Biblio
Filters: Keyword is composability [Clear All Filters]
Semi-Supervised Feature Embedding for Data Sanitization in Real-World Events. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2495—2499.
.
2021. With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns consistent and shared features related to an event (from a small set of examples) to propagate them to an unlabeled set. We investigate the behavior of five image feature representations considering low- and high-level features and their combinations. We evaluate the effectiveness of the feature embedding approach on five collected datasets from real-world events.
Side-Channel Analysis-Based Model Extraction on Intelligent CPS: An Information Theory Perspective. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :254–261.
.
2021. The intelligent cyber-physical system (CPS) has been applied in various fields, covering multiple critical infras-tructures and human daily life support areas. CPS Security is a major concern and of critical importance, especially the security of the intelligent control component. Side-channel analysis (SCA) is the common threat exploiting the weaknesses in system operation to extract information of the intelligent CPS. However, existing literature lacks the systematic theo-retical analysis of the side-channel attacks on the intelligent CPS, without the ability to quantify and measure the leaked information. To address these issues, we propose the SCA-based model extraction attack on intelligent CPS. First, we design an efficient and novel SCA-based model extraction framework, including the threat model, hierarchical attack process, and the multiple micro-space parallel search enabled weight extraction algorithm. Secondly, an information theory-empowered analy-sis model for side-channel attacks on intelligent CPS is built. We propose a mutual information-based quantification method and derive the capacity of side-channel attacks on intelligent CPS, formulating the amount of information leakage through side channels. Thirdly, we develop the theoretical bounds of the leaked information over multiple attack queries based on the data processing inequality and properties of entropy. These convergence bounds provide theoretical means to estimate the amount of information leaked. Finally, experimental evaluation, including real-world experiments, demonstrates the effective-ness of the proposed SCA-based model extraction algorithm and the information theory-based analysis method in intelligent CPS.
Smart Door System with COVID-19 Risk Factor Evaluation, Contactless Data Acquisition and Sanitization. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1504—1511.
.
2021. Thousands of people have lost their life by COVID-19 infection. Authorities have seen the calamities caused by the corona virus in China. So, when the trace of virus was found in India, the only possible way to stop the spread of the virus was to go into lockdown. In a country like India where a major part of the population depends on the daily wages, being in lockdown started affecting their life. People where tend to go out for getting the food items and other essentials, and this caused the spread of virus. Many were infected and many lost their life by this. Due to the pandemic, the whole world was affected and many people working in foreign countries lost their jobs as well. These people who came back to India caused further spread of the virus. The main reason for the spread is lack of hygiene and a proper system to monitor the symptoms. Even though our country was in lockdown for almost 6 months the number of COVID cases doesn't get diminished. It is not practical to extend the lockdown any further, and people have decided to live with the virus. But it is essential to take the necessary precautions while interacting with the society. Automated system for checking that all the COVID protocols are followed and early symptom identification before entering to a place are essential to stop the spread of the infection. This research work proposes a smart door system, which evaluates the COVID-19 risk factors and collects the data of person before entering into any place, thereby ensuring that non-infected people are only entering to the place and thus the spread of virus can be avoided.
SnapCatch: Automatic Detection of Covert Timing Channels Using Image Processing and Machine Learning. IEEE Access. 9:177–191.
.
