Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2018-05-01
Srinivasan, Avinash, Dong, Hunter, Stavrou, Angelos.  2017.  FROST: Anti-Forensics Digital-Dead-DROp Information Hiding RobuST to Detection & Data Loss with Fault Tolerance. Proceedings of the 12th International Conference on Availability, Reliability and Security. :82:1–82:8.

Covert operations involving clandestine dealings and communication through cryptic and hidden messages have existed since time immemorial. While these do have a negative connotation, they have had their fair share of use in situations and applications beneficial to society in general. A "Dead Drop" is one such method of espionage trade craft used to physically exchange items or information between two individuals using a secret rendezvous point. With a "Dead Drop", to maintain operational security, the exchange itself is asynchronous. Information hiding in the slack space is one modern technique that has been used extensively. Slack space is the unused space within the last block allocated to a stored file. However, hiding in slack space operates under significant constraints with little resilience and fault tolerance. In this paper, we propose FROST – a novel asynchronous "Digital Dead Drop" robust to detection and data loss with tunable fault tolerance. Fault tolerance is a critical attribute of a secure and robust system design. Through extensive validation of FROST prototype implementation on Ubuntu Linux, we confirm the performance and robustness of the proposed digital dead drop to detection and data loss. We verify the recoverability of the secret message under various operating conditions ranging from block corruption and drive de-fragmentation to growing existing files on the target drive.

2018-01-10
Wu, Xiaotong, Dou, Wanchun, Ni, Qiang.  2017.  Game Theory Based Privacy Preserving Analysis in Correlated Data Publication. Proceedings of the Australasian Computer Science Week Multiconference. :73:1–73:10.

Privacy preserving on data publication has been an important research field over the past few decades. One of the fundamental challenges in privacy preserving data publication is the trade-off problem between privacy and utility of the single and independent data set. However, recent research works have shown that the advanced privacy mechanism, i.e., differential privacy, is vulnerable when multiple data sets are correlated. In this case, the trade-off problem between privacy and utility is evolved into a game problem, in which the payoff of each player is dependent not only on his privacy parameter, but also on his neighbors' privacy parameters. In this paper, we firstly present the definition of correlated differential privacy to evaluate the real privacy level of a single data set influenced by the other data sets. Then, we construct a game model of multiple players, who each publishes the data set sanitized by differential privacy. Next, we analyze the existence and uniqueness of the pure Nash Equilibrium and demonstrate the sufficient conditions in the game. Finally, we refer to a notion, i.e., the price of anarchy, to evaluate efficiency of the pure Nash Equilibrium.

2018-05-24
Beckett, Ryan, Gupta, Aarti, Mahajan, Ratul, Walker, David.  2017.  A General Approach to Network Configuration Verification. Proceedings of the Conference of the ACM Special Interest Group on Data Communication. :155–168.

We present Minesweeper, a tool to verify that a network satisfies a wide range of intended properties such as reachability or isolation among nodes, waypointing, black holes, bounded path length, load-balancing, functional equivalence of two routers, and fault-tolerance. Minesweeper translates network configuration files into a logical formula that captures the stable states to which the network forwarding will converge as a result of interactions between routing protocols such as OSPF, BGP and static routes. It then combines the formula with constraints that describe the intended property. If the combined formula is satisfiable, there exists a stable state of the network in which the property does not hold. Otherwise, no stable state (if any) violates the property. We used Minesweeper to check four properties of 152 real networks from a large cloud provider. We found 120 violations, some of which are potentially serious security vulnerabilities. We also evaluated Minesweeper on synthetic benchmarks, and found that it can verify rich properties for networks with hundreds of routers in under five minutes. This performance is due to a suite of model-slicing and hoisting optimizations that we developed, which reduce runtime by over 460x for large networks.

2018-12-03
Lie, David, Maniatis, Petros.  2017.  Glimmers: Resolving the Privacy/Trust Quagmire. Proceedings of the 16th Workshop on Hot Topics in Operating Systems. :94–99.

