Biblio

Found 1333 results

Filters: First Letter Of Title is E  [Clear All Filters]
2023-07-28
Hasan, Darwito, Haryadi Amran, Sudarsono, Amang.  2022.  Environmental Condition Monitoring and Decision Making System Using Fuzzy Logic Method. 2022 International Electronics Symposium (IES). :267—271.

Currently, air pollution is still a problem that requires special attention, especially in big cities. Air pollution can come from motor vehicle fumes, factory smoke or other particles. To overcome these problems, a system is made that can monitor environmental conditions in order to know the good and bad of air quality in an environment and is expected to be a solution to reduce air pollution that occurs. The system created will utilize the Wireless Sensor Network (WSN) combined with Waspmote Smart Environment PRO, so that later data will be obtained in the form of temperature, humidity, CO levels and CO2 levels. From the sensor data that has been processed on Waspmote, it will then be used as input for data processing using a fuzzy algorithm. The classification obtained from sensor data processing using fuzzy to monitor environmental conditions there are 5 classifications, namely Very Good, Good, Average, Bad and Dangerous. Later the data that has been collected will be distributed to Meshlium as a gateway and will be stored in the database. The process of sending information between one party to another needs to pay attention to the confidentiality of data and information. The final result of the implementation of this research is that the system is able to classify values using fuzzy algorithms and is able to secure text data that will be sent to the database via Meshlium, and is able to display data sent to the website in real time.

2023-04-14
Hwang, Seunggyu, Lee, Hyein, Kim, Sooyoung.  2022.  Evaluation of physical-layer security schemes for space-time block coding under imperfect channel estimation. 2022 27th Asia Pacific Conference on Communications (APCC). :580–585.

With the advent of massive machine type of communications, security protection becomes more important than ever. Efforts have been made to impose security protection capability to physical-layer signal design, so called physical-layer security (PLS). The purpose of this paper is to evaluate the performance of PLS schemes for a multi-input-multi-output (MIMO) systems with space-time block coding (STBC) under imperfect channel estimation. Three PLS schemes for STBC schemes are modeled and their bit error rate (BER) performances are evaluated under various channel estimation error environments, and their performance characteristics are analyzed.

ISSN: 2163-0771

2022-12-01
Andersen, Erik, Chiarandini, Marco, Hassani, Marwan, Jänicke, Stefan, Tampakis, Panagiotis, Zimek, Arthur.  2022.  Evaluation of Probability Distribution Distance Metrics in Traffic Flow Outlier Detection. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :64—69.

Recent approaches have proven the effectiveness of local outlier factor-based outlier detection when applied over traffic flow probability distributions. However, these approaches used distance metrics based on the Bhattacharyya coefficient when calculating probability distribution similarity. Consequently, the limited expressiveness of the Bhattacharyya coefficient restricted the accuracy of the methods. The crucial deficiency of the Bhattacharyya distance metric is its inability to compare distributions with non-overlapping sample spaces over the domain of natural numbers. Traffic flow intensity varies greatly, which results in numerous non-overlapping sample spaces, rendering metrics based on the Bhattacharyya coefficient inappropriate. In this work, we address this issue by exploring alternative distance metrics and showing their applicability in a massive real-life traffic flow data set from 26 vital intersections in The Hague. The results on these data collected from 272 sensors for more than two years show various advantages of the Earth Mover's distance both in effectiveness and efficiency.

2023-06-02
Labrador, Víctor, Pastrana, Sergio.  2022.  Examining the trends and operations of modern Dark-Web marketplaces. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :163—172.

