Biblio

Found 534 results

Filters: First Letter Of Title is B  [Clear All Filters]
2023-05-19
Wejin, John S., Badejo, Joke A., Jonathan, Oluranti, Dahunsi, Folasade.  2022.  A Brief Survey on the Experimental Application of MPQUIC Protocol in Data Communication. 2022 5th Information Technology for Education and Development (ITED). :1—8.
Since its inception, the Internet has experienced tremendous speed and functionality improvements. Among these developments are innovative approaches such as the design and deployment of Internet Protocol version six (IPv6) and the continuous modification of TCP. New transport protocols like Stream Communication Transport Protocol (SCTP) and Multipath TCP (MPTCP), which can use multiple data paths, have been developed to overcome the IP-coupled challenge in TCP. However, given the difficulties of packet modifiers over the Internet that prevent the deployment of newly proposed protocols, e.g., SCTP, a UDP innovative approach with QUIC (Quick UDP Internet Connection) has been put forward as an alternative. QUIC reduces the connection establishment complexity in TCP and its variants, high security, stream multiplexing, and pluggable congestion control. Motivated by the gains and acceptability of MPTCP, Multipath QUIC has been developed to enable multipath transmission in QUIC. While several researchers have reviewed the progress of improvement and application of MPTCP, the review on MPQUIC improvement is limited. To breach the gap, this paper provides a brief survey on the practical application and progress of MPQUIC in data communication. We first review the fundamentals of multipath transport protocols. We then provide details on the design of QUIC and MPQUIC. Based on the articles reviewed, we looked at the various applications of MPQUIC, identifying the application domain, tools used, and evaluation parameters. Finally, we highlighted the open research issues and directions for further investigations.
2022-12-07
Kawasaki, Shinnosuke, Yeh, Jia–Jun, Saccher, Marta, Li, Jian, Dekker, Ronald.  2022.  Bulk Acoustic Wave Based Mocrfluidic Particle Sorting with Capacitive Micromachined Ultrasonic Transducers. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS). :908—911.
The main limitation of acoustic particle separation for microfluidic application is its low sorting efficiency. This is due to the weak coupling of surface acoustic waves (SAWs) into the microchannel. In this work, we demonstrate bulk acoustic wave (BAW) particle sorting using capacitive micromachined ultrasonic transducers (CMUTs) for the first time. A collapsed mode CMUT was driven in air to generate acoustic pressure within the silicon substrate in the in-plane direction of the silicon die. This acoustic pressure was coupled into a water droplet, positioned at the side of the CMUT die, and measured with an optical hydrophone. By using a beam steering approach, the ultrasound generated from 32 CMUT elements were added in-phase to generate a maximum peak-to-peak pressure of 0.9 MPa. Using this pressure, 10 µm latex beads were sorted almost instantaneously.
2023-03-31
Barbàra, Fadi, Schifanella, Claudio.  2022.  BxTB: cross-chain exchanges of bitcoins for all Bitcoin wrapped tokens. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :143–150.
While it is possible to exchange tokens whose smart contracts are on the same blockchain, cross-exchanging bitcoins for a Bitcoin wrapped token is still cumbersome. In particular, current methods of exchange are still custodial and perform privacy-threatening controls on the users in order to operate. To solve this problem we present BxTB: cross-chain exchanges of bitcoins for any Bitcoin wrapped tokens. BxTB lets users achieve that by bypassing the mint-and-burn paradigm of current wrapped tokens and cross-exchanging already minted tokens in a P2P way. Instead of relaying on HTLCs and the overhead of communication and slowness due to time-locks, we leverage Stateless SPVs, i.e. proof-of-inclusion of transactions in the Bitcoin chain validated through a smart contract deployed on the other blockchain. Furthermore, since this primitive has not been introduced in the academic literature yet, we formally introduce it and we prove its security.