Users today enjoy access to a wealth of services that rely on user-contributed data, such as recommendation services, prediction services, and services that help classify and interpret data. The quality of such services inescapably relies on trustworthy contributions from users. However, validating the trustworthiness of contributions may rely on privacy-sensitive contextual data about the user, such as a user's location or usage habits, creating a conflict between privacy and trust: users benefit from a higher-quality service that identifies and removes illegitimate user contributions, but, at the same time, they may be reluctant to let the service access their private information to achieve this high quality. We argue that this conflict can be resolved with a pragmatic Glimmer of Trust, which allows services to validate user contributions in a trustworthy way without forfeiting user privacy. We describe how trustworthy hardware such as Intel's SGX can be used on the client-side–-in contrast to much recent work exploring SGX in cloud services–-to realize the Glimmer architecture, and demonstrate how this realization is able to resolve the tension between privacy and trust in a variety of cases.

2017-12-12
Bijoy, J. M., Kavitha, V. K., Radhakrishnan, B., Suresh, L. P..  2017.  A Graphical Password Authentication for analyzing legitimate user in online social network and secure social image repository with metadata. 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT). :1–7.

Internet plays a crucial role in today's life, so the usage of online social network monotonically increasing. People can share multimedia information's fastly and keep in touch or communicate with friend's easily through online social network across the world. Security in authentication is a big challenge in online social network and authentication is a preliminary process for identifying legitimate user. Conventionally, we are using alphanumeric textbased password for authentication approach. But the main flaw points of text based password is highly vulnerable to attacks and difficulty of recalling password during authentication time due to the irregular use of passwords. To overcome the shortcoming of text passwords, we propose a Graphical Password authentication. An approach of Graphical Password is an authentication of amalgam of pictures. It is less vulnerable to attacks and human can easily recall pictures better than text. So the graphical password is a better alternative to text passwords. As the image uploads are increasing by users share through online site, privacy preserving has become a major problem. So we need a Caption Based Metadata Stratification of images for delivers an automatic suggestion of similar category already in database, it works by comparing the caption metadata of album with caption metadata already in database or extract the synonyms of caption metadata of new album for checking the similarity with caption metadata already in database. This stratification offers an enhanced automatic privacy prediction for uploaded images in online social network, privacy is an inevitable factor for uploaded images, and privacy violation is a major concern. So we propose an Automatic Policy Prediction for uploaded images that are classified by caption metadata. An automatic policy prediction is a hassle-free privacy setting proposed to the user.

2018-09-05
Palanisamy, B., Li, C., Krishnamurthy, P..  2017.  Group Differential Privacy-Preserving Disclosure of Multi-level Association Graphs. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :2587–2588.

Traditional privacy-preserving data disclosure solutions have focused on protecting the privacy of individual's information with the assumption that all aggregate (statistical) information about individuals is safe for disclosure. Such schemes fail to support group privacy where aggregate information about a group of individuals may also be sensitive and users of the published data may have different levels of access privileges entitled to them. We propose the notion ofεg-Group Differential Privacy that protects sensitive information of groups of individuals at various defined privacy levels, enabling data users to obtain the level of access entitled to them. We present a preliminary evaluation of the proposed notion of group privacy through experiments on real association graph data that demonstrate the guarantees on group privacy on the disclosed data.

2018-06-20
Zhang, L., Li, C., Li, Y., Luo, Q., Zhu, R..  2017.  Group signature based privacy protection algorithm for mobile ad hoc network. 2017 IEEE International Conference on Information and Automation (ICIA). :947–952.

Nowadays, Vehicular ad hoc Network as a special class of Mobile ad hoc Network(MANET), provides plenty of services. However, it also brings the privacy protection issues, and there are conflicts between the privacy protection and the services. In this paper, we will propose a privacy protection algorithm based on group signature including two parts, group signature based anonymous verification and batch verification. The anonymous verification is based on the network model we proposed, which can reduce the trust authority burden by dividing the roadside units into different levels, and the batch verification can reduce the time of message verification in one group. We also prove our algorithm can satisfy the demand of privacy protection. Finally, the simulation shows that the algorithm we proposed is better than the BBS on the length of the signature, time delay and packet loss rate.

2018-09-05
Li, W., Song, T., Li, Y., Ma, L., Yu, J., Cheng, X..  2017.  A Hierarchical Game Framework for Data Privacy Preservation in Context-Aware IoT Applications. 2017 IEEE Symposium on Privacy-Aware Computing (PAC). :176–177.

