Biblio

Found 534 results

Filters: First Letter Of Title is B  [Clear All Filters]
2022-11-18
Islam, Md Rofiqul, Cerny, Tomas.  2021.  Business Process Extraction Using Static Analysis. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1202–1204.
Business process mining of a large-scale project has many benefits such as finding vulnerabilities, improving processes, collecting data for data science, generating more clear and simple representation, etc. The general way of process mining is to turn event data such as application logs into insights and actions. Observing logs broad enough to depict the whole business logic scenario of a large project can become very costly due to difficult environment setup, unavailability of users, presence of not reachable or hardly reachable log statements, etc. Using static source code analysis to extract logs and arranging them perfect runtime execution order is a potential way to solve the problem and reduce the business process mining operation cost.
2022-06-13
Gupta, B. B., Gaurav, Akshat, Peraković, Dragan.  2021.  A Big Data and Deep Learning based Approach for DDoS Detection in Cloud Computing Environment. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :287–290.
Recently, as a result of the COVID-19 pandemic, the internet service has seen an upsurge in use. As a result, the usage of cloud computing apps, which offer services to end users on a subscription basis, rises in this situation. However, the availability and efficiency of cloud computing resources are impacted by DDoS attacks, which are designed to disrupt the availability and processing power of cloud computing services. Because there is no effective way for detecting or filtering DDoS attacks, they are a dependable weapon for cyber-attackers. Recently, researchers have been experimenting with machine learning (ML) methods in order to create efficient machine learning-based strategies for detecting DDoS assaults. In this context, we propose a technique for detecting DDoS attacks in a cloud computing environment using big data and deep learning algorithms. The proposed technique utilises big data spark technology to analyse a large number of incoming packets and a deep learning machine learning algorithm to filter malicious packets. The KDDCUP99 dataset was used for training and testing, and an accuracy of 99.73% was achieved.
2022-03-01
Abubakar, Mwrwan, Jaroucheh, Zakwan, Al Dubai, Ahmed, Buchanan, Bill.  2021.  Blockchain-Based Authentication and Registration Mechanism for SIP-Based VoIP Systems. 2021 5th Cyber Security in Networking Conference (CSNet). :63–70.
The Session Initiation Protocol (SIP) is the principal signalling protocol in Voice over IP (VoIP) systems, responsible for initialising, terminating, and maintaining sessions amongst call parties. However, the problem with the SIP protocol is that it was not designed to be secure by nature as the HTTP digest authentication used in SIP is insecure, making it vulnerable to a variety of attacks. The current solutions rely on several standardised encryption protocols, such as TLS and IPsec, to protect SIP registration messages. However, the current centralised solutions do not scale well and cause algorithm overload when encoding and decoding SIP messages. In trying to rectify this issue, we propose in this paper a blockchain-based lightweight authentication mechanism, which involves a decentralised identity model to authenticate the SIP client to the SIP server. Our mechanism uses a smart contract on the Ethereum blockchain to ensure trust, accountability and preserves user privacy. We provided a proof-of-concept implementation to demonstrate our work. Further analysis of this approach's usability, mainly CPU and memory usage, was conducted comparing to IPsec and TLS. Then we discussed our system's security and presented a security analysis. Our analysis proves that our approach satisfies the SIP protocol security requirements.
2021-12-21
Ahn, Bohyun, Bere, Gomanth, Ahmad, Seerin, Choi, JinChun, Kim, Taesic, Park, Sung-won.  2021.  Blockchain-Enabled Security Module for Transforming Conventional Inverters toward Firmware Security-Enhanced Smart Inverters. 2021 IEEE Energy Conversion Congress and Exposition (ECCE). :1307–1312.
As the traditional inverters are transforming toward more intelligent inverters with advanced information and communication technologies, the cyber-attack surface has been remarkably expanded. Specifically, securing firmware of smart inverters from cyber-attacks is crucial. This paper provides expanded firmware attack surface targeting smart inverters. Moreover, this paper proposes a security module for transforming a conventional inverter to a firmware security built-in smart inverter by preventing potential malware and unauthorized firmware update attacks as well as fast automated inverter recovery from zero-day attacks. Furthermore, the proposed security module as a client of blockchain is connected to blockchain severs to fully utilize blockchain technologies such as membership service, ledgers, and smart contracts to detect and mitigate the firmware attacks. The proposed security module framework is implemented in an Internet-of-Thing (IoT) device and validated by experiments.
2022-05-24
Chan, Matthew.  2021.  Bare-metal hypervisor virtual servers with a custom-built automatic scheduling system for educational use. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–5.