2022-12-01
Jabrayilzade, Elgun, Evtikhiev, Mikhail, Tüzün, Eray, Kovalenko, Vladimir.  2022.  Bus Factor in Practice. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :97—106.

Bus factor is a metric that identifies how resilient is the project to the sudden engineer turnover. It states the minimal number of engineers that have to be hit by a bus for a project to be stalled. Even though the metric is often discussed in the community, few studies consider its general relevance. Moreover, the existing tools for bus factor estimation focus solely on the data from version control systems, even though there exists other channels for knowledge generation and distribution. With a survey of 269 engineers, we find that the bus factor is perceived as an important problem in collective development, and determine the highest impact channels of knowledge generation and distribution in software development teams. We also propose a multimodal bus factor estimation algorithm that uses data on code reviews and meetings together with the VCS data. We test the algorithm on 13 projects developed at JetBrains and compared its results to the results of the state-of-the-art tool by Avelino et al. against the ground truth collected in a survey of the engineers working on these projects. Our algorithm is slightly better in terms of both predicting the bus factor as well as key developers compared to the results of Avelino et al. Finally, we use the interviews and the surveys to derive a set of best practices to address the bus factor issue and proposals for the possible bus factor assessment tool.

2023-06-29
Gupta, Sunil, Shahid, Mohammad, Goyal, Ankur, Saxena, Rakesh Kumar, Saluja, Kamal.  2022.  Black Hole Detection and Prevention Using Digital Signature and SEP in MANET. 2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22). :1–5.
The MANET architecture's future growth will make extensive use of encryption and encryption to keep network participants safe. Using a digital signature node id, we illustrate how we may stimulate the safe growth of subjective clusters while simultaneously addressing security and energy efficiency concerns. The dynamic topology of MANET allows nodes to join and exit at any time. A form of attack known as a black hole assault was used to accomplish this. To demonstrate that he had the shortest path with the least amount of energy consumption, an attacker in MATLAB R2012a used a digital signature ID to authenticate the node from which he wished to intercept messages (DSEP). “Digital Signature”, “MANET,” and “AODV” are all terms used to describe various types of digital signatures. Black Hole Attack, Single Black Hole Attack, Digital Signature, and DSEP are just a few of the many terms associated with MANET.
ISSN: 2157-0485
2023-05-26
Li, Dahua, Li, Dapeng, Liu, Junjie, Song, Yu, Ji, Yuehui.  2022.  Backstepping Sliding Mode Control for Cyber-Physical Systems under False Data Injection Attack. 2022 IEEE International Conference on Mechatronics and Automation (ICMA). :357—362.
The security control problem of cyber-physical system (CPS) under actuator attacks is studied in the paper. Considering the strict-feedback cyber-physical systems with external disturbance, a security control scheme is proposed by combining backstepping method and super-twisting sliding mode technology when the transmission control input signal of network layer is under false data injection(FDI) attack. Firstly, the unknown nonlinear function of the CPS is identified by Radial Basis Function Neural Network. Secondly, the backstepping method and super-twisting sliding mode algorithm are combined to eliminate the influence of actuator attack and ensure the robustness of the control system. Then, by Lyapunov stability theory, it is proved that the proposed control scheme can ensure that all signals in the closed-loop system are semi-global and ultimately uniformly bounded. Finally, the effectiveness of the proposed control scheme is verified by the inverted pendulum simulation.
2023-02-17
Yang, Kaicheng, Wu, Yongtang, Chen, Yuling.  2022.  A Blockchain-based Scalable Electronic Contract Signing System. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :343–348.
As the COVID-19 continues to spread globally, more and more companies are transforming into remote online offices, leading to the expansion of electronic signatures. However, the existing electronic signatures platform has the problem of data-centered management. The system is subject to data loss, tampering, and leakage when an attack from outside or inside occurs. In response to the above problems, this paper designs an electronic signature solution and implements a prototype system based on the consortium blockchain. The solution divides the contract signing process into four states: contract upload, initiation signing, verification signing, and confirm signing. The signing process is mapped with the blockchain-linked data. Users initiate the signature transaction by signing the uploaded contract's hash. The sign state transition is triggered when the transaction is uploaded to the blockchain under the consensus mechanism and the smart contract control, which effectively ensures the integrity of the electronic contract and the non-repudiation of the electronic signature. Finally, the blockchain performance test shows that the system can be applied to the business scenario of contract signing.