Due to the increasing concerns of securing private information, context-aware Internet of Things (IoT) applications are in dire need of supporting data privacy preservation for users. In the past years, game theory has been widely applied to design secure and privacy-preserving protocols for users to counter various attacks, and most of the existing work is based on a two-player game model, i.e., a user/defender-attacker game. In this paper, we consider a more practical scenario which involves three players: a user, an attacker, and a service provider, and such a complicated system renders any two-player model inapplicable. To capture the complex interactions between the service provider, the user, and the attacker, we propose a hierarchical two-layer three-player game framework. Finally, we carry out a comprehensive numerical study to validate our proposed game framework and theoretical analysis.

2018-08-23
Ji, X., Yao, X., Tadayon, M. A., Mohanty, A., Hendon, C. P., Lipson, M..  2017.  High confinement and low loss Si3N4waveguides for miniaturizing optical coherence tomography. 2017 Conference on Lasers and Electro-Optics (CLEO). :1–2.

We show high confinement thermally tunable, low loss (0.27 ± 0.04 dB/cm) Si3N4waveguides that are 42 cm long. We show that this platform can enable the miniaturization of traditionally bulky active OCT components.

2018-01-16
Alharbi, T., Aljuhani, A., Liu, Hang.  2017.  Holistic DDoS mitigation using NFV. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). :1–4.

Distributed Denial of Service (DDoS) is a sophisticated cyber-attack due to its variety of types and techniques. The traditional mitigation method of this attack is to deploy dedicated security appliances such as firewall, load balancer, etc. However, due to the limited capacity of the hardware and the potential high volume of DDoS traffic, it may not be able to defend all the attacks. Therefore, cloud-based DDoS protection services were introduced to allow the organizations to redirect their traffic to the scrubbing centers in the cloud for filtering. This solution has some drawbacks such as privacy violation and latency. More recently, Network Functions Virtualization (NFV) and edge computing have been proposed as new networking service models. In this paper, we design a framework that leverages NFV and edge computing for DDoS mitigation through two-stage processes.

2018-11-19
Sluganovic, Ivo, Serbec, Matej, Derek, Ante, Martinovic, Ivan.  2017.  HoloPair: Securing Shared Augmented Reality Using Microsoft HoloLens. Proceedings of the 33rd Annual Computer Security Applications Conference. :250–261.

Augmented Reality (AR) devices continuously scan their environment in order to naturally overlay virtual objects onto user's view of the physical world. In contrast to Virtual Reality, where one's environment is fully replaced with a virtual one, one of AR's "killer features" is co-located collaboration, in which multiple users interact with the same combination of virtual and real objects. Microsoft recently released HoloLens, the first consumer-ready augmented reality headset that needs no outside markers to achieve precise inside-out spatial mapping, which allows centimeter-scale hologram positioning. However, despite many applications published on the Windows Mixed Reality platform that rely on direct communication between AR devices, there currently exists no implementation or achievable proposal for secure direct pairing of two unassociated headsets. As augmented reality gets into mainstream, this omission exposes current and future users to a range of avoidable attacks. In order to close this real-world gap in both theory and engineering practice, in this paper we design and evaluate HoloPair, a system for secure and usable pairing of two AR headsets. We propose a pairing protocol and build a working prototype to experimentally evaluate its security guarantees, usability, and system performance. By running a user study with a total of 22 participants, we show that the system achieves high rates of attack detection, short pairing times, and a high average usability score. Moreover, in order to make an immediate impact on the wider developer community, we have published the full implementation and source code of our prototype, which is currently under consideration to be included in the official HoloLens development toolkit.

2018-05-30
Melo, Jr, Wilson S., Bessani, Alysson, Carmo, Luiz F. R. C..  2017.  How Blockchains Can Help Legal Metrology. Proceedings of the 1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. :5:1–5:2.

Legal metrology embraces the regulation and control of measuring instruments (MI) used in a diversity of applications including industry, transportation, commerce, medical care and environment protection [3]. Only in Europe, MI are responsible for an annual turnover of more than 500 billion Euros [1]. In developing countries, MI demand has increased substantially due to the adoption of technologies and methods well established in developed countries [3]. MI also can be seen as elementary build blocks for new technologies such as smart grids, Internet of Things and cyber physical systems [1, 2]. Thus legal metrology is crucial to assure the correctness of measurements, protecting the economic system while regulating consumer relations and enhances MI reliability [2].

