Biblio
Cloud computing is an Internet-based technology that emerging rapidly in the last few years due to popular and demanded services required by various institutions, organizations, and individuals. structured, unstructured, semistructured data is transfer at a record pace on to the cloud server. These institutions, businesses, and organizations are shifting more and more increasing workloads on cloud server, due to high cost, space and maintenance issues from big data, cloud computing will become a potential choice for the storage of data. In Cloud Environment, It is obvious that data is not secure completely yet from inside and outside attacks and intrusions because cloud servers are under the control of a third party. The Security of data becomes an important aspect due to the storage of sensitive data in a cloud environment. In this paper, we give an overview of characteristics and state of art of big data and data security & privacy top threats, open issues and current challenges and their impact on business are discussed for future research perspective and review & analysis of previous and recent frameworks and architectures for data security that are continuously established against threats to enhance how to keep and store data in the cloud environment.
Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics' exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency.
Distributed banking platforms and services forgo centralized banks to process financial transactions. For example, M-Pesa provides distributed banking service in the developing regions so that the people without a bank account can deposit, withdraw, or transfer money. The current distributed banking systems lack the transparency in monitoring and tracking of distributed banking transactions and thus do not support auditing of distributed banking transactions for accountability. To address this issue, this paper proposes a blockchain-based distributed banking (BDB) scheme, which uses blockchain technology to leverage its built-in properties to record and track immutable transactions. BDB supports distributed financial transaction processing but is significantly different from cryptocurrencies in its design properties, simplicity, and computational efficiency. We implement a prototype of BDB using smart contract and conduct experiments to show BDB's effectiveness and performance. We further compare our prototype with the Ethereum cryptocurrency to highlight the fundamental differences and demonstrate the BDB's superior computational efficiency.
Data privacy has been an important area of research in recent years. Dataset often consists of sensitive data fields, exposure of which may jeopardize interests of individuals associated with the data. In order to resolve this issue, privacy techniques can be used to hinder the identification of a person through anonymization of the sensitive data in the dataset to protect sensitive information, while the anonymized dataset can be used by the third parties for analysis purposes without obstruction. In this research, we investigated a privacy technique, k-anonymity for different values of on different number columns of the dataset. Next, the information loss due to k-anonymity is computed. The anonymized files go through the classification process by some machine-learning algorithms i.e., Naive Bayes, J48 and neural network in order to check a balance between data anonymity and data utility. Based on the classification accuracy, the optimal values of and are obtained, and thus, the optimal and can be used for k-anonymity algorithm to anonymize optimal number of columns of the dataset.
Traditional security solutions that rely on public key infrastructure present scalability and transparency challenges when deployed in Internet of Things (IoT). In this paper, we develop a blockchain based authentication mechanism for IoT that can be integrated into the traditional transport layer security protocols such as Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). Our proposed mechanism is an alternative to the traditional Certificate Authority (CA)-based Public Key Infrastructure (PKI) that relies on x.509 certificates. Specifically, the proposed solution enables the modified TLS/DTLS a viable option for resource constrained IoT devices where minimizing memory utilization is critical. Experiments show that blockchain based authentication can reduce dynamic memory usage by up to 20%, while only minimally increasing application image size and time of execution of the TLS/DTLS handshake.
Security has become the vital component of today's technology. People wish to safeguard their valuable items in bank lockers. With growing technology most of the banks have replaced the manual lockers by digital lockers. Even though there are numerous biometric approaches, these are not robust. In this work we propose a new approach for personal biometric identification based on features extracted from ECG.
An air-gapped computer is physically isolated from unsecured networks to guarantee effective protection against data exfiltration. Due to air gaps, unauthorized data transfer seems impossible over legitimate communication channels, but in reality many so-called physical covert channels can be constructed to allow data exfiltration across the air gaps. Most of such covert channels are very slow and often require certain strict conditions to work (e.g., no physical obstacles between the sender and the receiver). In this paper, we introduce a new physical covert channel named BitJabber that is extremely fast and strong enough to even penetrate concrete walls. We show that this covert channel can be easily created by an unprivileged sender running on a victim’s computer. Specifically, the sender constructs the channel by using only memory accesses to modulate the electromagnetic (EM) signals generated by the DRAM clock. While possessing a very high bandwidth (up to 300,000 bps), this new covert channel is also very reliable (less than 1% error rate). More importantly, this covert channel can enable data exfiltration from an air-gapped computer enclosed in a room with thick concrete walls up to 15 cm.