2023-03-31
Vikram, Aditya, Kumar, Sumit, Mohana.  2022.  Blockchain Technology and its Impact on Future of Internet of Things (IoT) and Cyber Security. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :444–447.
Due to Bitcoin's innovative block structure, it is both immutable and decentralized, making it a valuable tool or instrument for changing current financial systems. However, the appealing features of Bitcoin have also drawn the attention of cybercriminals. The Bitcoin scripting system allows users to include up to 80 bytes of arbitrary data in Bitcoin transactions, making it possible to store illegal information in the blockchain. This makes Bitcoin a powerful tool for obfuscating information and using it as the command-and-control infrastructure for blockchain-based botnets. On the other hand, Blockchain offers an intriguing solution for IoT security. Blockchain provides strong protection against data tampering, locks Internet of Things devices, and enables the shutdown of compromised devices within an IoT network. Thus, blockchain could be used both to attack and defend IoT networks and communications.
2023-09-08
Li, Leixiao, Xiong, Xiao, Gao, Haoyu, Zheng, Yue, Niu, Tieming, Du, Jinze.  2022.  Blockchain-based trust evaluation mechanism for Internet of Vehicles. 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). :2011–2018.
In the traditional Internet of Vehicles, communication data is easily tampered with and easily leaked. In order to improve the trust evaluation mechanism of the Internet of Vehicles and establish a trust relationship between vehicles, a blockchain-based Internet of Vehicles trust evaluation (BBTE) scheme is proposed. First, the scheme uses the roadside unit RSU to calculate the trust value of vehicle nodes and maintain the generation, verification and storage of blocks, so as to realize distributed data storage and ensure that data cannot be tampered with. Secondly, an efficient trust evaluation method is designed. The method integrates four trust decision factors: initial trust, historical experience trust, recommendation trust and RSU observation trust to obtain the overall trust value of vehicle nodes. In addition, in the process of constructing the recommendation trust method, the recommendation trust is divided into three categories according to the interaction between the recommended vehicle node and the communicator, use CRITIC to obtain the optimal weights of three recommended trusts, and use CRITIC to obtain the optimal weights of four trust decision-making factors to obtain the final trust value. Finally, the NS3 simulation platform is used to verify the security and accuracy of the trust evaluation method, and to improve the identification accuracy and detection rate of malicious vehicle nodes. The experimental analysis shows that the scheme can effectively deal with the gray hole attack, slander attack and collusion attack of other vehicle nodes, improve the security of vehicle node communication interaction, and provide technical support for the basic application of Internet of Vehicles security.
2023-01-13
Hoque, Mohammad Aminul, Hossain, Mahmud, Hasan, Ragib.  2022.  BenchAV: A Security Benchmarking Framework for Autonomous Driving. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :729—730.

Autonomous vehicles (AVs) are capable of making driving decisions autonomously using multiple sensors and a complex autonomous driving (AD) software. However, AVs introduce numerous unique security challenges that have the potential to create safety consequences on the road. Security mechanisms require a benchmark suite and an evaluation framework to generate comparable results. Unfortunately, AVs lack a proper benchmarking framework to evaluate the attack and defense mechanisms and quantify the safety measures. This paper introduces BenchAV – a security benchmark suite and evaluation framework for AVs to address current limitations and pressing challenges of AD security. The benchmark suite contains 12 security and performance metrics, and an evaluation framework that automates the metric collection process using Carla simulator and Robot Operating System (ROS).