Currently, the Dark Web is one key platform for the online trading of illegal products and services. Analysing the .onion sites hosting marketplaces is of interest for law enforcement and security researchers. This paper presents a study on 123k listings obtained from 6 different Dark Web markets. While most of current works leverage existing datasets, these are outdated and might not contain new products, e.g., those related to the 2020 COVID pandemic. Thus, we build a custom focused crawler to collect the data. Being able to conduct analyses on current data is of considerable importance as these marketplaces continue to change and grow, both in terms of products offered and users. Also, there are several anti-crawling mechanisms being improved, making this task more difficult and, consequently, reducing the amount of data obtained in recent years on these marketplaces. We conduct a data analysis evaluating multiple characteristics regarding the products, sellers, and markets. These characteristics include, among others, the number of sales, existing categories in the markets, the origin of the products and the sellers. Our study sheds light on the products and services being offered in these markets nowadays. Moreover, we have conducted a case study on one particular productive and dynamic drug market, i.e., Cannazon. Our initial goal was to understand its evolution over time, analyzing the variation of products in stock and their price longitudinally. We realized, though, that during the period of study the market suffered a DDoS attack which damaged its reputation and affected users' trust on it, which was a potential reason which lead to the subsequent closure of the market by its operators. Consequently, our study provides insights regarding the last days of operation of such a productive market, and showcases the effectiveness of a potential intervention approach by means of disrupting the service and fostering mistrust.

2023-01-30
Wohlrab, Rebekka, Cámara, Javier, Garlan, David, Schmerl, Bradley.  2022.  Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software. 198

Self-adaptive systems commonly operate in heterogeneous contexts and need to consider multiple quality attributes. Human stakeholders often express their quality preferences by defining utility functions, which are used by self-adaptive systems to automatically generate adaptation plans. However, the adaptation space of realistic systems is large and it is obscure how utility functions impact the generated adaptation behavior, as well as structural, behavioral, and quality constraints. Moreover, human stakeholders are often not aware of the underlying tradeoffs between quality attributes. To address this issue, we present an approach that uses machine learning techniques (dimensionality reduction, clustering, and decision tree learning) to explain the reasoning behind automated planning. Our approach focuses on the tradeoffs between quality attributes and how the choice of weights in utility functions results in different plans being generated. We help humans understand quality attribute tradeoffs, identify key decisions in adaptation behavior, and explore how differences in utility functions result in different adaptation alternatives. We present two systems to demonstrate the approach’s applicability and consider its potential application to 24 exemplar self-adaptive systems. Moreover, we describe our assessment of the tradeoff between the information reduction and the amount of explained variance retained by the results obtained with our approach.

Cámara, Javier, Wohlrab, Rebekka, Garlan, David, Schmerl, Bradley.  2022.  ExTrA: Explaining architectural design tradeoff spaces via dimensionality reduction. Journal of Systems and Software. 198

In software design, guaranteeing the correctness of run-time system behavior while achieving an acceptable balance among multiple quality attributes remains a challenging problem. Moreover, providing guarantees about the satisfaction of those requirements when systems are subject to uncertain environments is even more challenging. While recent developments in architectural analysis techniques can assist architects in exploring the satisfaction of quantitative guarantees across the design space, existing approaches are still limited because they do not explicitly link design decisions to satisfaction of quality requirements. Furthermore, the amount of information they yield can be overwhelming to a human designer, making it difficult to see the forest for the trees. In this paper we present ExTrA (Explaining Tradeoffs of software Architecture design spaces), an approach to analyzing architectural design spaces that addresses these limitations and provides a basis for explaining design tradeoffs. Our approach employs dimensionality reduction techniques employed in machine learning pipelines like Principal Component Analysis (PCA) and Decision Tree Learning (DTL) to enable architects to understand how design decisions contribute to the satisfaction of extra-functional properties across the design space. Our results show feasibility of the approach in two case studies and evidence that combining complementary techniques like PCA and DTL is a viable approach to facilitate comprehension of tradeoffs in poorly-understood design spaces.