In contrast to traditional physical servers, a custom-built system utilizing a bare-metal hypervisor virtual server environment provides advantages of both cost savings and flexibility in terms of systems configuration. This system is designed to facilitate hands-on experience for Computer Science students, particularly those specializing in systems administration and computer networking. This multi-purpose and functional system uses an automatic advanced virtual server reservation system (AAVSRsv), written in C++, to schedule and manage virtual servers. The use of such a system could be extended to additional courses focusing on such topics as cloud computing, database systems, information assurance, as well as ethical hacking and system defense. The design can also be replicated to offer training sessions to other information technology professionals.
2022-03-15
Aghakhani, Hojjat, Meng, Dongyu, Wang, Yu-Xiang, Kruegel, Christopher, Vigna, Giovanni.  2021.  Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability. 2021 IEEE European Symposium on Security and Privacy (EuroS P). :159—178.
A recent source of concern for the security of neural networks is the emergence of clean-label dataset poisoning attacks, wherein correctly labeled poison samples are injected into the training dataset. While these poison samples look legitimate to the human observer, they contain malicious characteristics that trigger a targeted misclassification during inference. We propose a scalable and transferable clean-label poisoning attack against transfer learning, which creates poison images with their center close to the target image in the feature space. Our attack, Bullseye Polytope, improves the attack success rate of the current state-of-the-art by 26.75% in end-to-end transfer learning, while increasing attack speed by a factor of 12. We further extend Bullseye Polytope to a more practical attack model by including multiple images of the same object (e.g., from different angles) when crafting the poison samples. We demonstrate that this extension improves attack transferability by over 16% to unseen images (of the same object) without using extra poison samples.
2022-04-19
Kara, Mustafa, \c Sanlıöz, \c Sevki Gani, Merzeh, Hisham R. J., Aydın, Muhammed Ali, Balık, Hasan Hüseyin.  2021.  Blockchain Based Mutual Authentication for VoIP Applications with Biometric Signatures. 2021 6th International Conference on Computer Science and Engineering (UBMK). :133–138.

In this study, a novel decentralized authentication model is proposed for establishing a secure communications structure in VoIP applications. The proposed scheme considers a distributed architecture called the blockchain. With this scheme, we highlight the multimedia data is more resistant to some of the potential attacks according to the centralized architecture. Our scheme presents the overall system authentication architecture, and it is suitable for mutual authentication in terms of privacy and anonymity. We construct an ECC-based model in the encryption infrastructure because our structure is time-constrained during communications. This study differs from prior work in that blockchain platforms with ECC-Based Biometric Signature. We generate a biometric key for creating a unique ID value with ECC to verify the caller and device authentication together in blockchain. We validated the proposed model by comparing with the existing method in VoIP application used centralized architecture.

2021-08-02
Liu, Gao, Dong, Huidong, Yan, Zheng.  2020.  B4SDC: A Blockchain System for Security Data Collection in MANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Security-related data collection is an essential part for attack detection and security measurement in Mobile Ad Hoc Networks (MANETs). Due to no fixed infrastructure of MANETs, a detection node playing as a collector should discover available routes to a collection node for data collection. Notably, route discovery suffers from many attacks (e.g., wormhole attack), thus the detection node should also collect securityrelated data during route discovery and analyze these data for determining reliable routes. However, few literatures provide incentives for security-related data collection in MANETs, and thus the detection node might not collect sufficient data, which greatly impacts the accuracy of attack detection and security measurement. In this paper, we propose B4SDC, a blockchain system for security-related data collection in MANETs. Through controlling the scale of RREQ forwarding in route discovery, the collector can constrain its payment and simultaneously make each forwarder of control information (namely RREQs and RREPs) obtain rewards as much as possible to ensure fairness. At the same time, B4SDC avoids collusion attacks with cooperative receipt reporting, and spoofing attacks by adopting a secure digital signature. Based on a novel Proof-of-Stake consensus mechanism by accumulating stakes through message forwarding, B4SDC not only provides incentives for all participating nodes, but also avoids forking and ensures high efficiency and real decentralization at the same time. We analyze B4SDC in terms of incentives and security, and evaluate its performance through simulations. The thorough analysis and experimental results show the efficacy and effectiveness of B4SDC.
2021-03-15
Bresch, C., Lysecky, R., Hély, D..  2020.  BackFlow: Backward Edge Control Flow Enforcement for Low End ARM Microcontrollers. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :1606–1609.