2023-08-17
Mukhandi, Munkenyi, Damião, Francisco, Granjal, Jorge, Vilela, João P..  2022.  Blockchain-based Device Identity Management with Consensus Authentication for IoT Devices. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :433—436.
To decrease the IoT attack surface and provide protection against security threats such as introduction of fake IoT nodes and identity theft, IoT requires scalable device identity and authentication management. This work proposes a blockchain-based identity management approach with consensus authentication as a scalable solution for IoT device authentication management. The proposed approach relies on having a blockchain secure tamper proof ledger and a novel lightweight consensus-based identity authentication. The results show that the proposed decentralised authentication system is scalable as we increase number of nodes.
2023-06-29
Atiqoh, Jihan Lailatul, Moesrami Barmawi, Ari, Afianti, Farah.  2022.  Blockchain-based Smart Parking System using Ring Learning With Errors based Signature. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :154–158.
Recently, placing vehicles in the parking area is becoming a problem. A smart parking system is proposed to solve the problem. Most smart parking systems have a centralized system, wherein that type of system is at-risk of single-point failure that can affect the whole system. To overcome the weakness of the centralized system, the most popular mechanism that researchers proposed is blockchain. If there is no mechanism implemented in the blockchain to verify the authenticity of every transaction, then the system is not secure against impersonation attacks. This study combines blockchain mechanism with Ring Learning With Errors (RLWE) based digital signature for securing the scheme against impersonation and double-spending attacks. RLWE was first proposed by Lyubashevsky et al. This scheme is a development from the previous scheme Learning with Error or LWE.
2023-04-14
Li, Xiling, Ma, Zhaofeng, Luo, Shoushan.  2022.  Blockchain-Oriented Privacy Protection with Online and Offline Verification in Cross-Chain System. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :177–181.
User privacy is an attractive and valuable task to the success of blockchain systems. However, user privacy protection's performance and data capacity have not been well studied in existing access control models of blockchain systems because of traceability and openness of the P2P network. This paper focuses on investigating performance and data capacity from a blockchain infrastructure perspective, which adds secondary encryption to shield confidential information in a non-invasive way. First, we propose an efficient asymmetric encryption scheme by combining homomorphic encryption and state-of-the-art multi-signature key aggregation to preserve privacy. Second, we use smart contracts and CA infrastructure to achieve attribute-based access control. Then, we use the non-interactive zero-knowledge proof scheme to achieve secondary confidentiality explicitly. Finally, experiments show our scheme succeeds better performance in data capacity and system than other schemes. This scheme improves availability and robust scalability, solves the problem of multi-signature key distribution and the unlinkability of transactions. Our scheme has established a sound security cross-chain system and privacy confidentiality mechanism and that has more excellent performance and higher system computing ability than other schemes.
Yang, Xiaoran, Guo, Zhen, Mai, Zetian.  2022.  Botnet Detection Based on Machine Learning. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :213–217.
A botnet is a new type of attack method developed and integrated on the basis of traditional malicious code such as network worms and backdoor tools, and it is extremely threatening. This course combines deep learning and neural network methods in machine learning methods to detect and classify the existence of botnets. This sample does not rely on any prior features, the final multi-class classification accuracy rate is higher than 98.7%, the effect is significant.
2023-02-03
Ayaz, Ferheen, Sheng, Zhengguo, Ho, Ivan Weng-Hei, Tiany, Daxin, Ding, Zhiguo.  2022.  Blockchain-enabled FD-NOMA based Vehicular Network with Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–6.
Vehicular networks are vulnerable to large scale attacks. Blockchain, implemented upon application layer, is recommended as one of the effective security and privacy solutions for vehicular networks. However, due to an increasing complexity of connected nodes, heterogeneous environment and rising threats, a robust security solution across multiple layers is required. Motivated by the Physical Layer Security (PLS) which utilizes physical layer characteristics such as channel fading to ensure reliable and confidential transmission, in this paper we analyze the impact of PLS on a blockchain-enabled vehicular network with two types of physical layer attacks, i.e., jamming and eavesdropping. Throughout the analysis, a Full Duplex Non-Orthogonal Multiple Access (FD-NOMA) based vehicle-to-everything (V2X) is considered to reduce interference caused by jamming and meet 5G communication requirements. Simulation results show enhanced goodput of a blockckchain enabled vehicular network integrated with PLS as compared to the same solution without PLS.