2021. With the rapid growth of data exfiltration carried out by cyber attacks, Covert Timing Channels (CTC) have become an imminent network security risk that continues to grow in both sophistication and utilization. These types of channels utilize inter-arrival times to steal sensitive data from the targeted networks. CTC detection relies increasingly on machine learning techniques, which utilize statistical-based metrics to separate malicious (covert) traffic flows from the legitimate (overt) ones. However, given the efforts of cyber attacks to evade detection and the growing column of CTC, covert channels detection needs to improve in both performance and precision to detect and prevent CTCs and mitigate the reduction of the quality of service caused by the detection process. In this article, we present an innovative image-based solution for fully automated CTC detection and localization. Our approach is based on the observation that the covert channels generate traffic that can be converted to colored images. Leveraging this observation, our solution is designed to automatically detect and locate the malicious part (i.e., set of packets) within a traffic flow. By locating the covert parts within traffic flows, our approach reduces the drop of the quality of service caused by blocking the entire traffic flows in which covert channels are detected. We first convert traffic flows into colored images, and then we extract image-based features for detection covert traffic. We train a classifier using these features on a large data set of covert and overt traffic. This approach demonstrates a remarkable performance achieving a detection accuracy of 95.83% for cautious CTCs and a covert traffic accuracy of 97.83% for 8 bit covert messages, which is way beyond what the popular statistical-based solutions can achieve.
Conference Name: IEEE Access
Social Visibility Optimization in OSNs with Anonymity Guarantees: Modeling, Algorithms and Applications. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :2063–2068.
.
2021. Online social network (OSN) is an ideal venue to enhance one's visibility. This paper considers how a user (called requester) in an OSN selects a small number of available users and invites them as new friends/followers so as to maximize his "social visibility". More importantly, the requester has to do this under the anonymity setting, which means he is not allowed to know the neighborhood information of these available users in the OSN. In this paper, we first develop a mathematical model to quantify the social visibility and formulate the problem of visibility maximization with anonymity guarantee, abbreviated as "VisMAX-A". Then we design an algorithmic framework named as "AdaExp", which adaptively expands the requester's visibility in multiple rounds. In each round of the expansion, AdaExp uses a query oracle with anonymity guarantee to select only one available user. By using probabilistic data structures like the k-minimum values (KMV) sketch, we design an efficient query oracle with anonymity guarantees. We also conduct experiments on real-world social networks and validate the effectiveness of our algorithms.
Software Defined Networking based Information Centric Networking: An Overview of Approaches and Challenges. 2021 International Congress of Advanced Technology and Engineering (ICOTEN). :1–8.
.
2021. ICN (Information-Centric Networking) is a traditional networking approach which focuses on Internet design, while SDN (Software Defined Networking) is known as a speedy and flexible networking approach. Integrating these two approaches can solve different kinds of traditional networking problems. On the other hand, it may expose new challenges. In this paper, we study how these two networking approaches are been combined to form SDN-based ICN architecture to improve network administration. Recent research is explored to identify the SDN-based ICN challenges, provide a critical analysis of the current integration approaches, and determine open issues for further research.
Software Vulnerabilities, Products and Exploits: A Statistical Relational Learning Approach. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :41—46.
.
2021. Data on software vulnerabilities, products and exploits is typically collected from multiple non-structured sources. Valuable information, e.g., on which products are affected by which exploits, is conveyed by matching data from those sources, i.e., through their relations. In this paper, we leverage this simple albeit unexplored observation to introduce a statistical relational learning (SRL) approach for the analysis of vulnerabilities, products and exploits. In particular, we focus on the problem of determining the existence of an exploit for a given product, given information about the relations between products and vulnerabilities, and vulnerabilities and exploits, focusing on Industrial Control Systems (ICS), the National Vulnerability Database and ExploitDB. Using RDN-Boost, we were able to reach an AUC ROC of 0.83 and an AUC PR of 0.69 for the problem at hand. To reach that performance, we indicate that it is instrumental to include textual features, e.g., extracted from the description of vulnerabilities, as well as structured information, e.g., about product categories. In addition, using interpretable relational regression trees we report simple rules that shed insight on factors impacting the weaponization of ICS products.
SoK: Autonomic Cybersecurity - Securing Future Disruptive Technologies. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :66—72.
.