This paper presents BackFlow, a compiler-based toolchain that enforces indirect backward edge control flow integrity for low-end ARM Cortex-M microprocessors. BackFlow is implemented within the Clang/LLVM compiler and supports the ARM instruction set and its subset Thumb. The control flow integrity generated by the compiler relies on a bitmap, where each set bit indicates a valid pointer destination. The efficiency of the framework is benchmarked using an STM32 NUCLEO F446RE microcontroller. The obtained results show that the control flow integrity solution incurs an execution time overhead ranging from 1.5 to 4.5%.
2021-05-13
Hu, Xiaoyi, Wang, Ke.  2020.  Bank Financial Innovation and Computer Information Security Management Based on Artificial Intelligence. 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). :572—575.
In recent years, with the continuous development of various new Internet technologies, big data, cloud computing and other technologies have been widely used in work and life. The further improvement of data scale and computing capability has promoted the breakthrough development of artificial intelligence technology. The generalization and classification of financial science and technology not only have a certain impact on the traditional financial business, but also put forward higher requirements for commercial banks to operate financial science and technology business. Artificial intelligence brings fresh experience to financial services and is conducive to increasing customer stickiness. Artificial intelligence technology helps the standardization, modeling and intelligence of banking business, and helps credit decision-making, risk early warning and supervision. This paper first discusses the influence of artificial intelligence on financial innovation, and on this basis puts forward measures for the innovation and development of bank financial science and technology. Finally, it discusses the problem of computer information security management in bank financial innovation in the era of artificial intelligence.
2021-02-10
Tanana, D..  2020.  Behavior-Based Detection of Cryptojacking Malware. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0543—0545.
With rise of cryptocurrency popularity and value, more and more cybercriminals seek to profit using that new technology. Most common ways to obtain illegitimate profit using cryptocurrencies are ransomware and cryptojacking also known as malicious mining. And while ransomware is well-known and well-studied threat which is obvious by design, cryptojacking is often neglected because it's less harmful and much harder to detect. This article considers question of cryptojacking detection. Brief history and definition of cryptojacking are described as well as reasons for designing custom detection technique. We also propose complex detection technique based on CPU load by an application, which can be applied to both browser-based and executable-type cryptojacking samples. Prototype detection program based on our technique was designed using decision tree algorithm. The program was tested in a controlled virtual machine environment and achieved 82% success rate against selected number of cryptojacking samples. Finally, we'll discuss generalization of proposed technique for future work.
2021-04-27
Ti, Y., Wu, C., Yu, C., Kuo, S..  2020.  Benchmarking Dynamic Searchable Symmetric Encryption Scheme for Cloud-Internet of Things Applications. IEEE Access. 8:1715–1732.
Recently, the rapid development of Internet of things (IoT) has resulted in the generation of a considerable amount of data, which should be stored. Therefore, it is necessary to develop methods that can easily capture, save, and modify these data. The data generated using IoT contain private information; therefore sufficient security features should be incorporated to ensure that potential attackers cannot access the data. Researchers from various fields are attempting to achieve data security. One of the major challenges is that IoT is a paradigm of how each device in the Internet infrastructure is interconnected to a globally dynamic network. When searching in dynamic cloud-stored data, sensitive data can be easily leaked. IoT data storage and retrieval from untrusted cloud servers should be secure. Searchable symmetric encryption (SSE) is a vital technology in the field of cloud storage. SSE allows users to use keywords to search for data in an untrusted cloud server but the keywords and the data content are concealed from the server. However, an SSE database is seldom used by cloud operators because the data stored on the cloud server is often modified. The server cannot update the data without decryption because the data are encrypted by the user. Therefore, dynamic SSE (DSSE) has been developed in recent years to support the aforementioned requirements. Instead of decrypting the data stored by customers, DSSE adds or deletes encrypted data on the server. A number of DSSE systems based on linked list structures or blind storage (a new primitive) have been proposed. From the perspective of functionality, extensibility, and efficiency, these DSSE systems each have their own advantages and drawbacks. The most crucial aspect of a system that is used in the cloud industry is the trade-off between performance and security. Therefore, we compared the efficiency and security of multiple DSSE systems and identified their shortcomings to develop an improved system.
2021-02-16
Kriaa, S., Papillon, S., Jagadeesan, L., Mendiratta, V..  2020.  Better Safe than Sorry: Modeling Reliability and Security in Replicated SDN Controllers. 2020 16th International Conference on the Design of Reliable Communication Networks DRCN 2020. :1—6.