ISSN: 2577-2465
2022-12-02
Liu, Mengyao, Oostvogels, Jonathan, Michiels, Sam, Joosen, Wouter, Hughes, Danny.  2022.  BoboLink: Low Latency and Low Power Communication for Intelligent Environments. 2022 18th International Conference on Intelligent Environments (IE). :1—4.
Intelligent Environments (IEs) enrich the physical world by connecting it to software applications in order to increase user comfort, safety and efficiency. IEs are often supported by wireless networks of smart sensors and actuators, which offer multi-year battery life within small packages. However, existing radio mesh networks suffer from high latency, which precludes their use in many user interface systems such as real-time speech, touch or positioning. While recent advances in optical networks promise low end-to-end latency through symbol-synchronous transmission, current approaches are power hungry and therefore cannot be battery powered. We tackle this problem by introducing BoboLink, a mesh network that delivers low-power and low-latency optical networking through a combination of symbol-synchronous transmission and a novel wake-up technology. BoboLink delivers mesh-wide wake-up in 1.13ms, with a quiescent power consumption of 237µW. This enables building-wide human computer interfaces to be seamlessly delivered using wireless mesh networks for the first time.
2022-12-20
Fargose, Rehan, Gaonkar, Samarth, Jadhav, Paras, Jadiya, Harshit, Lopes, Minal.  2022.  Browser Extension For A Safe Browsing Experience. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–6.
Due to the rise of the internet a business model known as online advertising has seen unprecedented success. However, it has also become a prime method through which criminals can scam people. Often times even legitimate websites contain advertisements that are linked to scam websites since they are not verified by the website’s owners. Scammers have become quite creative with their attacks, using various unorthodox and inconspicuous methods such as I-frames, Favicons, Proxy servers, Domains, etc. Many modern Anti-viruses are paid services and hence not a feasible option for most users in 3rd world countries. Often people don’t possess devices that have enough RAM to even run such software efficiently leaving them without any options. This project aims to create a Browser extension that will be able to distinguish between safe and unsafe websites by utilizing Machine Learning algorithms. This system is lightweight and free thus fulfilling the needs of most people looking for a cheap and reliable security solution and allowing people to surf the internet easily and safely. The system will scan all the intermittent URL clicks as well, not just the main website thus providing an even greater degree of security.
2022-12-02
Sebestyén, Gergely, Kopják, József.  2022.  Battery Life Prediction Model of Sensor Nodes using Merged Data Collecting methods. 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI). :000031—000034.
The aim of this paper is to describe the battery lifetime estimation and energy consumption model of the sensor nodes in TDMA wireless mesh sensor using merged data collecting (MDC) methods based on lithium thionyl chloride batteries. Defining the energy consumption of the nodes in wireless mesh networks is crucial for battery lifetime estimation. In this paper, we describe the timing, energy consumption, and battery lifetime estimation of the MDC method in the TDMA mesh sensor networks using flooding routing. For the battery life estimation, we made a semiempirical model that describes the energy consumption of the nodes with a real battery model. In this model, the low-level constraints are based on the measured energy consumption of the sensor nodes in different operation phases.
2023-06-09
Lang-Muhr, Christoph, Tjoa, Simon, Machherndl, Stefan, Haslinger, Daniel.  2022.  Business Continuity & Disaster Recovery A simulation game for holistic cyber security education. 2022 IEEE Global Engineering Education Conference (EDUCON). :1296—1302.