A significant percentage of cyber security incidents can be prevented by changing human behaviors. The humans in the loop include the system administrators, software developers, end users and the personnel responsible for securing the system. Each of these group of people work in a given context and are affected by both soft factors such as management influences and workload and more tangible factors in the real world such as errors in procedures and scanning devices, faulty code or the usability of the systems they work with.
The paper proposes a novel technique of EEG induced Brain-Computer Interface system for user authentication of personal devices. The scheme enables a human user to lock and unlock any personal device using his/her mind generated password. A two stage security verification is employed in the scheme. In the first stage, a 3 × 3 spatial matrix of flickering circles will appear on the screen of which, rows are blinked randomly and user has to mentally select a row which contains his desired circle.P300 is released when the desired row is blinked. Successful selection of row is followed by the selection of a flickering circle in the desired row. Gazing at a particular flickering circle generates SSVEP brain pattern which is decoded to trace the mentally selected circle. User is able to store mentally uttered number in the selected circle, later the number with it's spatial position will serve as the password for the unlocking phase. Here, the user is equipped with a headphone where numbers starting from zero to nine are spelled randomly. Spelled number matching with the mentally uttered number generates auditory P300 in the subject's brain. The particular choice of mentally uttered number is detected by successful detection of auditory P300. A novel weight update algorithm of Recurrent Neural Network (RNN), based on Extended-Kalman Filter and Particle Filter is used here for classifying the brain pattern. The proposed classifier achieves the best classification accuracy of 95.6%, 86.5% and 83.5% for SSVEP, visual P300 and auditory P300 respectively.
Recently, the field of adversarial machine learning has been garnering attention by showing that state-of-the-art deep neural networks are vulnerable to adversarial examples, stemming from small perturbations being added to the input image. Adversarial examples are generated by a malicious adversary by obtaining access to the model parameters, such as gradient information, to alter the input or by attacking a substitute model and transferring those malicious examples over to attack the victim model. Specifically, one of these attack algorithms, Robust Physical Perturbations (RP2), generates adversarial images of stop signs with black and white stickers to achieve high targeted misclassification rates against standard-architecture traffic sign classifiers. In this paper, we propose BlurNet, a defense against the RP2 attack. First, we motivate the defense with a frequency analysis of the first layer feature maps of the network on the LISA dataset, which shows that high frequency noise is introduced into the input image by the RP2 algorithm. To remove the high frequency noise, we introduce a depthwise convolution layer of standard blur kernels after the first layer. We perform a blackbox transfer attack to show that low-pass filtering the feature maps is more beneficial than filtering the input. We then present various regularization schemes to incorporate this lowpass filtering behavior into the training regime of the network and perform white-box attacks. We conclude with an adaptive attack evaluation to show that the success rate of the attack drops from 90% to 20% with total variation regularization, one of the proposed defenses.
The usage of connected devices and their role within our daily- and business life gains more and more impact. In addition, various derivations of Cyber-Physical Systems (CPS) reach new business fields, like smart healthcare or Industry 4.0. Although these systems do bring many advantages for users by extending the overall functionality of existing systems, they come with several challenges, especially for system engineers and architects. One key challenge consists in achieving a sufficiently high level of security within the CPS environment, as sensitive data or safety-critical functions are often integral parts of CPS. Being system of systems (SoS), CPS complexity, unpredictability and heterogeneity complicate analyzing the overall level of security, as well as providing a way to detect ongoing attacks. Usually, security metrics and frameworks provide an effective tool to measure the level of security of a given component or system. Although several comprehensive surveys exist, an assessment of the effectiveness of the existing solutions for CPS environments is insufficiently investigated in literature. In this work, we address this gap by benchmarking a carefully selected variety of existing security metrics in terms of their usability for CPS. Accordingly, we pinpoint critical CPS challenges and qualitatively assess the effectiveness of the existing metrics for CPS systems.