Software-defined networks (SDN), through their programmability, significantly increase network resilience by enabling dynamic reconfiguration of network topologies in response to faults and potentially malicious attacks detected in real-time. Another key trend in network softwarization is cloud-native software, which, together with SDN, will be an integral part of the core of future 5G networks. In SDN, the control plane forms the "brain" of the software-defined network and is typically implemented as a set of distributed controller replicas to avoid a single point of failure. Distributed consensus algorithms are used to ensure agreement among the replicas on key data even in the presence of faults. Security is also a critical concern in ensuring that attackers cannot compromise the SDN control plane; byzantine fault tolerance algorithms can provide protection against compromised controller replicas. However, while reliability/availability and security form key attributes of resilience, they are typically modeled separately in SDN, without consideration of the potential impacts of their interaction. In this paper we present an initial framework for a model that unifies reliability, availability, and security considerations in distributed consensus. We examine – via simulation of our model – some impacts of the interaction between accidental faults and malicious attacks on SDN and suggest potential mitigations unique to cloud-native software.
2020-12-28
Antonioli, D., Tippenhauer, N. O., Rasmussen, K..  2020.  BIAS: Bluetooth Impersonation AttackS. 2020 IEEE Symposium on Security and Privacy (SP). :549—562.
Bluetooth (BR/EDR) is a pervasive technology for wireless communication used by billions of devices. The Bluetooth standard includes a legacy authentication procedure and a secure authentication procedure, allowing devices to authenticate to each other using a long term key. Those procedures are used during pairing and secure connection establishment to prevent impersonation attacks. In this paper, we show that the Bluetooth specification contains vulnerabilities enabling to perform impersonation attacks during secure connection establishment. Such vulnerabilities include the lack of mandatory mutual authentication, overly permissive role switching, and an authentication procedure downgrade. We describe each vulnerability in detail, and we exploit them to design, implement, and evaluate master and slave impersonation attacks on both the legacy authentication procedure and the secure authentication procedure. We refer to our attacks as Bluetooth Impersonation AttackS (BIAS).Our attacks are standard compliant, and are therefore effective against any standard compliant Bluetooth device regardless the Bluetooth version, the security mode (e.g., Secure Connections), the device manufacturer, and the implementation details. Our attacks are stealthy because the Bluetooth standard does not require to notify end users about the outcome of an authentication procedure, or the lack of mutual authentication. To confirm that the BIAS attacks are practical, we successfully conduct them against 31 Bluetooth devices (28 unique Bluetooth chips) from major hardware and software vendors, implementing all the major Bluetooth versions, including Apple, Qualcomm, Intel, Cypress, Broadcom, Samsung, and CSR.
2021-05-18
Tai, Zeming, Washizaki, Hironori, Fukazawa, Yoshiaki, Fujimatsu, Yurie, Kanai, Jun.  2020.  Binary Similarity Analysis for Vulnerability Detection. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1121–1122.
Binary similarity has been widely used in function recognition and vulnerability detection. How to define a proper similarity is the key element in implementing a fast detection method. We proposed a scalable method to detect binary vulnerabilities based on similarity. Procedures lifted from binaries are divided into several comparable strands by data dependency, and those strands are transformed into a normalized form by our tool named VulneraBin, so that similarity can be determined between two procedures through a hash value comparison. The low computational complexity allows semantically equivalent code to be identified in binaries compiled from million lines of source code in a fast and accurate way.
2021-08-11
Chen, Siyuan, Jung, Jinwook, Song, Peilin, Chakrabarty, Krishnendu, Nam, Gi-Joon.  2020.  BISTLock: Efficient IP Piracy Protection using BIST. 2020 IEEE International Test Conference (ITC). :1—5.
The globalization of IC manufacturing has increased the likelihood for IP providers to suffer financial and reputational loss from IP piracy. Logic locking prevents IP piracy by corrupting the functionality of an IP unless a correct secret key is inserted. However, existing logic-locking techniques can impose significant area overhead and performance impact (delay and power) on designs. In this work, we propose BISTLock, a logic-locking technique that utilizes built-in self-test (BIST) to isolate functional inputs when the circuit is locked. We also propose a set of security metrics and use the proposed metrics to quantify BISTLock's security strength for an open-source AES core. Our experimental results demonstrate that BISTLock is easy to implement and introduces an average of 0.74% area and no power or delay overhead across the set of benchmarks used for evaluation.
