Biblio
Detection and prevention of data breaches in corporate networks is one of the most important security problems of today's world. The techniques and applications proposed for solution are not successful when attackers attempt to steal data using steganography. Steganography is the art of storing data in a file called cover, such as picture, sound and video. The concealed data cannot be directly recognized in the cover. Steganalysis is the process of revealing the presence of embedded messages in these files. There are many statistical and signature based steganalysis algorithms. In this work, the detection of steganographic images with steganalysis techniques is reviewed and a system has been developed which automatically detects steganographic images in network traffic by using open source tools.
We regularly use communication apps like Facebook and WhatsApp on our smartphones, and the exchange of media, particularly images, has grown at an exponential rate. There are over 3 billion images shared every day on Whatsapp alone. In such a scenario, the management of images on a mobile device has become highly inefficient, and this leads to problems like low storage, manual deletion of images, disorganization etc. In this paper, we present a solution to tackle these issues by automatically classifying every image on a smartphone into a set of predefined categories, thereby segregating spam images from them, allowing the user to delete them seamlessly.
We address the problem of ciphertext-policy attribute-based encryption with fine access control, a cryptographic primitive which has many concrete application scenarios such as Pay-TV, e-Health, Cloud Storage and so on. In this context we improve on previous LSSS based techniques by building on previous work of Hohenberger and Waters at PKC'13 and proposing a construction that achieves ciphertext size linear in the minimum between the size of the boolean access formula and the number of its clauses. Our construction also supports fast decryption. We also propose two interesting extensions: the first one aims at reducing storage and computation at the user side and is useful in the context of lightweight devices or devices using a cloud operator. The second proposes the use of multiple authorities to mitigate key escrow by the authority.
Distinguishing and classifying different types of malware is important to better understanding how they can infect computers and devices, the threat level they pose and how to protect against them. In this paper, a system for classifying malware programs is presented. The paper describes the architecture of the system and assesses its performance on a publicly available database (provided by Microsoft for the Microsoft Malware Classification Challenge BIG2015) to serve as a benchmark for future research efforts. First, the malicious programs are preprocessed such that they are visualized as gray scale images. We then make use of an architecture comprised of multiple layers (multiple levels of encoding) to carry out the classification process of those images/programs. We compare the performance of this approach against traditional machine learning and pattern recognition algorithms. Our experimental results show that the deep learning architecture yields a boost in performance over those conventional/standard algorithms. A hold-out validation analysis using the superior architecture shows an accuracy in the order of 99.15%.
In recent years a wide range of wearable IoT healthcare applications have been developed and deployed. The rapid increase in wearable devices allows the transfer of patient personal information between different devices, at the same time personal health and wellness information of patients can be tracked and attacked. There are many techniques that are used for protecting patient information in medical and wearable devices. In this research a comparative study of the complexity for cyber security architecture and its application in IoT healthcare industry has been carried out. The objective of the study is for protecting healthcare industry from cyber attacks focusing on IoT based healthcare devices. The design has been implemented on Xilinx Zynq-7000, targeting XC7Z030 - 3fbg676 FPGA device.
Differential privacy is a rigorous privacy standard that has been applied to a range of data analysis tasks. To broaden the application scenarios of differential privacy when data records have dependencies, the notion of Bayesian differential privacy has been recently proposed. However, it is unknown whether Bayesian differential privacy preserves three nice properties of differential privacy: sequential composability, parallel composability, and post-processing. In this paper, we provide an affirmative answer to this question; i.e., Bayesian differential privacy still have these properties. The idea behind sequential composability is that if we have m algorithms Y1, Y2,łdots, Ym, where Y$\mathscrl$ is independently $ε\mathscrl$-Bayesian differential private for $\mathscrl$ = 1,2,łdots, m, then by feeding the result of Y1 into Y2, the result of Y2 into Y3, and so on, we will finally have an $Σ$m$\mathscrl$=;1 $ε\mathscrl$-Bayesian differential private algorithm. For parallel composability, we consider the situation where a database is partitioned into m disjoint subsets. The $\mathscrl$-th subset is input to a Bayesian differential private algorithm Y$\mathscrl$, for $\mathscrl$= 1, 2,łdots, m. Then the parallel composition of Y1, Y2,łdots, Ym will be maxm$\mathscrl$=;1=1 $ε\mathscrl$-Bayesian differential private. The postprocessing property means that a data analyst, without additional knowledge abo- t the private database, cannot compute a function of the output of a Bayesian differential private algorithm and reduce its privacy guarantee.