2018-04-11
Gebhardt, D., Parikh, K., Dzieciuch, I., Walton, M., Hoang, N. A. V..  2017.  Hunting for Naval Mines with Deep Neural Networks. OCEANS 2017 - Anchorage. :1–5.

Explosive naval mines pose a threat to ocean and sea faring vessels, both military and civilian. This work applies deep neural network (DNN) methods to the problem of detecting minelike objects (MLO) on the seafloor in side-scan sonar imagery. We explored how the DNN depth, memory requirements, calculation requirements, and training data distribution affect detection efficacy. A visualization technique (class activation map) was incorporated that aids a user in interpreting the model's behavior. We found that modest DNN model sizes yielded better accuracy (98%) than very simple DNN models (93%) and a support vector machine (78%). The largest DNN models achieved textless;1% efficacy increase at a cost of a 17x increase of trainable parameter count and computation requirements. In contrast to DNNs popularized for many-class image recognition tasks, the models for this task require far fewer computational resources (0.3% of parameters), and are suitable for embedded use within an autonomous unmanned underwater vehicle.

2018-02-27
Nembhard, F., Carvalho, M., Eskridge, T..  2017.  A Hybrid Approach to Improving Program Security. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–8.

The security of computer programs and systems is a very critical issue. With the number of attacks launched on computer networks and software, businesses and IT professionals are taking steps to ensure that their information systems are as secure as possible. However, many programmers do not think about adding security to their programs until their projects are near completion. This is a major mistake because a system is as secure as its weakest link. If security is viewed as an afterthought, it is highly likely that the resulting system will have a large number of vulnerabilities, which could be exploited by attackers. One of the reasons programmers overlook adding security to their code is because it is viewed as a complicated or time-consuming process. This paper presents a tool that will help programmers think more about security and add security tactics to their code with ease. We created a model that learns from existing open source projects and documentation using machine learning and text mining techniques. Our tool contains a module that runs in the background to analyze code as the programmer types and offers suggestions of where security could be included. In addition, our tool fetches existing open source implementations of cryptographic algorithms and sample code from repositories to aid programmers in adding security easily to their projects.

2018-06-07
Ghafarian, A..  2017.  A hybrid method for detection and prevention of SQL injection attacks. 2017 Computing Conference. :833–838.

SQL injection attack (SQLIA) pose a serious security threat to the database driven web applications. This kind of attack gives attackers easily access to the application's underlying database and to the potentially sensitive information these databases contain. A hacker through specifically designed input, can access content of the database that cannot otherwise be able to do so. This is usually done by altering SQL statements that are used within web applications. Due to importance of security of web applications, researchers have studied SQLIA detection and prevention extensively and have developed various methods. In this research, after reviewing the existing research in this field, we present a new hybrid method to reduce the vulnerability of the web applications. Our method is specifically designed to detect and prevent SQLIA. Our proposed method is consists of three phases namely, the database design, implementation, and at the common gateway interface (CGI). Details of our approach along with its pros and cons are discussed in detail.

2018-09-05
Gaikwad, V. S., Gandle, K. S..  2017.  Ideal complexity cryptosystem with high privacy data service for cloud databases. 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM). :267–270.

Data storage in cloud should come along with high safety and confidentiality. It is accountability of cloud service provider to guarantee the availability and security of client data. There exist various alternatives for storage services but confidentiality and complexity solutions for database as a service are still not satisfactory. Proposed system gives alternative solution for database as a service that integrates benefits of different services along with advance encryption techniques. It yields possibility of applying concurrency on encrypted data. This alternative provides supporting facility to connect dispersed clients with elimination of intermediate proxy by which simplicity can acquired. Performance of proposed system evaluated on basis of theoretical analyses.

2018-01-23
Backes, M., Berrang, P., Bieg, M., Eils, R., Herrmann, C., Humbert, M., Lehmann, I..  2017.  Identifying Personal DNA Methylation Profiles by Genotype Inference. 2017 IEEE Symposium on Security and Privacy (SP). :957–976.