2021-07-27
Biswal, Milan, Misra, Satyajayant, Tayeen, Abu S..  2020.  Black Box Attack on Machine Learning Assisted Wide Area Monitoring and Protection Systems. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
The applications for wide area monitoring, protection, and control systems (WAMPC) at the control center, help with providing resilient, efficient, and secure operation of the transmission system of the smart grid. The increased proliferation of phasor measurement units (PMUs) in this space has inspired many prudent applications to assist in the process of decision making in the control centers. Machine learning (ML) based decision support systems have become viable with the availability of abundant high-resolution wide area operational PMU data. We propose a deep neural network (DNN) based supervisory protection and event diagnosis system and demonstrate that it works with very high degree of confidence. The system introduces a supervisory layer that processes the data streams collected from PMUs and detects disturbances in the power systems that may have gone unnoticed by the local monitoring and protection system. Then, we investigate compromise of the insights of this ML based supervisory control by crafting adversaries that corrupt the PMU data via minimal coordinated manipulation and identification of the spatio-temporal regions in the multidimensional PMU data in a way that the DNN classifier makes wrong event predictions.
2021-03-09
MATSUNAGA, Y., AOKI, N., DOBASHI, Y., KOJIMA, T..  2020.  A Black Box Modeling Technique for Distortion Stomp Boxes Using LSTM Neural Networks. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :653–656.
This paper describes an experimental result of modeling stomp boxes of the distortion effect based on a machine learning approach. Our proposed technique models a distortion stomp box as a neural network consisting of LSTM layers. In this approach, the neural network is employed for learning the nonlinear behavior of the distortion stomp boxes. All the parameters for replicating the distortion sound are estimated through its training process using the input and output signals obtained from some commercial stomp boxes. The experimental result indicates that the proposed technique may have a certain appropriateness to replicate the distortion sound by using the well-trained neural networks.
2021-04-27
Tsai, W., Chou, T., Chen, J., Ma, Y., Huang, C..  2020.  Blockchain as a Platform for Secure Cloud Computing Services. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :155—158.
Problems related to privacy and cyber-attacks have increased in recent years as a result of the rapid development of cloud computing. This work concerns secure cloud computing services on a blockchain platform, called cloud@blockchain, which benefit from the anonymity and immutability of blockchain. Two functions- anonymous file sharing and inspections to find illegally uploaded files- on cloud@blockchain are designed. On cloud@blockchain, cloud users can access data through smart contracts, and recognize all users within the application layer. The performance of three architectures- a pure blockchain, a hybrid blockchain with cache and a traditional database in accessing data is analyzed. The results reveal the superiority of the hybrid blockchain with the cache over the pure blockchain and the traditional database, which it outperforms by 500% and 53.19%, respectively.
2021-06-28
Oualhaj, Omar Ait, Mohamed, Amr, Guizani, Mohsen, Erbad, Aiman.  2020.  Blockchain Based Decentralized Trust Management framework. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2210–2215.
The blockchain is a storage technology and transmission of information, transparent, secure, and operating without central control. In this paper, we propose a new decentralized trust management and cooperation model where data is shared via blockchain and we explore the revenue distribution under different consensus schemes. To reduce the power calculation with respect to the control mechanism, our proposal adopts the possibility of Proof on Trust (PoT) and Proof of proof-of-stake based trust to replace the proof of work (PoW) scheme, to carry out the mining and storage of new data blocks. To detect nodes with malicious behavior to provide false system information, the trust updating algorithm is proposed..
2021-06-01
Xu, Lei, Gao, Zhimin, Fan, Xinxin, Chen, Lin, Kim, Hanyee, Suh, Taeweon, Shi, Weidong.  2020.  Blockchain Based End-to-End Tracking System for Distributed IoT Intelligence Application Security Enhancement. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1028–1035.
IoT devices provide a rich data source that is not available in the past, which is valuable for a wide range of intelligence applications, especially deep neural network (DNN) applications that are data-thirsty. An established DNN model provides useful analysis results that can improve the operation of IoT systems in turn. The progress in distributed/federated DNN training further unleashes the potential of integration of IoT and intelligence applications. When a large number of IoT devices are deployed in different physical locations, distributed training allows training modules to be deployed to multiple edge data centers that are close to the IoT devices to reduce the latency and movement of large amounts of data. In practice, these IoT devices and edge data centers are usually owned and managed by different parties, who do not fully trust each other or have conflicting interests. It is hard to coordinate them to provide end-to-end integrity protection of the DNN construction and application with classical security enhancement tools. For example, one party may share an incomplete data set with others, or contribute a modified sub DNN model to manipulate the aggregated model and affect the decision-making process. To mitigate this risk, we propose a novel blockchain based end-to-end integrity protection scheme for DNN applications integrated with an IoT system in the edge computing environment. The protection system leverages a set of cryptography primitives to build a blockchain adapted for edge computing that is scalable to handle a large number of IoT devices. The customized blockchain is integrated with a distributed/federated DNN to offer integrity and authenticity protection services.