Based on the feature analysis of image content, this paper proposes a novel steganalytic method for grayscale images in spatial domain. In this work, we firstly investigates directional lifting wavelet transform (DLWT) as a sparse representation in compressive sensing (CS) domain. Then a block CS (BCS) measurement matrix is designed by using the generalized Gaussian distribution (GGD) model, in which the measurement matrix can be used to sense the DLWT coefficients of images to reflect the feature residual introduced by steganography. Extensive experiments are showed that proposed scheme CS-based is feasible and universal for detecting stegography in spatial domain.
Undeterred by numerous efforts deployed by antivirus software that shields users from various security threats, ransomware is constantly evolving as technology advances. The impact includes hackers hindering the user's accessibility to their data, and the user will pay ransom to retrieve their data. Ransomware also targets multimillion-dollar organizations, and it can cause colossal data loss. The organizations could face catastrophic consequences, and business operations could be ceased. This research contributes by spreading awareness of ransomware to alert people to tackle ransomware. The solution of this research is the conceptual development of a browser extension that provides assistance to warn users of plausible dangers while surfing the Internet. It allows the users to surf the web safely. Since the contribution of this research is conceptual, we can assume that technology users will adopt the proposed idea to prevent ransomware attacks on their personal computers once the solution is fully implemented in future research.
Wireless wearable embedded devices dominate the Internet of Things (IoT) due to their ability to provide useful information about the body and its local environment. The constrained resources of low power processors, however, pose a significant challenge to run-time error logging and hence, product reliability. Error logs classify error type and often system state following the occurrence of an error. Traditional error logging algorithms attempt to balance storage and accuracy by selectively overwriting past log entries. Since a specific combination of firmware faults may result in system instability, preserving all error occurrences becomes increasingly beneficial as IOT systems become more complex. In this paper, a novel hash-based error logging algorithm is presented which has both constant insertion time and constant memory while also exhibiting no false negatives and an acceptable false positive error rate. Both theoretical analysis and simulations are used to compare the performance of the hash-based and traditional approaches.
The proliferation of connected devices has motivated a surge in the development of cryptographic protocols to support a diversity of devices and use cases. To address this trend, we propose continuous verification, a methodology for secure cryptographic protocol design that consists of three principles: (1) repeated use of verification tools; (2) judicious use of common message components; and (3) inclusion of verifiable model specifications in standards. Our recommendations are derived from previous work in the formal methods community, as well as from our past experiences applying verification tools to improve standards. Through a case study of IETF protocols for the IoT, we illustrate the power of continuous verification by (i) discovering flaws in the protocols using the Cryptographic Protocol Shapes Analyzer (CPSA); (ii) identifying the corresponding fixes based on the feedback provided by CPSA; and (iii) demonstrating that verifiable models can be intuitive, concise and suitable for inclusion in standards to enable third-party verification and future modifications.
Cloud storage is vulnerable to advanced persistent threats (APTs), in which an attacker launches stealthy, continuous, well-funded and targeted attacks on storage devices. In this paper, cumulative prospect theory (CPT) is applied to study the interactions between a defender of cloud storage and an APT attacker when each of them makes subjective decisions to choose the scan interval and attack interval, respectively. Both the probability weighting effect and the framing effect are applied to model the deviation of subjective decisions of end-users from the objective decisions governed by expected utility theory, under uncertain attack durations. Cumulative decision weights are used to describe the probability weighting effect and the value distortion functions are used to represent the framing effect of subjective APT attackers and defenders in the CPT-based APT defense game, rather than discrete decision weights, as in earlier prospect theoretic study of APT defense. The Nash equilibria of the CPT-based APT defense game are derived, showing that a subjective attacker becomes risk-seeking if the frame of reference for evaluating the utility is large, and becomes risk-averse if the frame of reference for evaluating the utility is small.
Cyber anonymity tools have attracted wide attention in resisting network traffic censorship and surveillance, and have played a crucial role for open communications over the Internet. The Onion Routing (Tor) is considered the prevailing technique for circumventing the traffic surveillance and providing cyber anonymity. Tor operates by tunneling a traffic through a series of relays, making such traffic to appear as if it originated from the last relay in the traffic path, rather than from the original user. However, Tor faced some obstructions in carrying out its goal effectively, such as insufficient performance and limited capacity. This paper presents a cyber anonymity technique based on software-defined networking; named SOR, which builds onion-routed tunnels across multiple anonymity service providers. SOR architecture enables any cloud tenants to participate in the anonymity service via software-defined networking. Our proposed architecture leverages the large capacity and robust connectivity of the commercial cloud networks to elevate the performance of the cyber anonymity service.