At the end of the IT Security degree program a simulation game is conducted to repeat and consolidate the core skills of a Bachelor’s graduate. The focus is not on teaching content, but on the application of already learned skills. The scenario shows the students the risks of a completely networked world, which has come to a complete standstill due to a catastrophe. The participants occupy in groups the predefined companies, which are assigned with the reconstruction of the communication infrastructure (the internet). This paper describes the preparation, technical and organizational implementation of the. Also, the most important conclusions drawn by the authors.
2023-02-24
Golam, Mohtasin, Akter, Rubina, Naufal, Revin, Doan, Van-Sang, Lee, Jae-Min, Kim, Dong-Seong.  2022.  Blockchain Inspired Intruder UAV Localization Using Lightweight CNN for Internet of Battlefield Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :342—349.
On the Internet of Battlefield Things (IoBT), unmanned aerial vehicles (UAVs) provide significant operational advantages. However, the exploitation of the UAV by an untrustworthy entity might lead to security violations or possibly the destruction of crucial IoBT network functionality. The IoBT system has substantial issues related to data tampering and fabrication through illegal access. This paper proposes the use of an intelligent architecture called IoBT-Net, which is built on a convolution neural network (CNN) and connected with blockchain technology, to identify and trace illicit UAV in the IoBT system. Data storage on the blockchain ledger is protected from unauthorized access, data tampering, and invasions. Conveniently, this paper presents a low complexity and robustly performed CNN called LRCANet to estimate AOA for object localization. The proposed LRCANet is efficiently designed with two core modules, called GFPU and stacks, which are cleverly organized with regular and point convolution layers, a max pool layer, and a ReLU layer associated with residual connectivity. Furthermore, the effectiveness of LRCANET is evaluated by various network and array configurations, RMSE, and compared with the accuracy and complexity of the existing state-of-the-art. Additionally, the implementation of tailored drone-based consensus is evaluated in terms of three major classes and compared with the other existing consensus.
2023-01-13
Anderson, John, Huang, Qiqing, Cheng, Long, Hu, Hongxin.  2022.  BYOZ: Protecting BYOD Through Zero Trust Network Security. 2022 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–8.
As the COVID-19 pandemic scattered businesses and their workforces into new scales of remote work, vital security concerns arose surrounding remote access. Bring Your Own Device (BYOD) also plays a growing role in the ability of companies to support remote workforces. As more enterprises embrace concepts of zero trust in their network security posture, access control policy management problems become a more significant concern as it relates to BYOD security enforcement. This BYOD security policy must enable work from home, but enterprises have a vested interest in maintaining the security of their assets. Therefore, the BYOD security policy must strike a balance between access, security, and privacy, given the personal device use. This paper explores the challenges and opportunities of enabling zero trust in BYOD use cases. We present a BYOD policy specification to enable the zero trust access control known as BYOZ. Accompanying this policy specification, we have designed a network architecture to support enterprise zero trust BYOD use cases through the novel incorporation of continuous authentication & authorization enforcement. We evaluate our architecture through a demo implementation of BYOZ and demonstrate how it can meet the needs of existing enterprise networks using BYOD.
2022-06-09
Garrocho, Charles Tim Batista, Oliveira, Karine Nogueira, Sena, David José, da Cunha Cavalcanti, Carlos Frederico Marcelo, Oliveira, Ricardo Augusto Rabelo.  2021.  BACE: Blockchain-based Access Control at the Edge for Industrial Control Devices of Industry 4.0. 2021 XI Brazilian Symposium on Computing Systems Engineering (SBESC). :1–8.
The Industrial Internet of Things is expected to attract significant investments for Industry 4.0. In this new environment, the blockchain has immediate potential in industrial applications, providing unchanging, traceable and auditable access control. However, recent work and present in blockchain literature are based on a cloud infrastructure that requires significant investments. Furthermore, due to the placement and distance of the cloud infrastructure to industrial control devices, such approaches present a communication latency that can compromise the strict deadlines for accessing and communicating with this device. In this context, this article presents a blockchain-based access control architecture, which is deployed directly to edge devices positioned close to devices that need access control. Performance assessments of the proposed approach were carried out in practice in an industrial mining environment. The results of this assessment demonstrate the feasibility of the proposal and its performance compared to cloud-based approaches.