2021-09-16
Balistri, Eugenio, Casellato, Francesco, Giannelli, Carlo, Stefanelli, Cesare.  2020.  Blockchain for Increased Cyber-Resiliency of Industrial Edge Environments. 2020 IEEE International Conference on Smart Computing (SMARTCOMP). :1–8.
The advent of the Internet of Things (IoT) together with its spread in industrial environments have changed pro-duction lines, by dramatically fostering the dynamicity of data sharing and the openness of machines. However, the increased flexibility and openness of the industrial environment (also pushed by the adoption of Edge devices) must not negatively affect the security and safety of production lines and its opera-tional processes. In fact, opening industrial environments towards the Internet and increasing interactions among machines may represent a security threat, if not properly managed. The paper originally proposes the adoption of the Blockchain to securely store in distributed ledgers topology information and access rules, with the primary goal of maximizing the cyber-resiliency of industrial networks. In this manner, it is possible to store and query topology information and security access rules in a completely distributed manner, ensuring data availability even in case a centralized control point is temporarily down or the network partitioned. Moreover, Blockchain consensus algorithms can be used to foster a participative validation of topology information, to reciprocally ensure the identity of interacting machines/nodes, to securely distribute topology information and commands in a privacy-preserving manner, and to trace any past modification in a non-repudiable manner.
2021-06-01
Alfandi, Omar, Otoum, Safa, Jararweh, Yaser.  2020.  Blockchain Solution for IoT-based Critical Infrastructures: Byzantine Fault Tolerance. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—4.
Providing an acceptable level of security for Internet of Things (IoT)-based critical infrastructures, such as the connected vehicles, considers as an open research issue. Nowadays, blockchain overcomes a wide range of network limitations. In the context of IoT and blockchain, Byzantine Fault Tolerance (BFT)-based consensus protocol, that elects a set of authenticated devices/nodes within the network, considers as a solution for achieving the desired energy efficiency over the other consensus protocols. In BFT, the elected devices are responsible for ensuring the data blocks' integrity and preventing the concurrently appended blocks that might contain some malicious data. In this paper, we evaluate the fault-tolerance with different network settings, i.e., the number of connected vehicles. We verify and validate the proposed model with MATLAB/Simulink package simulations. The results show that our proposed hybrid scenario performed over the non-hybrid scenario taking throughput and latency in the consideration as the evaluated metrics.
2021-06-24
Połap, Dawid, Srivastava, Gautam, Jolfaei, Alireza, Parizi, Reza M..  2020.  Blockchain Technology and Neural Networks for the Internet of Medical Things. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :508–513.
In today's technological climate, users require fast automation and digitization of results for large amounts of data at record speeds. Especially in the field of medicine, where each patient is often asked to undergo many different examinations within one diagnosis or treatment. Each examination can help in the diagnosis or prediction of further disease progression. Furthermore, all produced data from these examinations must be stored somewhere and available to various medical practitioners for analysis who may be in geographically diverse locations. The current medical climate leans towards remote patient monitoring and AI-assisted diagnosis. To make this possible, medical data should ideally be secured and made accessible to many medical practitioners, which makes them prone to malicious entities. Medical information has inherent value to malicious entities due to its privacy-sensitive nature in a variety of ways. Furthermore, if access to data is distributively made available to AI algorithms (particularly neural networks) for further analysis/diagnosis, the danger to the data may increase (e.g., model poisoning with fake data introduction). In this paper, we propose a federated learning approach that uses decentralized learning with blockchain-based security and a proposition that accompanies that training intelligent systems using distributed and locally-stored data for the use of all patients. Our work in progress hopes to contribute to the latest trend of the Internet of Medical Things security and privacy.
2021-05-20
Fichera, S., Sgambelluri, A., Giorgetti, A., Cugini, F., Paolucci, F..  2020.  Blockchain-Anchored Failure Responsibility Management in Disaggregated Optical Networks. 2020 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.
A novel framework based on blockchain is proposed to provide trusted SLA accounting. Extensions to SDN ONOS controller successfully assess controversial SLA degradations responsibilities upon failure events in a multi-vendor OpenROADM-based white box scenario.