Since the first whole-genome sequencing, the biomedical research community has made significant steps towards a more precise, predictive and personalized medicine. Genomic data is nowadays widely considered privacy-sensitive and consequently protected by strict regulations and released only after careful consideration. Various additional types of biomedical data, however, are not shielded by any dedicated legal means and consequently disseminated much less thoughtfully. This in particular holds true for DNA methylation data as one of the most important and well-understood epigenetic element influencing human health. In this paper, we show that, in contrast to the aforementioned belief, releasing one's DNA methylation data causes privacy issues akin to releasing one's actual genome. We show that already a small subset of methylation regions influenced by genomic variants are sufficient to infer parts of someone's genome, and to further map this DNA methylation profile to the corresponding genome. Notably, we show that such re-identification is possible with 97.5% accuracy, relying on a dataset of more than 2500 genomes, and that we can reject all wrongly matched genomes using an appropriate statistical test. We provide means for countering this threat by proposing a novel cryptographic scheme for privately classifying tumors that enables a privacy-respecting medical diagnosis in a common clinical setting. The scheme relies on a combination of random forests and homomorphic encryption, and it is proven secure in the honest-but-curious model. We evaluate this scheme on real DNA methylation data, and show that we can keep the computational overhead to acceptable values for our application scenario.

2018-05-24
Golbeck, Jennifer.  2017.  I'Ll Be Watching You: Policing the Line Between Personalization and Privacy. Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization. :2–2.

Personalization, recommendations, and user modeling can be pow- erful tools to improve people?s experiences with technology and to help them nd information. However, we also know that people underestimate how much of their personal information is used by our technology and they generally do not understand how much algorithms can discover about them. Both privacy and ethical tech- nology have issues of consent at their heart. This talk will look at how to consider issues of privacy and consent when users cannot explicitly state their preferences, The Creepy Factor, and how to balance users? concerns with the bene ts personalized technology can o er.

2018-04-11
Huang, Yunfan, Yang, Haomiao, Nie, Mengxi, Wu, Honggang.  2017.  Image Feature Extraction with Homomorphic Encryption on Integer Vector. Proceedings of the 2017 International Conference on Machine Learning and Soft Computing. :111–116.

With the amount of user-contributed image data increasing, it is a potential threat for users that everyone may have the access to gain privacy information. To reduce the possibility of the loss of real information, this paper combines homomorphic encryption scheme and image feature extraction to provide a guarantee for users' privacy. In this paper, the whole system model mainly consists of three parts, including social network service providers (SP), the Interested party (IP) and the applications. Except for the image preprocessing phase, the main operations of feature extraction are conducted in ciphertext domain, which means only SP has the access to the privacy of the users. The extraction algorithm is used to obtain a multi-dimensional histogram descriptor as image feature for each image. As a result, the histogram descriptor can be extracted correctly in encrypted domain in an acceptable time. Besides, the extracted feature can represent the image effectively because of relatively high accuracy. Additionally, many different applications can be conducted by using the encrypted features because of the support of our encryption scheme.

2018-06-20
Martin-Escalona, I., Perrone, F., Zola, E., Barcelo-Arroyo, F..  2017.  Impact of unreliable positioning in location-based routing protocols for MANETs. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1534–1539.

MANETs have been focusing the interest of researchers for several years. The new scenarios where MANETs are being deployed make that several challenging issues remain open: node scalability, energy efficiency, network lifetime, Quality of Service (QoS), network overhead, data privacy and security, and effective routing. This latter is often seen as key since it frequently constrains the performance of the overall network. Location-based routing protocols provide a good solution for scalable MANETs. Although several location-based routing protocols have been proposed, most of them rely on error-free positions. Only few studies have focused so far on how positioning error affects the routing performance; also, most of them consider outdated solutions. This paper is aimed at filling this gap, by studying the impact of the error in the position of the nodes of two location-based routing protocols: DYMOselfwd and AODV-Line. These protocols were selected as they both aim at reducing the routing overhead. Simulations considering different mobility patterns in a dense network were conducted, so that the performance of these protocols can be assessed under ideal (i.e. error-less) and realistic (i.e. with error) conditions. The results show that AODV-Line builds less reliable routes than DYMOselfwd in case of error in the position information, thus increasing the routing overhead.