2022-12-07
Yan, Huang, Zhu, Hanhao, Cui, Zhiqiang, Chai, Zhigang, Wang, Qile, Wang, Yize.  2022.  Effect of seamount on low frequency acoustic propagation based on time domain. 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS). :780—783.
From the perspective of time domain, the propagation characteristics of sound waves in seawater can be seen more intuitively. In order to study the influence and characteristics of seamount on low frequency acoustic propagation, the research of this paper used the Finite Element Method (FEM) based on time domain to set up a full-waveguide low-frequency acoustic propagation simulation model, and discussed the influencing laws about acoustic propagation on seamount. The simulation results show that Seamounts can hinder the propagation of sound waves, weaken the energy of sound waves. The topographic changes of seamounts can cause the coupling and transformation of acoustic signals during the propagation which can stimulate the seabed interface wave.
2023-01-20
Boni, Mounika, Ch, Tharakeswari, Alamanda, Swathi, Arasada, Bhaskara Venkata Sai Gayath, Maria, Azees.  2022.  An Efficient and Secure Anonymous Authentication Scheme for V2G Networks. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :432—436.

The vehicle-to-grid (V2G) network has a clear advantage in terms of economic benefits, and it has grabbed the interest of powergrid and electric vehicle (EV) consumers. Many V2G techniques, at present, for example, use bilinear pairing to execute the authentication scheme, which results in significant computational costs. Furthermore, in the existing V2G techniques, the system master key is issued independently by the third parties, it is vulnerable to leaking if the third party is compromised by an attacker. This paper presents an efficient and secure anonymous authentication scheme for V2G networks to overcome this issue we use a lightweight authentication system for electric vehicles and smart grids. In the proposed technique, the keys are generated by the trusted authority after the successful registration of EVs in the trusted authority and the dispatching center. The suggested scheme not only enhances the verification performance of V2G networks and also protects against inbuilt hackers.

2023-01-13
Praveen Kumar, K., Sree Ranganayaki, V..  2022.  Energy Saving Using Privacy Data Secure Aggregation Algorithm. 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT). :99—102.
For the Internet of things (IoT) secure data aggregation issues, data privacy-preserving and limited computation ability and energy of nodes should be tradeoff. Based on analyzing the pros-and-cons of current works, a low energy- consuming secure data aggregation method (LCSDA) was proposed. This method uses shortest path principle to choose neighbor nodes and generates the data aggregation paths in the cluster based on prim minimum spanning tree algorithm. Simulation results show that this method could effectively cut down energy consumption and reduce the probability of cluster head node being captured, in the same time preserving data privacy.
2023-01-20
Jiang, Baoxiang, Liu, Yang, Liu, Huixiang, Ren, Zehua, Wang, Yun, Bao, Yuanyi, Wang, Wenqing.  2022.  An Enhanced EWMA for Alert Reduction and Situation Awareness in Industrial Control Networks. 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE). :888–894.

Intrusion detection systems (IDSs) are widely deployed in the industrial control systems to protect network security. IDSs typically generate a huge number of alerts, which are time-consuming for system operators to process. Most of the alerts are individually insignificant false alarms. However, it is not the best solution to discard these alerts, as they can still provide useful information about network situation. Based on the study of characteristics of alerts in the industrial control systems, we adopt an enhanced method of exponentially weighted moving average (EWMA) control charts to help operators in processing alerts. We classify all detection signatures as regular and irregular according to their frequencies, set multiple control limits to detect anomalies, and monitor regular signatures for network security situational awareness. Extensive experiments have been performed using real-world alert data. Simulation results demonstrate that the proposed enhanced EWMA method can greatly reduce the volume of alerts to be processed while reserving significant abnormal information.