2021. This paper is a systemization of knowledge of autonomic cybersecurity. Disruptive technologies, such as IoT, AI and autonomous systems, are becoming more prevalent and often have little or no cybersecurity protections. This lack of security is contributing to the expanding cybersecurity attack surface. The autonomic computing initiative was started to address the complexity of administering complex computing systems by making them self-managing. Autonomic systems contain attributes to address cyberattacks, such as self-protecting and self-healing that can secure new technologies. There has been a number of research projects on autonomic cybersecurity, with different approaches and target technologies, many of them disruptive. This paper reviews autonomic computing, analyzes research on autonomic cybersecurity, and provides a systemization of knowledge of the research. The paper concludes with identification of gaps in autonomic cybersecurity for future research.
Sparsity Driven Latent Space Sampling for Generative Prior Based Compressive Sensing. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2895—2899.
.
2021. We address the problem of recovering signals from compressed measurements based on generative priors. Recently, generative-model based compressive sensing (GMCS) methods have shown superior performance over traditional compressive sensing (CS) techniques in recovering signals from fewer measurements. However, it is possible to further improve the performance of GMCS by introducing controlled sparsity in the latent-space. We propose a proximal meta-learning (PML) algorithm to enforce sparsity in the latent-space while training the generator. Enforcing sparsity naturally leads to a union-of-submanifolds model in the solution space. The overall framework is named as sparsity driven latent space sampling (SDLSS). In addition, we derive the sample complexity bounds for the proposed model. Furthermore, we demonstrate the efficacy of the proposed framework over the state-of-the-art techniques with application to CS on standard datasets such as MNIST and CIFAR-10. In particular, we evaluate the performance of the proposed method as a function of the number of measurements and sparsity factor in the latent space using standard objective measures. Our findings show that the sparsity driven latent space sampling approach improves the accuracy and aids in faster recovery of the signal in GMCS.
Spatial-Resampling Wideband Compressive Beamforming. OCEANS 2021: San Diego – Porto. :1—4.
.
2021. Compressive beamforming has been successfully applied to the estimation of the direction of arrival (DOA) of array signals, and has higher angular resolution than traditional high-resolution beamforming methods. However, most of the existing compressive beamforming methods are based on narrow signal models. Wideband signal processing using these existing compressive beamforming methods is to divide the frequency band into several narrow-bands and add up the beamforming results of each narrow-band. However, for sonar application, signals usually consist of continuous spectrum and line spectrum, and the line spectrum is usually more than 10dB higher than the continuous spectrum. Due to the large difference of signal-to-noise ratio (SNR) of each narrow-band, different regularization parameters should be used, otherwise it is difficult to get an ideal result, which makes compressive beamforming highly complicated. In this paper, a compressive beamforming method based on spatial resampling for uniform linear arrays is proposed. The signals are converted into narrow-band signals by spatial resampling technique, and compressive beamforming is then performed to estimate the DOA of the sound source. Experimental results show the superiority of the proposed method, which avoids the problem of using different parameters in the existing compressive beamforming methods, and the resolution is comparable to the existing methods using different parameters for wideband models. The spatial-resampling compressive beamforming has a better robustness when the regularization parameter is fixed, and exhibits lower levels of background interference than the existing methods.
Split Compilation for Security of Quantum Circuits. 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1—7.
.
2021. An efficient quantum circuit (program) compiler aims to minimize the gate-count - through efficient instruction translation, routing, gate, and cancellation - to improve run-time and noise. Therefore, a high-efficiency compiler is paramount to enable the game-changing promises of quantum computers. To date, the quantum computing hardware providers are offering a software stack supporting their hardware. However, several third-party software toolchains, including compilers, are emerging. They support hardware from different vendors and potentially offer better efficiency. As the quantum computing ecosystem becomes more popular and practical, it is only prudent to assume that more companies will start offering software-as-a-service for quantum computers, including high-performance compilers. With the emergence of third-party compilers, the security and privacy issues of quantum intellectual properties (IPs) will follow. A quantum circuit can include sensitive information such as critical financial analysis and proprietary algorithms. Therefore, submitting quantum circuits to untrusted compilers creates opportunities for adversaries to steal IPs. In this paper, we present a split compilation methodology to secure IPs from untrusted compilers while taking advantage of their optimizations. In this methodology, a quantum circuit is split into multiple parts that are sent to a single compiler at different times or to multiple compilers. In this way, the adversary has access to partial information. With analysis of over 152 circuits on three IBM hardware architectures, we demonstrate the split compilation methodology can completely secure IPs (when multiple compilers are used) or can introduce factorial time reconstruction complexity while incurring a modest overhead ( 3% to 6% on average).