Papakostas, Dimitrios, Kasidakis, Theodoros, Fragkou, Evangelia, Katsaros, Dimitrios.  2021.  Backbones for Internet of Battlefield Things. 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS). :1–8.
The Internet of Battlefield Things is a relatively new cyberphysical system and even though it shares a lot of concepts from the Internet of Things and wireless ad hoc networking in general, a lot of research is required to address its scale and peculiarities. In this article we examine a fundamental problem pertaining to the routing/dissemination of information, namely the construction of a backbone. We model an IoBT ad hoc network as a multilayer network and employ the concept of domination for multilayer networks which is a complete departure from the volume of earlier works, in order to select sets of nodes that will support the routing of information. Even though there is huge literature on similar topics during the past many years, the problem in military (IoBT) networks is quite different since these wireless networks are multilayer networks and treating them as a single (flat) network or treating each layer in isolation and calculating dominating set produces submoptimal or bad solutions; thus all the past literature which deals with single layer (flat) networks is in principle inappropriate. We design a new, distributed algorithm for calculating connected dominating sets which produces dominating sets of small cardinality. We evaluate the proposed algorithm on synthetic topologies, and compare it against the only two existing competitors. The proposed algorithm establishes itself as the clear winner in all experiments.
2022-02-09
Zhai, Tongqing, Li, Yiming, Zhang, Ziqi, Wu, Baoyuan, Jiang, Yong, Xia, Shu-Tao.  2021.  Backdoor Attack Against Speaker Verification. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2560–2564.
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data (e.g., data from the Internet or third-party data company). This raises the question of whether adopting untrusted third-party data can pose a security threat. In this paper, we demonstrate that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data. Specifically, we design a clustering-based attack scheme where poisoned samples from different clusters will contain different triggers (i.e., pre-defined utterances), based on our understanding of verification tasks. The infected models behave normally on benign samples, while attacker-specified unenrolled triggers will successfully pass the verification even if the attacker has no information about the enrolled speaker. We also demonstrate that existing back-door attacks cannot be directly adopted in attacking speaker verification. Our approach not only provides a new perspective for designing novel attacks, but also serves as a strong baseline for improving the robustness of verification methods. The code for reproducing main results is available at https://github.com/zhaitongqing233/Backdoor-attack-against-speaker-verification.
2022-08-26
Winter, Kirsten, Coughlin, Nicholas, Smith, Graeme.  2021.  Backwards-directed information flow analysis for concurrent programs. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
A number of approaches have been developed for analysing information flow in concurrent programs in a compositional manner, i.e., in terms of one thread at a time. Early approaches modelled the behaviour of a given thread's environment using simple read and write permissions on variables, or by associating specific behaviour with whether or not locks are held. Recent approaches allow more general representations of environmental behaviour, increasing applicability. This, however, comes at a cost. These approaches analyse the code in a forwards direction, from the start of the program to the end, constructing the program's entire state after each instruction. This process needs to take into account the environmental influence on all shared variables of the program. When environmental influence is modelled in a general way, this leads to increased complexity, hindering automation of the analysis. In this paper, we present a compositional information flow analysis for concurrent systems which is the first to support a general representation of environmental behaviour and be automated within a theorem prover. Our approach analyses the code in a backwards direction, from the end of the program to the start. Rather than constructing the entire state at each instruction, it generates only the security-related proof obligations. These are, in general, much simpler, referring to only a fraction of the program's shared variables and thus reducing the complexity introduced by environmental behaviour. For increased applicability, our approach analyses value-dependent information flow, where the security classification of a variable may depend on the current state. The resulting logic has been proved sound within the theorem prover Isabelle/HOL.