2023-02-17
Djoyo, Brata Wibawa, Nurzaqia, Safira, Budiarti, Salsa Imbartika, Agustin, Syerina.  2022.  Examining the Determinant Factors of Intention to Use of Quick Response Code Indonesia Standard (QRIS) as a Payment System for MSME Merchants. 2022 International Conference on Information Management and Technology (ICIMTech). :676–681.
This study purpose was to examine the determinant factors that affect the Micro, Small, and Medium Enterprise (MSME) merchants who had the intention to use Quick Response Code Indonesian Standard (QRIS) as a payment system. QRIS was expected to be applied by merchants to diminish the virus spread and keep the circulation of money safe; but there were not many merchants using the QRIS as a payment method. The factors MSME merchant might not use the QRIS were related to perceived usefulness, perceived security, perceived ease of use, and trust. The population was MSMEs in South Tangerang City who did not use QRIS yet and the population was unknown. Using the Lemeshow formula, obtained a sample of 115 people, and the sampling technique used purposive sampling. Then data were analyzed using multi-regression analysis and processed by SPSS. The results indicated that perceived usefulness and perceived security had a significant affect on trust, whereas trust and ease of use significant affect the intention to use QRIS. Moreover, trust was able to mediate the perceived usefulness to intention to use. Since ease of use had no significant affect on trust, then the mediation given by trust to perceived ease of use had no significant affect on intention to use.
2023-09-01
Amin, Md Rayhan, Bhowmik, Tanmay.  2022.  Existing Vulnerability Information in Security Requirements Elicitation. 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW). :220—225.
In software engineering, the aspect of addressing security requirements is considered to be of paramount importance. In most cases, however, security requirements for a system are considered as non-functional requirements (NFRs) and are addressed at the very end of the software development life cycle. The increasing number of security incidents in software systems around the world has made researchers and developers rethink and consider this issue at an earlier stage. An important and essential step towards this process is the elicitation of relevant security requirements. In a recent work, Imtiaz et al. proposed a framework for creating a mapping between existing requirements and the vulnerabilities associated with them. The idea is that, this mapping can be used by developers to predict potential vulnerabilities associated with new functional requirements and capture security requirements to avoid these vulnerabilities. However, to what extent, such existing vulnerability information can be useful in security requirements elicitation is still an open question. In this paper, we design a human subject study to answer this question. We also present the results of a pilot study and discuss their implications. Preliminary results show that existing vulnerability information can be a useful resource in eliciting security requirements and lays ground work for a full scale study.
2023-07-13
Chen, Chen, Wang, Xingjun, Huang, Guanze, Liu, Guining.  2022.  An Efficient Randomly-Selective Video Encryption Algorithm. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1287–1293.
A randomly-selective encryption (RSE) algorithm is proposed for HEVC video bitstream in this paper. It is a pioneer algorithm with high efficiency and security. The encryption process is completely independent of video compression process. A randomly-selective sequence (RSS) based on the RC4 algorithm is designed to determine the extraction position in the video bitstream. The extracted bytes are encrypted by AES-CTR to obtain the encrypted video. Based on the high efficiency video coding (HEV C) bitstream, the simulation and analysis results show that the proposed RSE algorithm has low time complexity and high security, which is a promising tool for video cryptographic applications.
2023-09-01
Xie, Genlin, Cheng, Guozhen, Liang, Hao, Wang, Qingfeng, He, Benwei.  2022.  Evaluating Software Diversity Based on Gadget Feature Analysis. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1656—1660.
Evaluating the security gains brought by software diversity is one key issue of software diversity research, but the existing software diversity evaluation methods are generally based on conventional code features and are relatively single, which are difficult to accurately reflect the security gains brought by software diversity. To solve these problems, from the perspective of return-oriented programming (ROP) attack, we present a software diversity evaluation method which integrates metrics for the quality and distribution of gadgets. Based on the proposed evaluation method and SpiderMonkey JavaScript engine, we implement a software diversity evaluation system for compiled languages and script languages. Diversity techniques with different granularities are used to test. The evaluation results show that the proposed evaluation method can accurately and comprehensively reflect the security gains brought by software diversity.
2023-03-03
Dal, Deniz, Çelik, Esra.  2022.  Evaluation of the Predictability of Passwords of Computer Engineering Students. 2022 3rd International Informatics and Software Engineering Conference (IISEC). :1–6.
As information and communication technologies evolve every day, so does the use of technology in our daily lives. Along with our increasing dependence on digital information assets, security vulnerabilities are becoming more and more apparent. Passwords are a critical component of secure access to digital systems and applications. They not only prevent unauthorized access to these systems, but also distinguish the users of such systems. Research on password predictability often relies on surveys or leaked data. Therefore, there is a gap in the literature for studies that consider real data in this regard. This study investigates the password security awareness of 161 computer engineering students enrolled in a Linux-based undergraduate course at Ataturk University. The study is conducted in two phases, and in the first phase, 12 dictionaries containing also real student data are formed. In the second phase of the study, a dictionary-based brute-force attack is utilized by means of a serial and parallel version of a Bash script to crack the students’ passwords. In this respect, the /etc/shadow file of the Linux system is used as a basis to compare the hashed versions of the guessed passwords. As a result, the passwords of 23 students, accounting for 14% of the entire student group, were cracked. We believe that this is an unacceptably high prediction rate for such a group with high digital literacy. Therefore, due to this important finding of the study, we took immediate action and shared the results of the study with the instructor responsible for administering the information security course that is included in our curriculum and offered in one of the following semesters.
2023-02-03
Sultana, Habiba, Kamal, A H M.  2022.  An Edge Detection Based Reversible Data Hiding Scheme. 2022 IEEE Delhi Section Conference (DELCON). :1–6.

