior performance compared with state-of-art deep learning platforms and Google ML services.

2019-11-11
Martiny, Karsten, Elenius, Daniel, Denker, Grit.  2018.  Protecting Privacy with a Declarative Policy Framework. 2018 IEEE 12th International Conference on Semantic Computing (ICSC). :227–234.

This article describes a privacy policy framework that can represent and reason about complex privacy policies. By using a Common Data Model together with a formal shareability theory, this framework enables the specification of expressive policies in a concise way without burdening the user with technical details of the underlying formalism. We also build a privacy policy decision engine that implements the framework and that has been deployed as the policy decision point in a novel enterprise privacy prototype system. Our policy decision engine supports two main uses: (1) interfacing with user interfaces for the creation, validation, and management of privacy policies; and (2) interfacing with systems that manage data requests and replies by coordinating privacy policy engine decisions and access to (encrypted) databases using various privacy enhancing technologies.

2019-11-12
Luo, Qiming, Lv, Ang, Hou, Ligang, Wang, Zhongchao.  2018.  Realization of System Verification Platform of IoT Smart Node Chip. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM). :341-344.

With the development of large scale integrated circuits, the functions of the IoT chips have been increasingly perfect. The verification work has become one of the most important aspects. On the one hand, an efficient verification platform can ensure the correctness of the design. On the other hand, it can shorten the chip design cycle and reduce the design cost. In this paper, based on a transmission protocol of the IoT node, we propose a verification method which combines simulation verification and FPGA-based prototype verification. We also constructed a system verification platform for the IoT smart node chip combining two kinds of verification above. We have simulated and verificatied the related functions of the node chip using this platform successfully. It has a great reference value.

2019-03-28
Bagri, D., Rathore, S. K..  2018.  Research Issues Based on Comparative Work Related to Data Security and Privacy Preservation in Smart Grid. 2018 4th International Conference on Computing Sciences (ICCS). :88-91.

With the advancement of Technology, the existing electric grids are shifting towards smart grid. The smart grids are meant to be effective in power management, secure and safe in communication and more importantly, it is favourable to the environment. The smart grid is having huge architecture it includes various stakeholders that encounter challenges in the name of authorisation and authentication. The smart grid has another important issue to deal with that is securing the communication from varieties of cyber-attacks. In this paper, we first discussed about the challenges in the smart grid data communication and later we surveyed the existing cryptographic algorithm and presented comparative work on certain factors for existing working cryptographic algorithms This work gives insight conclusion to improve the working scheme for data security and Privacy preservation of customer who is one of the stack holders. Finally, with the comparative work, we suggest a direction of future work on improvement of working algorithms for secure and safe data communication in a smart grid.

2019-06-10
Sokolov, A. N., Pyatnitsky, I. A., Alabugin, S. K..  2018.  Research of Classical Machine Learning Methods and Deep Learning Models Effectiveness in Detecting Anomalies of Industrial Control System. 2018 Global Smart Industry Conference (GloSIC). :1-6.

Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These attacks are hard to detect and their consequences can be catastrophic. Cyber attacks can cause anomalies in the work of the ICS and its technological equipment. The presence of mutual interference and noises in this equipment significantly complicates anomaly detection. Moreover, the traditional means of protection, which used in corporate solutions, require updating with each change in the structure of the industrial process. An approach based on the machine learning for anomaly detection was used to overcome these problems. It complements traditional methods and allows one to detect signal correlations and use them for anomaly detection. Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation dataset was analyzed as example of industrial process. In the course of the research, correlations between the signals of the sensors were detected and preliminary data processing was carried out. Algorithms from the most common techniques of machine learning (decision trees, linear algorithms, support vector machines) and deep learning models (neural networks) were investigated for industrial process anomaly detection task. It's shown that linear algorithms are least demanding on computational resources, but they don't achieve an acceptable result and allow a significant number of errors. Decision tree-based algorithms provided an acceptable accuracy, but the amount of RAM, required for their operations, relates polynomially with the training sample volume. The deep neural networks provided the greatest accuracy, but they require considerable computing power for internal calculations.

2019-12-10
Deng, Lijin, Piao, Yan, Liu, Shuo.  2018.  Research on SIFT Image Matching Based on MLESAC Algorithm. Proceedings of the 2Nd International Conference on Digital Signal Processing. :17-21.

The difference of sensor devices and the camera position offset will lead the geometric differences of the matching images. The traditional SIFT image matching algorithm has a large number of incorrect matching point pairs and the matching accuracy is low during the process of image matching. In order to solve this problem, a SIFT image matching based on Maximum Likelihood Estimation Sample Consensus (MLESAC) algorithm is proposed. Compared with the traditional SIFT feature matching algorithm, SURF feature matching algorithm and RANSAC feature matching algorithm, the proposed algorithm can effectively remove the false matching feature point pairs during the image matching process. Experimental results show that the proposed algorithm has higher matching accuracy and faster matching efficiency.

2019-03-22
bt Yusof Ali, Hazirah Bee, bt Abdullah, Lili Marziana, Kartiwi, Mira, Nordin, Azlin.  2018.  Risk Assessment for Big Data in Cloud: Security, Privacy and Trust. Proceedings of the 2018 Artificial Intelligence and Cloud Computing Conference. :63-67.

The alarming rate of big data usage in the cloud makes data exposed easily. Cloud which consists of many servers linked to each other is used for data storage. Having owned by third parties, the security of the cloud needs to be looked at. Risks of storing data in cloud need to be checked further on the severity level. There should be a way to access the risks. Thus, the objective of this paper is to use SLR so that we can have extensive background of literatures on risk assessment for big data in cloud computing environment from the perspective of security, privacy and trust.

2019-01-31
Postnikoff, Brittany, Goldberg, Ian.  2018.  Robot Social Engineering: Attacking Human Factors with Non-Human Actors. Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. :313–314.

Social robots may make use of social abilities such as persuasion, commanding obedience, and lying. Meanwhile, the field of computer security and privacy has shown that these interpersonal skills can be applied by humans to perform social engineering attacks. Social engineering attacks are the deliberate application of manipulative social skills by an individual in an attempt to achieve a goal by convincing others to do or say things that may or may not be in their best interests. In our work we argue that robot social engineering attacks are already possible and that defenses should be developed to protect against these attacks. We do this by defining what a robot social engineer is, outlining how previous research has demonstrated robot social engineering, and discussing the risks that can accompany robot social engineering attacks.

Tewari, A., Gupta, B. B..  2018.  A Robust Anonymity Preserving Authentication Protocol for IoT Devices. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1–5.

In spite of being a promising technology which will make our lives a lot easier we cannot be oblivious to the fact IoT is not safe from online threat and attacks. Thus, along with the growth of IoT we also need to work on its aspects. Taking into account the limited resources that these devices have it is important that the security mechanisms should also be less complex and do not hinder the actual functionality of the device. In this paper, we propose an ECC based lightweight authentication for IoT devices which deploy RFID tags at the physical layer. ECC is a very efficient public key cryptography mechanism as it provides privacy and security with lesser computation overhead. We also present a security and performance analysis to verify the strength of our proposed approach.