Spoofed Voice Detection using Dense Features of STFT and MDCT Spectrograms. 2021 International Conference on Artificial Intelligence (ICAI). :56–61.
.
2021. Attestation of audio signals for recognition of forgery in voice is challenging task. In this research work, a deep convolutional neural network (CNN) is utilized to detect audio operations i.e. pitch shifted and amplitude varied signals. Short-time Fourier transform (STFT) and Modified Discrete Cosine Transform (MDCT) features are chosen for audio processing and their plotted patterns are fed to CNN. Experimental results show that our model can successfully distinguish tampered signals to facilitate the audio authentication on TIMIT dataset. Proposed CNN architecture can distinguish spoofed voices of shifting pitch with accuracy of 97.55% and of varying amplitude with accuracy of 98.85%.
SQL Injection: Classification and Prevention. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :367—372.
.
2021. With the world moving towards digitalization, more applications and servers are online hosted on the internet, more number of vulnerabilities came out which directly affects an individual and an organization financially and in terms of reputation too. Out of those many vulnerabilities such as Injection, Deserialization, Cross site scripting and more. Injection stand top as the most critical vulnerability found in the web application. Injection itself is a broad vulnerability as it further consists of SQL Injection, Command injection, LDAP Injection, No-SQL Injection etc. In this paper we have reviewed SQL Injection, different types of SQL injection attacks, their causes and remediation to comprehend this attack.
SSF: Smart city Semantics Framework for reusability of semantic data. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :1625—1627.
.
2021. Semantic data has semantic information about the relationship between information and resources of data collected in a smart city so that all different domains and data can be organically connected. Various services using semantic data such as public data integration of smart cities, semantic search, and linked open data are emerging, and services that open and freely use semantic data are also increasing. By using semantic data, it is possible to create a variety of services regardless of platform and resource characteristics. However, despite the many advantages of semantic data, it is not easy to use because it requires a high understanding of semantics such as SPARQL. Therefore, in this paper, we propose a semantic framework for users of semantic data so that new services can be created without a high understanding of semantics. The semantics framework includes a template-based annotator that supports automatically generating semantic data based on user input and a semantic REST API that allows you to utilize semantic data without understanding SPAROL.
SSH and Telnet Protocols Attack Analysis Using Honeypot Technique : *Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
.
2021. Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called' zero-day attacks' can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker's behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
Standard CMOS Integrated Ultra-Compact Micromechanical Oscillating Active Pixel Arrays. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). :157–160.
.
2021. This work demonstrates an ultra-compact low power oscillating micromechanical active pixel array based on a 0.35 μm back-end of line (BEOL)-embedded CMOS-MEMS technology. Each pixel consists of a 3-MHz clamped-clamped beam (CCB) MEMS resonator and a power scalable transimpedance amplifier (TIA) that occupies a small area of 70 × 60 μm2 and draws only 85 μW/pixel. The MEMS resonator is placed next to the TIA with less than 10 μm spacing thanks to the well-defined etch stops in the titanium nitride composite (TiN-C) CMOS-MEMS platform. A multiplexing phase-locked loop (PLL)-driven oscillator is employed to demonstrate the chip functionality. In particular, a nonlinear operation of the resonator tank is used to optimize the phase noise (PN) performance and Allan deviation (ADEV) behavior. The ADEV of 420 ppb averaged over best 3-pixels is exhibited based on such a nonlinear vibration operation.