Industrial control systems (ICS) used in industrial plants are vulnerable to cyber-attacks that can cause fatal damage to the plants. Intrusion detection systems (IDSs) monitor ICS network traffic and detect suspicious activities. However, many IDSs overlook sophisticated cyber-attacks because it is hard to make a complete database of cyber-attacks and distinguish operational anomalies when compared to an established baseline. In this paper, a discriminant model between normal and anomalous packets was constructed with a support vector machine (SVM) based on an ICS communication profile, which represents only packet intervals and length, and an IDS with the applied model is proposed. Furthermore, the proposed IDS was evaluated using penetration tests on our cyber security test bed. Although the IDS was constructed by the limited features (intervals and length) of packets, the IDS successfully detected cyber-attacks by monitoring the rate of predicted attacking packets.
With the rapid development of smart grid, smart meters are deployed at energy consumers' premises to collect real-time usage data. Although such a communication model can help the control center of the energy producer to improve the efficiency and reliability of electricity delivery, it also leads to some security issues. For example, this real-time data involves the customers' privacy. Attackers may violate the privacy for house breaking, or they may tamper with the transmitted data for their own benefits. For this purpose, many data aggregation schemes are proposed for privacy preservation. However, rare of them cares about both the data aggregation and fine-grained access control to improve the data utility. In this paper, we proposes a data aggregation scheme based on attribute decision tree. Security analysis illustrates that our scheme can achieve the data integrity, data privacy preservation and fine- grained data access control. Experiment results show that our scheme are more efficient than existing schemes.
Now a day's cloud technology is a new example of computing that pays attention to more computer user, government agencies and business. Cloud technology brought more advantages particularly in every-present services where everyone can have a right to access cloud computing services by internet. With use of cloud computing, there is no requirement for physical servers or hardware that will help the computer system of company, networks and internet services. One of center services offered by cloud technology is storing the data in remote storage space. In the last few years, storage of data has been realized as important problems in information technology. In cloud computing data storage technology, there are some set of significant policy issues that includes privacy issues, anonymity, security, government surveillance, telecommunication capacity, liability, reliability and among others. Although cloud technology provides a lot of benefits, security is the significant issues between customer and cloud. Normally cloud computing technology has more customers like as academia, enterprises, and normal users who have various incentives to go to cloud. If the clients of cloud are academia, security result on computing performance and for this types of clients cloud provider's needs to discover a method to combine performance and security. In this research paper the more significant issue is security but with diverse vision. High performance might be not as dangerous for them as academia. In our paper, we design an efficient secure and verifiable outsourcing protocol for outsourcing data. We develop extended QP problem protocol for storing and outsourcing a data securely. To achieve the data security correctness, we validate the result returned through the cloud by Karush\_Kuhn\_Tucker conditions that are sufficient and necessary for the most favorable solution.
Deep Learning has recently become hugely popular in machine learning for its ability to solve end-to-end learning systems, in which the features and the classifiers are learned simultaneously, providing significant improvements in classification accuracy in the presence of highly-structured and large databases. Its success is due to a combination of recent algorithmic breakthroughs, increasingly powerful computers, and access to significant amounts of data. Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level differential privacy applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).
Deep web, a hidden and encrypted network that crawls beneath the surface web today has become a social hub for various criminals who carry out their crime through the cyber space and all the crime is being conducted and hosted on the Deep Web. This research paper is an effort to bring forth various techniques and ways in which an internet user can be safe online and protect his privacy through anonymity. Understanding how user's data and private information is phished and what are the risks of sharing personal information on social media.
The deployment of Software Defined Networking (SDN) and Network Functions Virtualization (NFV) technologies is increasing, with security as a recognized application driving adoption. However, despite the potential with SDN/NFV for automated and adaptive network security services, the controller interaction presents both a performance and scalability challenge, and a threat vector. To overcome the performance issue, stateful data-plane designs have been proposed. However, these solutions do not offer protection from SDN-specific attacks linked to necessary control functions such as link reconfiguration and switch identification. In this work, we leverage the OpenState framework to introduce state-based SDN security protection mechanisms. The extensions required for this design are presented with respect to an SDN configuration-based attack. The demonstration shows the ability of the SDN Configuration (CFG) security protection mechanism to support legitimate relocation requests and to protect against malicious connection attempts.