2018-01-10
Zaman, A. N. K., Obimbo, C., Dara, R. A..  2017.  An improved differential privacy algorithm to protect re-identification of data. 2017 IEEE Canada International Humanitarian Technology Conference (IHTC). :133–138.

In the present time, there has been a huge increase in large data repositories by corporations, governments, and healthcare organizations. These repositories provide opportunities to design/improve decision-making systems by mining trends and patterns from the data set (that can provide credible information) to improve customer service (e.g., in healthcare). As a result, while data sharing is essential, it is an obligation to maintaining the privacy of the data donors as data custodians have legal and ethical responsibilities to secure confidentiality. This research proposes a 2-layer privacy preserving (2-LPP) data sanitization algorithm that satisfies ε-differential privacy for publishing sanitized data. The proposed algorithm also reduces the re-identification risk of the sanitized data. The proposed algorithm has been implemented, and tested with two different data sets. Compared to other existing works, the results obtained from the proposed algorithm show promising performance.

2018-08-23
Avrutin, E. A., Ryvkin, B. S., Kostamovaara, J. T..  2017.  Increasing output power of pulsed-eye safe wavelength range laser diodes by strong doping of the n-optical confinement layer. 2017 IEEE High Power Diode Lasers and Systems Conference (HPD). :17–18.

A semi-analytical model for internal optical losses at high power in a 1.5 μm laser diode with strong n-doping in the n-side of the optical confinement layer is created. The model includes intervalence band absorption by holes supplied by both current flow and two-photon absorption. The resulting losses are shown to be substantially lower than those in a similar, but weakly doped structure. Thus a significant improvement in the output power and efficiency by strong n-doping is predicted.

2018-12-03
Chakrabarti, Somnath, Leslie-Hurd, Rebekah, Vij, Mona, McKeen, Frank, Rozas, Carlos, Caspi, Dror, Alexandrovich, Ilya, Anati, Ittai.  2017.  Intel® Software Guard Extensions (Intel® SGX) Architecture for Oversubscription of Secure Memory in a Virtualized Environment. Proceedings of the Hardware and Architectural Support for Security and Privacy. :7:1–7:8.

As workloads and data move to the cloud, it is essential that software writers are able to protect their applications from untrusted hardware, systems software, and co-tenants. Intel® Software Guard Extensions (SGX) enables a new mode of execution that is protected from attacks in such an environment with strong confidentiality, integrity, and replay protection guarantees. Though SGX supports memory oversubscription via paging, virtualizing the protected memory presents a significant challenge to Virtual Machine Monitor (VMM) writers and comes with a high performance overhead. This paper introduces SGX Oversubscription Extensions that add additional instructions and virtualization support to the SGX architecture so that cloud service providers can oversubscribe secure memory in a less complex and more performant manner.

2018-05-01
Lehner, F., Mazurczyk, W., Keller, J., Wendzel, S..  2017.  Inter-Protocol Steganography for Real-Time Services and Its Detection Using Traffic Coloring Approach. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :78–85.

Due to improvements in defensive systems, network threats are becoming increasingly sophisticated and complex as cybercriminals are using various methods to cloak their actions. This, among others, includes the application of network steganography e.g. to hide the communication between an infected host and a malicious control server by embedding commands into innocent-looking traffic. Currently, a new subtype of such methods called inter-protocol steganography emerged. It utilizes relationships between two or more overt protocols to hide data. In this paper, we present new inter-protocol hiding techniques which are suitable for real-time services. Afterwards, we introduce and present preliminary results of a novel steganography detection approach which relies on network traffic coloring.

2018-09-05
Mayle, A., Bidoki, N. H., Masnadi, S., Boeloeni, L., Turgut, D..  2017.  Investigating the Value of Privacy within the Internet of Things. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Many companies within the Internet of Things (IoT) sector rely on the personal data of users to deliver and monetize their services, creating a high demand for personal information. A user can be seen as making a series of transactions, each involving the exchange of personal data for a service. In this paper, we argue that privacy can be described quantitatively, using the game- theoretic concept of value of information (VoI), enabling us to assess whether each exchange is an advantageous one for the user. We introduce PrivacyGate, an extension to the Android operating system built for the purpose of studying privacy of IoT transactions. An example study, and its initial results, are provided to illustrate its capabilities.