Static Security Analysis of Source-Side High Uncertainty Power Grid Based on Deep Learning. 2021 China International Conference on Electricity Distribution (CICED). :973—975.
.
2021. As a large amount of renewable energy is injected into the power grid, the source side of the power grid becomes extremely uncertain. Traditional static safety analysis methods based on pure physical models can no longer quickly and reliably give analysis results. Therefore, this paper proposes a deep learning-based static security analytical method. First, the static security assessment index of the power grid under the N-1 principle is proposed. Secondly, a neural network model and its input and output data for static safety analysis problems are designed. Finally, the validity of the proposed method was verified by IEEE grid data. Experiments show that the proposed method can quickly and accurately give the static security analysis results of the source-side high uncertainty grid.
Statistical Analysis of Pseudorandom Sequences and Stegocontainers. 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :434–439.
.
2021. In the theoretical part of the paper, the scope of application of pseudorandom numbers and methods of their generation, as well as methods of statistical testing of pseudorandom sequences (PS) are considered. In the practical part of the work, the quality of PS obtained by Mersenne Twister [1] generator and the cryptographic generator of the RNGCryptoServiceProvider class of the. NET platform is evaluated. Based on the conducted research, the results of testing are obtained, which show that the quality of pseudorandom sequences generated by the cryptographic random number generator is higher than PS generated by Mersenne Twister. Additionally, based on statistical analysis by NIST and TestU01, a study is conducted in an attempt to establish the statistical indistinguishability of sets of empty- and stegocontainers created using a two-dimensional associative masking mechanism [2-4] based on a gamma of at least 500 KB in length. Research work was carried out under the guidance of R.F. Gibadullin, Associate Professor of the Department of Computer Systems of Kazan National Research Technical University named after A.N.Tupolev-KAI.
A Stealthy Hardware Trojan Design and Corresponding Detection Method. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–6.
.
2021. For the purpose of stealthiness, trigger-based Hardware Trojans(HTs) tend to have at least one trigger signal with an extremely low transition probability to evade the functional verification. In this paper, we discuss the correlation between poor testability and low transition probability, and then propose a kind of systematic Trojan trigger model with extremely low transition probability but reasonable testability, which can disable the Controllability and Observability for hardware Trojan Detection (COTD) technique, an efficient HT detection method based on circuits testability. Based on experiments and tests on circuits, we propose that the more imbalanced 0/1-controllability can indicate the lower transition probability. And a trigger signal identification method using the imbalanced 0/1-controllability is proposed. Experiments on ISCAS benchmarks show that the proposed method can obtain a 100% true positive rate and average 5.67% false positive rate for the trigger signal.
SteelEye: An Application-Layer Attack Detection and Attribution Model in Industrial Control Systems using Semi-Deep Learning. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–8.
.
2021. The security of Industrial Control Systems is of high importance as they play a critical role in uninterrupted services provided by Critical Infrastructure operators. Due to a large number of devices and their geographical distribution, Industrial Control Systems need efficient automatic cyber-attack detection and attribution methods, which suggests us AI-based approaches. This paper proposes a model called SteelEye based on Semi-Deep Learning for accurate detection and attribution of cyber-attacks at the application layer in industrial control systems. The proposed model depends on Bag of Features for accurate detection of cyber-attacks and utilizes Categorical Boosting as the base predictor for attack attribution. Empirical results demonstrate that SteelEye remarkably outperforms state-of-the-art cyber-attack detection and attribution methods in terms of accuracy, precision, recall, and Fl-score.
Strengthening Security of Images Using Dynamic S-Boxes for Cryptographic Applications. 2021 Fourth International Conference on Microelectronics, Signals Systems (ICMSS). :1–5.
.