Wearable Internet-of-Things (WIoT) environments have demonstrated great potential in a broad range of applications in healthcare and well-being. Security is essential for WIoT environments. Lack of security in WIoTs not only harms user privacy, but may also harm the user's safety. Though devices in the WIoT can be attacked in many ways, in this paper we focus on adversaries who mount what we call sensor-hijacking attacks, which prevent the constituent medical devices from accurately collecting and reporting the user's health state (e.g., reporting old or wrong physiological measurements). In this paper we outline some of our experiences in implementing a data-driven security solution for detecting sensor-hijacking attack on a secure wearable internet-of-things (WIoT) base station called the Amulet. Given the limited capabilities (computation, memory, battery power) of the Amulet platform, implementing such a security solution is quite challenging and presents several trade-offs with respect to detection accuracy and resources requirements. We conclude the paper with a list of insights into what capabilities constrained WIoT platforms should provide developers so as to make the inclusion of data-driven security primitives in such systems.
The IoT node works mostly in a specific scenario, and executes the fixed program. In order to make it suitable for more scenarios, this paper introduces a kind of the IoT node, which can change program at any time. And this node has intelligent and dynamic reconfigurable features. Then, a transport protocol is proposed. It enables this node to work in different scenarios and perform corresponding program. Finally, we use Verilog to design and FPGA to verify. The result shows that this protocol is feasible. It also offers a novel way of the IoT.
By applying power usage statistics from smart meters, users are able to save energy in their homes or control smart appliances via home automation systems. However, owing to security and privacy concerns, it is recommended that smart meters (SM) should not have direct communication with smart appliances. In this paper, we propose a design for a smart meter gateway (SMGW) associated with a two-phase authentication mechanism and key management scheme to link a smart grid with smart appliances. With placement of the SMGW, we can reduce the design complexity of SMs as well as enhance the strength of security.
Until recently, IT security received limited attention within the scope of Process Control Systems (PCS). In the past, PCS consisted of isolated, specialized components running closed process control applications, where hardware was placed in physically secured locations and connections to remote network infrastructures were forbidden. Nowadays, industrial communications are fully exploiting the plethora of features and novel capabilities deriving from the adoption of commodity off the shelf (COTS) hardware and software. Nonetheless, the reliance on COTS for remote monitoring, configuration and maintenance also exposed PCS to significant cyber threats. In light of these issues, this paper presents the steps for the design, verification and implementation of a lightweight remote attestation protocol. The protocol is aimed at providing a secure software integrity verification scheme that can be readily integrated into existing industrial applications. The main novelty of the designed protocol is that it encapsulates key elements for the protection of both participating parties (i.e., verifier and prover) against cyber attacks. The protocol is formally verified for correctness with the help of the Scyther model checking tool. The protocol implementation and experimental results are provided for a Phoenix-Contact industrial controller, which is widely used in the automation of gas transportation networks in Romania.
As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.
In a software system it is possible to quantify the amount of information that is leaked or corrupted by analysing the flows of information present in the source code. In a cyber-physical system, information flows are not only present at the digital level but also at a physical level, and they are also present to and fro the two levels. In this work, we provide a methodology to formally analyse a composite, cyber-physical system model (combining physics and control) using an information flow-theoretic approach. We use this approach to quantify the level of vulnerability of a system with respect to attackers with different capabilities. We illustrate our approach by means of a water distribution case study.
With growing popularity of Android, it's attack surface has also increased. Prevalence of third party android marketplaces gives attackers an opportunity to plant their malicious apps in the mobile eco-system. To evade signature based detection, attackers often transform their malware, for instance, by introducing code level changes. In this paper we propose a lightweight static Permission Flow Graph (PFG) based approach to detect malware even when they have been transformed (obfuscated). A number of techniques based on behavioral analysis have also been proposed in the past; how-ever our interest lies in leveraging the permission framework alone to detect malware variants and transformations without considering behavioral aspects of a malware. Our proposed approach constructs Permission Flow Graph (PFG) for an Android App. Transformations performed at code level, often result in changing control flow, however, most of the time, the permission flow remains invariant. As a consequences, PFGs of transformed malware and non-transformed malware remain structurally similar as shown in this paper using state-of-the-art graph similarity algorithm. Furthermore, we propose graph based similarity metrics at both edge level and vertex level in order to bring forth the structural similarity of the two PFGs being compared. We validate our proposed methodology through machine learning algorithms. Results prove that our approach is successfully able to group together Android malware and its variants (transformations) together in the same cluster. Further, we demonstrate that our proposed approach is able to detect transformed malware with a detection accuracy of 98.26%, thereby ensuring that malicious Apps can be detected even after transformations.