Biblio
Cancelable biometric is a new era of technology that deals with the protection of the privacy content of a person which itself helps in protecting the identity of a person. Here the biometric information instead of being stored directly on the authentication database is transformed into a non-invertible coded format that will be utilized for providing access. The conversion into an encrypted code requires the provision of an encryption key from the user side. Both invertible and non-invertible coding techniques are there but non-invertible one provides additional security to the user. In this paper, a non-invertible cancelable biometric method has been proposed where the biometric image information is canceled and encoded into a code using a user-provided encryption key. This code is generated from the image histogram after continuous bin updation to the maximal value and then it is encrypted by the Hill cipher. This code is stored on the database instead of biometric information. The technique is applied to a set of retinal information taken from the Indian Diabetic Retinopathy database.
Static analysis tools help to detect common pro-gramming errors but generate a large number of false positives. Moreover, when applied to evolving software systems, around 95 % of alarms generated on a version are repeated, i.e., they have also been generated on the previous version. Version-aware static analysis techniques (VSATs) have been proposed to suppress the repeated alarms that are not impacted by the code changes between the two versions. The alarms reported by VSATs after the suppression, called delta alarms, still constitute 63% of the tool-generated alarms. We observe that delta alarms can be further postprocessed using their corresponding code changes: the code changes due to which VSATs identify them as delta alarms. However, none of the existing VSATs or alarms postprocessing techniques postprocesses delta alarms using the corresponding code changes. Based on this observation, we use the code changes to classify delta alarms into six classes that have different priorities assigned to them. The assignment of priorities is based on the type of code changes and their likelihood of actually impacting the delta alarms. The ranking of alarms, obtained by prioritizing the classes, can help suppress alarms that are ranked lower, when resources to inspect all the tool-generated alarms are limited. We performed an empirical evaluation using 9789 alarms generated on 59 versions of seven open source C applications. The evaluation results indicate that the proposed classification and ranking of delta alarms help to identify, on average, 53 % of delta alarms as more likely to be false positives than the others.
False news has become widespread in the last decade in political, economic, and social dimensions. This has been aided by the deep entrenchment of social media networking in these dimensions. Facebook and Twitter have been known to influence the behavior of people significantly. People rely on news/information posted on their favorite social media sites to make purchase decisions. Also, news posted on mainstream and social media platforms has a significant impact on a particular country’s economic stability and social tranquility. Therefore, there is a need to develop a deceptive system that evaluates the news to avoid the repercussions resulting from the rapid dispersion of fake news on social media platforms and other online platforms. To achieve this, the proposed system uses the preprocessing stage results to assign specific vectors to words. Each vector assigned to a word represents an intrinsic characteristic of the word. The resulting word vectors are then applied to RNN models before proceeding to the LSTM model. The output of the LSTM is used to determine whether the news article/piece is fake or otherwise.
Concurrency vulnerabilities caused by synchronization problems will occur in the execution of multi-threaded programs, and the emergence of concurrency vulnerabilities often cause great threats to the system. Once the concurrency vulnerabilities are exploited, the system will suffer various attacks, seriously affecting its availability, confidentiality and security. In this paper, we extract 839 concurrency vulnerabilities from Common Vulnerabilities and Exposures (CVE), and conduct a comprehensive analysis of the trend, classifications, causes, severity, and impact. Finally, we obtained some findings: 1) From 1999 to 2021, the number of concurrency vulnerabilities disclosures show an overall upward trend. 2) In the distribution of concurrency vulnerability, race condition accounts for the largest proportion. 3) The overall severity of concurrency vulnerabilities is medium risk. 4) The number of concurrency vulnerabilities that can be exploited for local access and network access is almost equal, and nearly half of the concurrency vulnerabilities (377/839) can be accessed remotely. 5) The access complexity of 571 concurrency vulnerabilities is medium, and the number of concurrency vulnerabilities with high or low access complexity is almost equal. The results obtained through the empirical study can provide more support and guidance for research in the field of concurrency vulnerabilities.
ISSN: 2693-9177
In our time the rapid growth of internet and digital communications has been required to be protected from illegal users. It is important to secure the information transmitted between the sender and receiver over the communication channels such as the internet, since it is a public environment. Cryptography and Steganography are the most popular techniques used for sending data in secrete way. In this paper, we are proposing a new algorithm that combines both cryptography and steganography in order to increase the level of data security against attackers. In cryptography, we are using affine hill cipher method; while in steganography we are using Hybrid edge detection with LSB to hide the message. Our paper shows how we can use image edges to hide text message. Grayscale images are used for our experiments and a comparison is developed based on using different edge detection operators such as (canny-LoG ) and (Canny-Sobel). Their performance is measured using PSNR (Peak Signal to Noise ratio), MSE (Mean Squared Error) and EC (Embedding Capacity). The results indicate that, using hybrid edge detection (canny- LoG) with LSB for hiding data could provide high embedding capacity than using hybrid edge detection (canny- Sobel) with LSB. We could prove that hiding in the image edge area could preserve the imperceptibility of the Stego-image. This paper has also proved that the secrete message was extracted successfully without any distortion.
With the proliferation of data in Internet-related applications, incidences of cyber security have increased manyfold. Energy management, which is one of the smart city layers, has also been experiencing cyberattacks. Furthermore, the Distributed Energy Resources (DER), which depend on different controllers to provide energy to the main physical smart grid of a smart city, is prone to cyberattacks. The increased cyber-attacks on DER systems are mainly because of its dependency on digital communication and controls as there is an increase in the number of devices owned and controlled by consumers and third parties. This paper analyzes the major cyber security and privacy challenges that might inflict, damage or compromise the DER and related controllers in smart cities. These challenges highlight that the security and privacy on the Internet of Things (IoT), big data, artificial intelligence, and smart grid, which are the building blocks of a smart city, must be addressed in the DER sector. It is observed that the security and privacy challenges in smart cities can be solved through the distributed framework, by identifying and classifying stakeholders, using appropriate model, and by incorporating fault-tolerance techniques.