2021. Security plays a paradigmatic role in the area of networking. The main goal of security is to protect these networks which contains confidential data against various kinds of attacks. By changing parameters like key size, increasing the rounds of iteration and finally using confusion box as the S-box, the strength of the cryptographic algorithms can be incremented. By using the Data Encryption Standard (DES), the images can be secured with the help of Dynamic S-boxes. Each of these 8 S-boxes contain 64 elements. Each row contains elements in the range 0–15 and are unique. Our proposed system generates these S-boxes dynamically depending on the key. The evaluation of this Dynamic S-box and DES shows much fruitful results over factors like Non-linearity, Strict Avalanche criterion, Balance, memory and time required for implementation using images.
Strong Stability of Optimal Design for a Time-varying Dynamic System in Batch Culture. 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC). :836–841.
.
2021. In this study, we prove strong stability for a typical time-varying nonlinear dynamic system in batch culture, which is hard to obtain analytical solutions and equilibrium points. To this end, firstly, we construct a linear variational system to the nonlinear dynamic system. Secondly, we give a proof that the fundamental matrix solution to this dynamic system is bounded. Combined with the above two points, the strong stability for the nonlinear dynamic system is proved.
Structure adjustment of early warning information system based on timeliness. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2742–2747.
.
2021. Aimed at the high requirement of timeliness in the process of information assurance, this paper describes the average time delay of information transmission in the system, and designs a timeliness index that can quantitatively describe the ability of early warning information assurance. In response to the problem that system capability cannot meet operational requirements due to enemy attacks, this paper analyzes the structure of the early warning information system, Early warning information complex network model is established, based on the timeliness index, a genetic algorithm based on simulated annealing with special chromosome coding is proposed.the algorithm is used to adjust the network model structure, the ability of early warning information assurance has been improved. Finally, the simulation results show the effectiveness of the proposed method.
Structure-Aware Hierarchical Graph Pooling using Information Bottleneck. 2021 International Joint Conference on Neural Networks (IJCNN). :1–8.
.
2021. Graph pooling is an essential ingredient of Graph Neural Networks (GNNs) in graph classification and regression tasks. For these tasks, different pooling strategies have been proposed to generate a graph-level representation by downsampling and summarizing nodes' features in a graph. However, most existing pooling methods are unable to capture distinguishable structural information effectively. Besides, they are prone to adversarial attacks. In this work, we propose a novel pooling method named as HIBPool where we leverage the Information Bottleneck (IB) principle that optimally balances the expressiveness and robustness of a model to learn representations of input data. Furthermore, we introduce a novel structure-aware Discriminative Pooling Readout (DiP-Readout) function to capture the informative local subgraph structures in the graph. Finally, our experimental results show that our model significantly outperforms other state-of-art methods on several graph classification benchmarks and more resilient to feature-perturbation attack than existing pooling methods11Source code at: https://github.com/forkkr/HIBPool.
A Study of the Risk Prevention and Protection Establishment of the Intellectual Property Rights of the Cross-Border E-Commerce, Based on the Law-and-Economics Analytic Model. 2021 2nd International Conference on E-Commerce and Internet Technology (ECIT). :10–15.
.
2021. With the high development of Internet technology and the global impacts of Covid-19, a trend of multiple growth is being shown in the business of cross-border e-commerce. The issue of intellectual property rights becomes more obvious in this new mode of trade than in others. China's "14th Five-Year Plan" marked the beginning to implement the strategy of the intellectual property rights for a powerful country. Through the law-and-economics analysis, this paper analyzes the research reports of China's Intellectual Property Court and American Chamber of Commerce, and finds it essential for the cross-border e-commerce to attach great importance to the risk control and protection of property rights. After the analysis and research, on the possible risk of intellectual property rights faced by cross-border e-commerce, it is proposed that enterprises must not only pay attention to but also actively identify and conduct risk warning of the legal risks of their own intellectual property rights as well as the causes of them, so as to put forward corresponding risk control measures and construct prevention and protection mechanisms.