Edge detection based embedding techniques are famous for data security and image quality preservation. These techniques use diverse edge detectors to classify edge and non-edge pixels in an image and then implant secrets in one or both of these classes. Image with conceived data is called stego image. It is noticeable that none of such researches tries to reform the original image from the stego one. Rather, they devote their concentration to extract the hidden message only. This research presents a solution to the raised reversibility problem. Like the others, our research, first, applies an edge detector e.g., canny, in a cover image. The scheme next collects \$n\$-LSBs of each of edge pixels and finally, concatenates them with encrypted message stream. This method applies a lossless compression algorithm to that processed stream. Compression factor is taken such a way that the length of compressed stream does not exceed the length of collected LSBs. The compressed message stream is then implanted only in the edge pixels by \$n\$-LSB substitution method. As the scheme does not destroy the originality of non-edge pixels, it presents better stego quality. By incorporation the mechanisms of encryption, concatenation, compression and \$n\$-LSB, the method has enriched the security of implanted data. The research shows its effectiveness while implanting a small sized message.

2023-07-21
Qasaimeh, Ghazi, Al-Gasaymeh, Anwar, Kaddumi, Thair, Kilani, Qais.  2022.  Expert Systems and Neural Networks and their Impact on the Relevance of Financial Information in the Jordanian Commercial Banks. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—7.
The current study aims to discern the impact of expert systems and neural network on the Jordanian commercial banks. In achieving the objective, the study employed descriptive analytical approach and the population consisted of the 13 Jordanian commercial banks listed at Amman Stock Exchange-ASE. The primary data were obtained by using a questionnaire with 188 samples distributed to a group of accountants, internal auditors, and programmers, who constitute the study sample. The results unveiled that there is an impact of the application of expert systems and neural networks on the relevance of financial information in Jordanian commercial banks. It also revealed that there is a high level of relevance of financial information in Jordanian commercial banks. Accordingly, the study recommended the need for banks to keep pace with the progress and development taking place in connection to the process and environment of expertise systems by providing modern and developed devices to run various programs and expert systems. It also recommended that, Jordanian commercial banks need to rely more on advanced systems to operate neural network technology more efficiently.
2023-03-17
Cui, Yang, Ma, Yikai, Zhang, Yudong, Lin, Xi, Zhang, Siwei, Si, Tianbin, Zhang, Changhai.  2022.  Effect of multilayer structure on energy storage characteristics of PVDF ferroelectric polymer. 2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). :582–586.
Dielectric capacitors have attracted attention as energy storage devices that can achieve rapid charge and discharge. But the key to restricting its development is the low energy storage density of dielectric materials. Polyvinylidene fluoride (PVDF), as a polymer with high dielectric properties, is expected to improve the energy storage density of dielectric materials. In this work, the multilayer structure of PVDF ferroelectric polymer is designed, and the influence of the number of layers on the maximum polarization, remanent polarization, applied electric field and energy storage density of the dielectric material is studied. The final obtained double-layer PVDF obtained a discharge energy storage density of 10.6 J/cm3 and an efficiency of 49.1% at an electric field of 410 kV/mm; the three-layer PVDF obtained a discharge energy storage density of 11.0 J/cm3 and an efficiency of 37.2% at an electric field of 440 kV/mm.
2023-09-20
Zhang, Chengzhao, Tang, Huiyue.  2022.  Empirical Research on Multifactor Quantitative Stock Selection Strategy Based on Machine Learning. 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML). :380—383.
In this paper, stock selection strategy design based on machine learning and multi-factor analysis is a research hotspot in quantitative investment field. Four machine learning algorithms including support vector machine, gradient lifting regression, random forest and linear regression are used to predict the rise and fall of stocks by taking stock fundamentals as input variables. The portfolio strategy is constructed on this basis. Finally, the stock selection strategy is further optimized. The empirical results show that the multifactor quantitative stock selection strategy has a good stock selection effect, and yield performance under the support vector machine algorithm is the best. With the increase of the number of factors, there is an inverse relationship between the fitting degree and the yield under various algorithms.
2023-01-20
Wang, Wei, Yao, Jiming, Shao, Weiping, Xu, Yangzhou, Peng, Shaowu.  2022.  Efficient 5G Network Slicing Selection with Privacy in Smart Grid. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:916—922.
To fulfill different requirements from various services, the smart grid typically uses 5G network slicing technique for splitting the physical network into multiple virtual logical networks. By doing so, end users in smart grid can select appropriate slice that is suitable for their services. Privacy has vital significance in network slicing selection, since both the end user and the network entities are afraid that their sensitive slicing features are leaked to an adversary. At the same time, in the smart grid, there are many low-power users who are not suitable for complex security schemes. Therefore, both security and efficiency are basic requirements for 5G slicing selection schemes. Considering both security and efficiency, we propose a 5G slicing selection security scheme based on matching degree estimation, called SS-MDE. In SS-MDE, a set of random numbers is used to hide the feature information of the end user and the AMF which can provide privacy protection for exchanged slicing features. Moreover, the best matching slice is selected by calculating the Euclid distance between two slices. Since the algorithms used in SS-MDE include only several simple mathematical operations, which are quite lightweight, SS-MDE can achieve high efficiency. At the same time, since third-party attackers cannot extract the slicing information, SS-MDE can fulfill security requirements. Experimental results show that the proposed scheme is feasible in real world applications.
Choudhary, Sachin, Kumar, Abhimanyu, Kumar, Krishan.  2022.  An Efficient Key Agreement Protocol for Smart Grid communication. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). :1—5.
Integration of technology with power grid emerged Smart grid. The advancement of power grid into smart grid faces some security issues like message mod-ification attacks, message injection attacks etc. If these issues are correctly not addressed, then the performance of the smart grid is degraded. Smart grid has bidirectional communication among the smart grid entities. The flow of user energy consumption information between all smart grid entities may lead the user privacy violation. Smart grids have various components but service providers and smart meters are the main components. Smart meters have sensing and communication functionality, while service providers have control and communication functionality. There are many privacy preservation schemes proposed that ensure the cus-tomer's privacy in the smart grid. To preserve the customer's data privacy and communication, authentication and key agreement schemes are required between the smart meter and the service provider. This paper proposes an efficient key agreement protocol to handle several security challenges in smart grid. The proposed protocol is tested against the various security attributes necessary for a key establishment protocol and found safe. Further the performance of the proposed work is compared with several others existing work for smart grid application and it has been observed that the proposed protocol performs significantly better than the existing protocols available in the literature.
2023-03-17
Bekele, Yohannes B., Limbrick, Daniel B..  2022.  Evaluating the Impact of Hardware Faults on Program Execution in a Microkernel Environment. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :149–152.
Safety-critical systems require resiliency against both cyberattacks and environmental faults. Researches have shown that microkernels can isolate components and limit the capabilities of would-be attackers by confining the attack in the component that it is initiated in. This limits the propagation of faults to sensitive components in the system. Nonetheless, the isolation mechanism in microkernels is not fully investigated for its resiliency against hardware faults. This paper investigates whether microkernels provide protection against hardware faults and, if so, to what extent quantitatively. This work is part of an effort in establishing an overlap between security and reliability with the goal of maximizing both while minimizing their impact on performance. In this work, transient faults are emulated on the seL4 microkernel and Linux kernel using debugger-induced bit flips across random timestamps in benchmark applications. Results show differences in the frequency and final outcome of fault to error manifestation in the seL4 environment compared to the Linux environment, including a reduction in silent data corruptions.
2023-02-17
Caramancion, Kevin Matthe.  2022.  An Exploration of Mis/Disinformation in Audio Format Disseminated in Podcasts: Case Study of Spotify. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–6.
This paper examines audio-based social networking platforms and how their environments can affect the persistence of fake news and mis/disinformation in the whole information ecosystem. This is performed through an exploration of their features and how they compare to that of general-purpose multimodal platforms. A case study on Spotify and its recent issue on free speech and misinformation is the application area of this paper. As a supplementary, a demographic analysis of the current statistics of podcast streamers is outlined to give an overview of the target audience of possible deception attacks in the future. As for the conclusion, this paper confers a recommendation to policymakers and experts in preparing for future mis-affordance of the features in social environments that may unintentionally give the agents of mis/disinformation prowess to create and sow discord and deception.
2023-04-28
Yang, Hongna, Zhang, Yiwei.  2022.  On an extremal problem of regular graphs related to fractional repetition codes. 2022 IEEE International Symposium on Information Theory (ISIT). :1566–1571.
Fractional repetition (FR) codes are a special family of regenerating codes with the repair-by-transfer property. The constructions of FR codes are naturally related to combinatorial designs, graphs, and hypergraphs. Given the file size of an FR code, it is desirable to determine the minimum number of storage nodes needed. The problem is related to an extremal graph theory problem, which asks for the minimum number of vertices of an α-regular graph such that any subgraph with k vertices has at most δ edges. In this paper, we present a class of regular graphs for this problem to give the bounds for the minimum number of storage nodes for the FR codes.
ISSN: 2157-8117
2022-12-06
Tamburello, Marialaura, Caruso, Giuseppe, Giordano, Stefano, Adami, Davide, Ojo, Mike.  2022.  Edge-AI Platform for Realtime Wildlife Repelling. 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). :80-84.

In this paper, we present the architecture of a Smart Industry inspired platform designed for Agriculture 4.0 applications and, specifically, to optimize an ecosystem of SW and HW components for animal repelling. The platform implementation aims to obtain reliability and energy efficiency in a system aimed to detect, recognize, identify, and repel wildlife by generating specific ultrasound signals. The wireless sensor network is composed of OpenMote hardware devices coordinated on a mesh network based on the 6LoWPAN protocol, and connected to an FPGA-based board. The system, activated when an animal is detected, elaborates the data received from a video camera connected to FPGA-based hardware devices and then activates different ultrasonic jammers belonging to the OpenMotes network devices. This way, in real-time wildlife will be progressively moved away from the field to be preserved by the activation of specific ultrasonic generators. To monitor the daily behavior of the wildlife, the ecosystem is expanded using a time series database running on a Cloud platform.